Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiology (Reading) ; 167(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34661520

RESUMEN

Uroporphyrinogen III, the universal progenitor of macrocyclic, modified tetrapyrroles, is produced from aminolaevulinic acid (ALA) by a conserved pathway involving three enzymes: porphobilinogen synthase (PBGS), hydroxymethylbilane synthase (HmbS) and uroporphyrinogen III synthase (UroS). The gene encoding uroporphyrinogen III synthase has not yet been identified in Plasmodium falciparum, but it has been suggested that this activity is housed inside a bifunctional hybroxymethylbilane synthase (HmbS). Additionally, an unknown protein encoded by PF3D7_1247600 has also been predicted to possess UroS activity. In this study it is demonstrated that neither of these proteins possess UroS activity and the real UroS remains to be identified. This was demonstrated by the failure of codon-optimized genes to complement a defined Escherichia coli hemD- mutant (SASZ31) deficient in UroS activity. Furthermore, HPLC analysis of the oxidized reaction product from recombinant, purified P. falciparum HmbS showed that only uroporphyrin I could be detected (corresponding to hydroxymethylbilane production). No uroporphyrin III was detected, showing that P. falciparum HmbS does not have UroS activity and can only catalyze the formation of hydroxymethylbilane from porphobilinogen.


Asunto(s)
Hemo/biosíntesis , Hidroximetilbilano Sintasa/metabolismo , Plasmodium falciparum/enzimología , Vías Biosintéticas , Escherichia coli/genética , Prueba de Complementación Genética , Hidroximetilbilano Sintasa/genética , Mutación , Plasmodium falciparum/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Uroporfirinógeno III Sintetasa/genética , Uroporfirinógeno III Sintetasa/metabolismo , Uroporfirinógenos/metabolismo
2.
Nat Commun ; 10(1): 1136, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850590

RESUMEN

CRISPR-Cas9 is a promising technology for genome editing. Here we use Cas9 nuclease-induced double-strand break DNA (DSB) at the UROS locus to model and correct congenital erythropoietic porphyria. We demonstrate that homology-directed repair is rare compared with NHEJ pathway leading to on-target indels and causing unwanted dysfunctional protein. Moreover, we describe unexpected chromosomal truncations resulting from only one Cas9 nuclease-induced DSB in cell lines and primary cells by a p53-dependent mechanism. Altogether, these side effects may limit the promising perspectives of the CRISPR-Cas9 nuclease system for disease modeling and gene therapy. We show that the single nickase approach could be safer since it prevents on- and off-target indels and chromosomal truncations. These results demonstrate that the single nickase and not the nuclease approach is preferable, not only for modeling disease but also and more importantly for the safe management of future CRISPR-Cas9-mediated gene therapies.


Asunto(s)
Sistemas CRISPR-Cas , Cromosomas Humanos Par 10 , Roturas del ADN de Doble Cadena , Desoxirribonucleasa I/genética , Edición Génica/métodos , Terapia Genética/métodos , Uroporfirinógeno III Sintetasa/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Deleción Cromosómica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética , ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Genoma Humano , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células K562 , Modelos Biológicos , Porfiria Eritropoyética/genética , Porfiria Eritropoyética/metabolismo , Porfiria Eritropoyética/patología , Porfiria Eritropoyética/terapia , Cultivo Primario de Células , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Reparación del ADN por Recombinación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Uroporfirinógeno III Sintetasa/metabolismo
3.
Sci Transl Med ; 10(459)2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30232228

RESUMEN

Congenital erythropoietic porphyria is a rare autosomal recessive disease produced by deficient activity of uroporphyrinogen III synthase, the fourth enzyme in the heme biosynthetic pathway. The disease affects many organs, can be life-threatening, and currently lacks curative treatments. Inherited mutations most commonly reduce the enzyme's stability, altering its homeostasis and ultimately blunting intracellular heme production. This results in uroporphyrin by-product accumulation in the body, aggravating associated pathological symptoms such as skin photosensitivity and disfiguring phototoxic cutaneous lesions. We demonstrated that the synthetic marketed antifungal ciclopirox binds to the enzyme, stabilizing it. Ciclopirox targeted the enzyme at an allosteric site distant from the active center and did not affect the enzyme's catalytic role. The drug restored enzymatic activity in vitro and ex vivo and was able to alleviate most clinical symptoms of congenital erythropoietic porphyria in a genetic mouse model of the disease at subtoxic concentrations. Our findings establish a possible line of therapeutic intervention against congenital erythropoietic porphyria, which is potentially applicable to most of deleterious missense mutations causing this devastating disease.


Asunto(s)
Ciclopirox/uso terapéutico , Reposicionamiento de Medicamentos , Porfiria Eritropoyética/tratamiento farmacológico , Sitio Alostérico , Animales , Fenómenos Biofísicos , Línea Celular , Ciclopirox/farmacocinética , Modelos Animales de Enfermedad , Homeostasis , Ratones , Fenotipo , Porfiria Eritropoyética/enzimología , Porfiria Eritropoyética/patología , Uroporfirinógeno III Sintetasa/antagonistas & inhibidores , Uroporfirinógeno III Sintetasa/química , Uroporfirinógeno III Sintetasa/metabolismo
4.
Structure ; 26(4): 565-571.e3, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29551288

RESUMEN

There are numerous applications that use the structures of protein-ligand complexes from the PDB, such as 3D pharmacophore identification, virtual screening, and fragment-based drug design. The structures underlying these applications are potentially much more informative if they contain biologically relevant bound ligands, with high similarity to the cognate ligands. We present a study of ligand-enzyme complexes that compares the similarity of bound and cognate ligands, enabling the best matches to be identified. We calculate the molecular similarity scores using a method called PARITY (proportion of atoms residing in identical topology), which can conveniently be combined to give a similarity score for all cognate reactants or products in the reaction. Thus, we generate a rank-ordered list of related PDB structures, according to the biological similarity of the ligands bound in the structures.


Asunto(s)
Acetilcolina/química , Acetilcolinesterasa/química , Biosimilares Farmacéuticos/química , Uroporfirinógeno III Sintetasa/química , Uroporfirinógenos/química , Acetilcolina/metabolismo , Acetilcolinesterasa/metabolismo , Sitios de Unión , Biosimilares Farmacéuticos/metabolismo , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Especificidad por Sustrato , Uroporfirinógeno III Sintetasa/metabolismo , Uroporfirinógenos/metabolismo
5.
Environ Sci Pollut Res Int ; 22(8): 5877-86, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25352395

RESUMEN

Bisphenol A (BPA), as an emerging environmental pollutant, is potentially harmful to plant growth. Chlorophyll (Chl) is critical in photosynthesis that provides matter and energy for plant growth. How BPA affects the chlorophyll content remains largely unknown. Here, the effects of BPA on Chl synthesis in soybean seedlings were investigated. Exposure to 1.5 mg/L BPA decreased the 5-aminolevulinic acid (ALA) content and increased protoporphyrin IX (Proto IX), magnesium protoporphyrin, and protochlorophyll contents and 5-aminolaevulinic acid dehydratase, porphobilinogen deaminase, uroporphyrinogen III synthase, uroporphyrinogen III decarboxylase, and protoporphyrinogen oxidase activities. Exposure to 17.2 and 50.0 mg/L BPA exerted the opposite effects on these four intermediates and five enzymes. Following the withdrawal of BPA exposure, the aforementioned parameters gradually recovered, except magnesium protoporphyrin content in exposure to 50.0 mg/L BPA. Our findings revealed that exposure to low-concentration BPA increased the Chl content in soybean seedlings through improving Chl synthesis, especially the conversion from ALA to Proto IX, whereas exposure to high-concentration BPA decreased the Chl content through inhibiting Chl synthesis, especially the conversion from ALA to Proto IX. The dual effects of BPA were largely reversed following the withdrawal of BPA exposure.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Vías Biosintéticas/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Glycine max/efectos de los fármacos , Fenoles/toxicidad , Fotosíntesis/efectos de los fármacos , Plantones/efectos de los fármacos , Ácido Aminolevulínico/metabolismo , Análisis de Varianza , Clorofila/análogos & derivados , Clorofila/metabolismo , Hidroximetilbilano Sintasa/metabolismo , Hojas de la Planta/química , Porfobilinógeno Sintasa/metabolismo , Protoporfirinógeno-Oxidasa/metabolismo , Protoporfirinas/metabolismo , Plantones/metabolismo , Glycine max/metabolismo , Espectrometría de Fluorescencia , Uroporfirinógeno Descarboxilasa/metabolismo , Uroporfirinógeno III Sintetasa/metabolismo
6.
Hum Mol Genet ; 23(21): 5805-13, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24925316

RESUMEN

Congenital erythropoietic porphyria (CEP) results from a deficiency in uroporphyrinogen III synthase enzyme (UROIIIS) activity that ultimately stems from deleterious mutations in the uroS gene. C73 is a hotspot for these mutations and a C73R substitution, which drastically reduces the enzyme activity and stability, is found in almost one-third of all reported CEP cases. Here, we have studied the structural basis, by which mutations in this hotspot lead to UROIIIS destabilization. First, a strong interdependency is observed between the volume of the side chain at position 73 and the folded protein. Moreover, there is a correlation between the in vitro half-life of the mutated proteins and their expression levels in eukaryotic cell lines. Molecular modelling was used to rationalize the results, showing that the mutation site is coupled to the hinge region separating the two domains. Namely, mutations at position 73 modulate the inter-domain closure and ultimately affect protein stability. By incorporating residues capable of interacting with R73 to stabilize the hinge region, catalytic activity was fully restored and a moderate increase in the kinetic stability of the enzyme was observed. These results provide an unprecedented rationale for a destabilizing missense mutation and pave the way for the effective design of molecular chaperones as a therapy against CEP.


Asunto(s)
Homeostasis , Porfiria Eritropoyética/metabolismo , Ingeniería de Proteínas , Uroporfirinógeno III Sintetasa/metabolismo , Sustitución de Aminoácidos , Catálisis , Activación Enzimática , Estabilidad de Enzimas , Humanos , Espacio Intracelular/metabolismo , Cinética , Modelos Moleculares , Mutación , Porfiria Eritropoyética/enzimología , Porfiria Eritropoyética/genética , Conformación Proteica , Uroporfirinógeno III Sintetasa/química , Uroporfirinógeno III Sintetasa/genética
7.
Proc Natl Acad Sci U S A ; 110(45): 18238-43, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24145442

RESUMEN

Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in massive porphyrin accumulation in blood cells, which is responsible for hemolytic anemia and skin photosensitivity. Among the missense mutations actually described up to now in CEP patients, the C73R and the P248Q mutations lead to a profound UROS deficiency and are usually associated with a severe clinical phenotype. We previously demonstrated that the UROS(C73R) mutant protein conserves intrinsic enzymatic activity but triggers premature degradation in cellular systems that could be prevented by proteasome inhibitors. We show evidence that the reduced kinetic stability of the UROS(P248Q) mutant is also responsible for increased protein turnover in human erythroid cells. Through the analysis of EGFP-tagged versions of UROS enzyme, we demonstrate that both UROS(C73R) and UROS(P248Q) are equally destabilized in mammalian cells and targeted to the proteasomal pathway for degradation. We show that a treatment with proteasomal inhibitors, but not with lysosomal inhibitors, could rescue the expression of both EGFP-UROS mutants. Finally, in CEP mice (Uros(P248Q/P248Q)) treated with bortezomib (Velcade), a clinically approved proteasome inhibitor, we observed reduced porphyrin accumulation in circulating RBCs and urine, as well as reversion of skin photosensitivity on bortezomib treatment. These results of medical importance pave the way for pharmacologic treatment of CEP disease by preventing certain enzymatically active UROS mutants from early degradation by using proteasome inhibitors or chemical chaperones.


Asunto(s)
Modelos Moleculares , Porfiria Eritropoyética/tratamiento farmacológico , Inhibidores de Proteasoma/uso terapéutico , Uroporfirinógeno III Sintetasa/genética , Uroporfirinógeno III Sintetasa/metabolismo , Animales , Western Blotting , Ácidos Borónicos/farmacología , Ácidos Borónicos/uso terapéutico , Bortezomib , Dicroismo Circular , Cartilla de ADN/genética , Células Eritroides/metabolismo , Humanos , Ratones , Mutación Missense/genética , Porfiria Eritropoyética/genética , Porfirinas/sangre , Porfirinas/orina , Pliegue de Proteína , Pirazinas/farmacología , Pirazinas/uso terapéutico , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Fluorescencia , Uroporfirinógeno III Sintetasa/química
8.
J Microbiol Biotechnol ; 23(5): 668-73, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23648857

RESUMEN

A recombinant E. coli co-expressing ALA synthase (hemA), NADP-dependent malic enzyme (maeB), and dicarboxylic acid transporter (dctA) was reported to synthesize porphyrin derivatives including iron-containing heme. To enhance the synthesis of bacterial heme, five genes of the porphyrin biosynthetic pathway [pantothenate kinase (coaA), ALA dehydratase (hemB), 1-hydroxymethylbilane synthase (hemC), uroporphyrinogen III synthase (hemD), and uroporphyrinogen III decarboxylase (hemE)] were amplified in the recombinant E. coli co-expressing hemA-maeB-dctA. Pantothenate kinase expression enabled the recombinant E. coli to accumulate intracellular CoA. Intracellular ALA was the most enhanced by uroporphyrinogen III synthase expression, porphobilinogen by ALA dehydratase expression, and uroporphyrin and coproporphyrin by 1- hydroxymethylbilane synthase expression. The strain coexpressing coaA, hemA, maeB, and dctA produced heme of 0.49 micromol/g-DCW, which was twice as much from the strain without coaA expression. Further strain improvement for the porphyrin derivatives is discussed based on the results.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Amplificación de Genes , Hemo/biosíntesis , Porfirinas/metabolismo , Vías Biosintéticas , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Hidroximetilbilano Sintasa/genética , Hidroximetilbilano Sintasa/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Uroporfirinógeno III Sintetasa/genética , Uroporfirinógeno III Sintetasa/metabolismo
9.
Cell Mol Biol (Noisy-le-grand) ; 59 Suppl: OL1855-60, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23522335

RESUMEN

AIP is an acute liver disorder caused by a deficiency of porphobilinogen deaminase (PBGD) characterized by neuroabdominal symptoms. It is an autosomal dominant disease. However, homozygous dominant AIP (HD-AIP) have been described. In some cases erythrodontia was observed. CEP is an autosomal recessive disease produced by mutations in the uroporphyrinogen III synthase gene (UROS), characterized by severe cutaneous lesions and erythrodontia. The aim of the work was to establish the differential diagnosis of porphyria in a patient with abdominal pain, neurological attacks, skin symptoms and erythrodontia. The PBGD activity was reduced 50% and the genetic analysis indicated the presence of two genetic variants in the PBGD gene, p.G111R and p.E258G, a new genetic variant, revealing a case of heteroallelic HD-AIP. The patient, first diagnosed as a carrier of a dual porphyria: AIP / CEP based on the excretion profile of porphyrins, precursors and her clinical symptoms, would be an atypical case of human HD-AIP. These results would also suggest the presence of a phenocopy of the CEP, induced by an endogenous or exogenous factor. Our findings highlight the importance of genetic studies for a proper diagnosis of porphyria, prevention of its manifestation and its treatment.


Asunto(s)
Variación Genética , Hidroximetilbilano Sintasa/genética , Hígado/patología , Porfiria Intermitente Aguda/diagnóstico , Porfiria Intermitente Aguda/genética , Enfermedad Aguda , Adulto , Secuencia de Bases , Análisis Mutacional de ADN , Femenino , Heterocigoto , Humanos , Hidroximetilbilano Sintasa/metabolismo , Hígado/metabolismo , Datos de Secuencia Molecular , Mutación , Porfiria Intermitente Aguda/sangre , Porfiria Intermitente Aguda/orina , Porfirinas/sangre , Porfirinas/orina , Uroporfirinógeno III Sintetasa/genética , Uroporfirinógeno III Sintetasa/metabolismo
10.
J Coll Physicians Surg Pak ; 21(9): 564-6, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21914417

RESUMEN

Congenital erythropoietic porphyria (CEP) or Gunther's disease is inherited disorder of porphyrin heme synthetic pathway that usually presents early in life. A very rare form of this disease has its onset in later years of life, called late onset erythropoietic porphyria (late onset EP). Fourteen cases of late onset EP have been reported to-date. We report another case of this rare entity in a 40 years old male with associated findings of haemolysis and thrombocytopenia.


Asunto(s)
Porfiria Eritropoyética/diagnóstico , Adulto , Diagnóstico Diferencial , Hemólisis , Humanos , Masculino , Porfiria Eritropoyética/enzimología , Trombocitopenia , Factores de Tiempo , Uroporfirinógeno III Sintetasa/metabolismo
11.
Eukaryot Cell ; 10(11): 1536-44, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21908598

RESUMEN

The azaoxoaporphine alkaloid sampangine exhibits strong antiproliferation activity in various organisms. Previous studies suggested that it somehow affects heme metabolism and stimulates production of reactive oxygen species (ROS). In this study, we show that inhibition of heme biosynthesis is the primary mechanism of action by sampangine and that increases in the levels of reactive oxygen species are secondary to heme deficiency. We directly demonstrate that sampangine inhibits heme synthesis in the yeast Saccharomyces cerevisiae. It also causes accumulation of uroporphyrinogen and its decarboxylated derivatives, intermediate products of the heme biosynthesis pathway. Our results also suggest that sampangine likely works through an unusual mechanism-by hyperactivating uroporhyrinogen III synthase-to inhibit heme biosynthesis. We also show that the inhibitory effect of sampangine on heme synthesis is conserved in human cells. This study also reveals a surprising essential role for the interaction between the mitochondrial ATP synthase and the electron transport chain.


Asunto(s)
Alcaloides/farmacología , Hemo/biosíntesis , Saccharomyces cerevisiae/efectos de los fármacos , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Células Jurkat , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Naftiridinas , Extractos Vegetales/farmacología , Protoporfirinógeno-Oxidasa/genética , Protoporfirinógeno-Oxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Uroporfirinógeno III Sintetasa/biosíntesis , Uroporfirinógeno III Sintetasa/metabolismo , Uroporfirinógenos/metabolismo
12.
Blood ; 118(6): 1443-51, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21653323

RESUMEN

Mutations in the uroporphyrinogen III synthase (UROS) gene cause congenital erythropoietic porphyria (CEP), an autosomal-recessive inborn error of erythroid heme biosynthesis. Clinical features of CEP include dermatologic and hematologic abnormalities of variable severity. The discovery of a new type of erythroid porphyria, X-linked dominant protoporphyria (XLDPP), which results from increased activity of 5-aminolevulinate synthase 2 (ALAS2), the rate-controlling enzyme of erythroid heme synthesis, led us to hypothesize that the CEP phenotype may be modulated by sequence variations in the ALAS2 gene. We genotyped ALAS2 in 4 unrelated CEP patients exhibiting the same C73R/P248Q UROS genotype. The most severe of the CEP patients, a young girl, proved to be heterozygous for a novel ALAS2 mutation: c.1757 A > T in exon 11. This mutation is predicted to affect the highly conserved and penultimate C-terminal amino acid of ALAS2 (Y586). The rate of 5-aminolevulinate release from Y586F was significantly increased over that of wild-type ALAS2. The contribution of the ALAS2 gain-of-function mutation to the CEP phenotype underscores the importance of modifier genes underlying CEP. We propose that ALAS2 gene mutations should be considered not only as causative of X-linked sideroblastic anemia (XLSA) and XLDPP but may also modulate gene function in other erythropoietic disorders.


Asunto(s)
5-Aminolevulinato Sintetasa/genética , Mutación Missense , Porfiria Eritropoyética/genética , Uroporfirinógeno III Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , Secuencia de Aminoácidos , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Anemia Sideroblástica/patología , Secuencia de Bases , Preescolar , Electroforesis en Gel de Poliacrilamida , Salud de la Familia , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Genotipo , Humanos , Lactante , Cinética , Masculino , Datos de Secuencia Molecular , Linaje , Porfiria Eritropoyética/metabolismo , Porfiria Eritropoyética/patología , Protoporfiria Eritropoyética/genética , Protoporfiria Eritropoyética/metabolismo , Homología de Secuencia de Aminoácido , Índice de Severidad de la Enfermedad , Espectrofotometría , Uroporfirinógeno III Sintetasa/metabolismo , Uroporfirinógenos/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-21570665

RESUMEN

Congenital erythropoietic porphyria (CEP) is a rare autosomal disease ultimately related to deleterious mutations in uroporphyrinogen III synthase (UROIIIS), the fourth enzyme of the biosynthetic route of the heme group. UROIIIS catalyzes the cyclization of the linear tetrapyrrol hydroxymethylbilane (HMB), inverting the configuration in one of the aromatic rings. In the absence of the enzyme (or when ill-functioning), HMB spontaneously degrades to the by-product uroporphyrinogen I, which cannot lead to the heme group and accumulates in the body, producing some of the symptoms observed in CEP patients. In the present chapter, clinical, biochemical, and biophysical information has been compiled to provide an integrative view on the molecular basis of CEP. The high-resolution structure of UROIIIS sheds light on the enzyme reaction mechanism while thermodynamic analysis revealed that the protein is thermolabile. Pathogenic missense mutations are found throughout the primary sequence of the enzyme. All but one of these is rarely found in patients, whereas C73R is responsible for more than one-third of the reported cases. Most of the mutant proteins (C73R included) retain partial catalytic activity but the mutations often reduce the enzyme's stability. The stabilization of the protein in vivo is discussed in the context of a new line of intervention to complement existing treatments such as bone marrow transplantation and gene therapy.


Asunto(s)
Porfiria Eritropoyética/enzimología , Uroporfirinógeno III Sintetasa/química , Uroporfirinógeno III Sintetasa/metabolismo , Animales , Biocatálisis , Humanos , Porfiria Eritropoyética/terapia , Conformación Proteica , Termodinámica , Uroporfirinógeno III Sintetasa/genética
14.
Mol Med ; 17(7-8): 748-56, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21365124

RESUMEN

Congenital erythropoietic porphyria (CEP) is an autosomal recessive disorder due to the deficient activity of uroporphyrinogen III synthase (UROS). Knock-in mouse models were generated for the common, hematologically severe human genotype, C73R/C73R, and milder genotypes (C73R/V99L and V99L/V99L). The specific activities of the UROS enzyme in the livers and erythrocytes of these mice averaged approximately 1.2%, 11% and 19% of normal, respectively. C73R/C73R mice that survived fetal life to weaning age (~12%) had a severe microcytic hypochromic anemia (hemoglobin 7.9 g/dL, mean cellular volume 26.6 fL, mean cellular hemoglobin content 27.4 g/dL, red cell distribution width 37.7%, reticulocytes 19%) and massively accumulated isomer I porphyrins (95, 183 and 44 µmol/L in erythrocytes, spleen and liver, respectively), but a nearly normal lifespan. In adult C73R/C73R mice, spleen and liver weights were 8.2- and 1.5-fold increased, respectively. C73R/V99L mice were mildly anemic (hemoglobin was 14.0 g/dL and mean cellular hemoglobin was 13.3), with minimally accumulated porphyrins (0.10, 5.54 and 0.58 µmol/L in erythrocytes, spleen and liver, respectively), whereas adult V99L/V99L mice were normal. Of note, even the mildest genotype, V99L/V99L, exhibited porphyria in utero, which disappeared by 2 months of age. These severe and mild mouse models inform therapeutic interventions and permit further investigation of the porphyrin-induced hematopathology, which leads to photo-induced cutaneous lesions. Of significance for therapeutic intervention, these mouse models suggest that only 11% of wild-type activity might be needed to reverse the pathology in CEP patients.


Asunto(s)
Modelos Animales de Enfermedad , Porfiria Eritropoyética/genética , Uroporfirinógeno III Sintetasa/genética , Animales , Animales Recién Nacidos , Eritrocitos/enzimología , Eritrocitos/metabolismo , Eritrocitos/patología , Femenino , Genotipo , Humanos , Riñón/enzimología , Riñón/metabolismo , Riñón/patología , Hígado/enzimología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Tamaño de los Órganos , Fenotipo , Porfiria Eritropoyética/enzimología , Porfirinas/metabolismo , Bazo/enzimología , Bazo/metabolismo , Bazo/patología , Factores de Tiempo , Uroporfirinógeno III Sintetasa/metabolismo
15.
J Biol Chem ; 286(15): 13127-33, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21343304

RESUMEN

A single mutation (C73R) in the enzyme uroporphyrinogen III synthase (UROIIIS) is responsible for more than one-third of all of the reported cases of the rare autosomal disease congenital erythropoietic porphyria (CEP). CEP patients carrying this hotspot mutation develop a severe phenotype of the disease, including reduced life expectancy. Here, we have investigated the molecular basis for the functional deficit in the mutant enzyme both in vitro and in cellular systems. We show that a Cys in position 73 is not essential for the catalytic activity of the enzyme but its mutation to Arg speeds up the process of irreversible unfolding and aggregation. In the mammalian cell milieu, the mutant protein levels decrease to below the detection limit, whereas wild type UROIIIS can be detected easily. The disparate response is not produced by differences at the level of transcription, and the results with cultured cells and in vitro are consistent with a model where the protein becomes very unstable upon mutation and triggers a degradation mechanism via the proteasome. Mutant protein levels can be restored upon cell treatment with the proteasome inhibitor MG132. The intracellularly recovered C73R-UROIIIS protein shows enzymatic activity, paving the way for a new line of therapeutic intervention in CEP patients.


Asunto(s)
Mutación Missense , Porfiria Eritropoyética/enzimología , Uroporfirinógeno III Sintetasa/metabolismo , Sustitución de Aminoácidos , Catálisis , Línea Celular , Cisteína/genética , Cisteína/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Estabilidad de Enzimas/genética , Humanos , Leupeptinas/farmacología , Porfiria Eritropoyética/tratamiento farmacológico , Porfiria Eritropoyética/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Uroporfirinógeno III Sintetasa/genética
16.
Intern Emerg Med ; 5 Suppl 1: S65-71, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20865477

RESUMEN

Porphyrias are a group of inherited and acquired metabolic disorders due to a defect in haem biosynthesis. An enzymatic defect at different steps of haem synthesis leads to tissue accumulation and excessive excretion of porphyrins and/or their toxic precursors. The specific patterns of accumulation determine the variety of clinical manifestations, ranging from acute neurovisceral attacks to skin lesions and liver disease. Most enzyme defects represent partial deficiencies, while familial cases are linked to autosomal or recessive traits. The incomplete penetrance of the genetic defects often requires the triggering or aggravating effect of host-related or environmental factors. While genetics has a role in confirming clinical suspicion and in family screening, biochemical and clinical studies are still central in the diagnosis.


Asunto(s)
Hemo/biosíntesis , Porfirias/etiología , Coproporfirinógeno Oxidasa/genética , Coproporfirinógeno Oxidasa/metabolismo , Ferroquelatasa/genética , Ferroquelatasa/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Hemo/genética , Humanos , Hidroximetilbilano Sintasa/genética , Hidroximetilbilano Sintasa/metabolismo , Porfobilinógeno Sintasa/deficiencia , Porfobilinógeno Sintasa/genética , Porfirias/enzimología , Porfirias/genética , Protoporfirinógeno-Oxidasa/genética , Protoporfirinógeno-Oxidasa/metabolismo , Uroporfirinógeno Descarboxilasa/deficiencia , Uroporfirinógeno Descarboxilasa/genética , Uroporfirinógeno III Sintetasa/genética , Uroporfirinógeno III Sintetasa/metabolismo
17.
J Gene Med ; 12(8): 637-46, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20586119

RESUMEN

BACKGROUND: Congenital erythropoietic porphyria (CEP) is a severe autosomal recessive disorder characterized by a deficiency in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthetic pathway. We recently demonstrated the definitive cure of a murine model of CEP by lentiviral vector-mediated hematopoietic stem cell (HSC) gene therapy. In the perspective of a gene therapy clinical trial, human cellular models are required to evaluate the therapeutic potential of lentiviral vectors in UROS-deficient cells. However, the rare incidence of the disease makes difficult the availability of HSCs derived from patients. METHODS: RNA interference (RNAi) has been used to develop a new human model of the disease from normal cord blood HSCs. Lentivectors were developed for this purpose. RESULTS: We were able to down-regulate the level of human UROS in human cell lines and primary hematopoietic cells. A 97% reduction of UROS activity led to spontaneous uroporphyrin accumulation in human erythroid bone marrow cells of transplanted immune-deficient mice, recapitulating the phenotype of cells derived from patients. A strong RNAi-induced UROS inhibition allowed us to test the efficiency of different lentiviral vectors with the aim of selecting a safer vector. Restoration of UROS activity in these small hairpin RNA-transduced CD34(+) cord blood cells by therapeutic lentivectors led to a partial correction of the phenotype in vivo. CONCLUSIONS: The RNAi strategy is an interesting new tool for preclinical gene therapy evaluation.


Asunto(s)
Terapia Genética/métodos , Porfiria Eritropoyética/terapia , Interferencia de ARN , Animales , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas/metabolismo , Humanos , Células K562 , Lentivirus/genética , Lentivirus/metabolismo , Ratones , Porfiria Eritropoyética/enzimología , Porfiria Eritropoyética/genética , Uroporfirinógeno III Sintetasa/genética , Uroporfirinógeno III Sintetasa/metabolismo
18.
Mol Med ; 16(9-10): 381-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20485863

RESUMEN

The first feline model of human congenital erythropoietic porphyria (CEP) due to deficient uroporphyrinogen III synthase (URO-synthase) activity was identified by its characteristic clinical phenotype, and confirmed by biochemical and molecular genetic studies. The proband, an adult domestic shorthair cat, had dark-red urine and brownish discolored teeth with red fluorescence under ultraviolet light. Biochemical studies demonstrated markedly increased uroporphyrinogen I in urine and plasma (2,650- and 10,700-fold greater than wild type, respectively), whereas urinary 5-aminolevulinic acid and porphobilinogen were lower than normal. Erythrocytic URO-synthase activity was <1% of mean wild-type activity, confirming the diagnosis and distinguishing it from feline phenocopies having acute intermittent porphyria. Sequencing of the affected cat's UROS gene revealed two missense mutations, c.140C>T (p.S47F) in exon 3 and c.331G>A (p.G111S) in exon 6, both of which were homozygous, presumably owing to parental consanguinity. Neither was present in 100 normal cat alleles. Prokaryotic expression and thermostability studies of the purified monomeric wild-type, p.S47F, p.G111S, and p.S47F/G111S enzymes showed that the p.S47F enzyme had 100% of wild-type specific activity but ~50% decreased thermostability, whereas the p.G111S and p.S47F/G111S enzymes had about 60% and 20% of wild-type specific activity, respectively, and both were markedly thermolabile. Molecular modeling results indicated that the less active/less stable p.G111S enzyme was further functionally impaired by a structural interaction induced by the presence of the S47F substitution. Thus, the synergistic interaction of two rare amino acid substitutions in the URO-synthase polypeptide caused the feline model of human CEP.


Asunto(s)
Enfermedades de los Gatos/enzimología , Enfermedades de los Gatos/genética , Homocigoto , Mutación Missense/genética , Porfiria Eritropoyética/veterinaria , Porfirinas/metabolismo , Uroporfirinógeno III Sintetasa/genética , Animales , Enfermedades de los Gatos/sangre , Enfermedades de los Gatos/orina , Gatos , Eritrocitos/metabolismo , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Porfiria Eritropoyética/sangre , Porfiria Eritropoyética/enzimología , Porfiria Eritropoyética/orina , Porfirinas/sangre , Porfirinas/orina , Uroporfirinógeno III Sintetasa/química , Uroporfirinógeno III Sintetasa/metabolismo
19.
Proc Natl Acad Sci U S A ; 106(38): 16381-6, 2009 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-19805308

RESUMEN

We used the muscle creatine kinase (MCK) conditional frataxin knockout mouse to elucidate how frataxin deficiency alters iron metabolism. This is of significance because frataxin deficiency leads to Friedreich's ataxia, a disease marked by neurologic and cardiologic degeneration. Using cardiac tissues, we demonstrate that frataxin deficiency leads to down-regulation of key molecules involved in 3 mitochondrial utilization pathways: iron-sulfur cluster (ISC) synthesis (iron-sulfur cluster scaffold protein1/2 and the cysteine desulferase Nfs1), mitochondrial iron storage (mitochondrial ferritin), and heme synthesis (5-aminolevulinate dehydratase, coproporphyrinogen oxidase, hydroxymethylbilane synthase, uroporphyrinogen III synthase, and ferrochelatase). This marked decrease in mitochondrial iron utilization and resultant reduced release of heme and ISC from the mitochondrion could contribute to the excessive mitochondrial iron observed. This effect is compounded by increased iron availability for mitochondrial uptake through (i) transferrin receptor1 up-regulation, increasing iron uptake from transferrin; (ii) decreased ferroportin1 expression, limiting iron export; (iii) increased expression of the heme catabolism enzyme heme oxygenase1 and down-regulation of ferritin-H and -L, both likely leading to increased "free iron" for mitochondrial uptake; and (iv) increased expression of the mammalian exocyst protein Sec15l1 and the mitochondrial iron importer mitoferrin-2 (Mfrn2), which facilitate cellular iron uptake and mitochondrial iron influx, respectively. Our results enable the construction of a model explaining the cytosolic iron deficiency and mitochondrial iron loading in the absence of frataxin, which is important for understanding the pathogenesis of Friedreich's ataxia.


Asunto(s)
Ataxia de Friedreich/genética , Proteínas de Unión a Hierro/genética , Hierro/metabolismo , Mitocondrias/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Western Blotting , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Coproporfirinógeno Oxidasa/genética , Coproporfirinógeno Oxidasa/metabolismo , Modelos Animales de Enfermedad , Ferroquelatasa/genética , Ferroquelatasa/metabolismo , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patología , Perfilación de la Expresión Génica , Hemo/metabolismo , Hepcidinas , Humanos , Proteínas de Unión a Hierro/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados , Miocardio/citología , Miocardio/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Bazo/metabolismo , Uroporfirinógeno III Sintetasa/genética , Uroporfirinógeno III Sintetasa/metabolismo , Frataxina
20.
Plant Cell ; 21(3): 814-31, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19336693

RESUMEN

Chlorophyll production involves the synthesis of photoreactive intermediates that, when in excess, are toxic due to the production of reactive oxygen species (ROS). A novel, activation-tagged barley (Hordeum vulgare) mutant is described that results from antisense suppression of a uroporphyrinogen III synthase (Uros) gene, the product of which catalyzes the sixth step in the synthesis of chlorophyll and heme. In homozygous mutant plants, uroporphyrin(ogen) I accumulates by spontaneous cyclization of hydroxyl methylbilane, the substrate of Uros. Accumulation of this tetrapyrrole intermediate results in photosensitive cell death due to the production of ROS. The efficiency of Uros gene suppression is developmentally regulated, being most effective in mature seedling leaves compared with newly emergent leaves. Reduced transcript accumulation of a number of nuclear-encoded photosynthesis genes occurs in the mutant, even under 3% light conditions, consistent with a retrograde plastid-nuclear signaling mechanism arising from Uros gene suppression. A similar set of nuclear genes was repressed in wild-type barley following treatment with a singlet oxygen-generating herbicide, but not by a superoxide generating herbicide, suggesting that the retrograde signaling apparent in the mutant is specific to singlet oxygen.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hordeum , Luz , Proteínas de Plantas/metabolismo , Uroporfirinógeno III Sintetasa/metabolismo , Hordeum/enzimología , Hordeum/fisiología , Luz/efectos adversos , Mutación , Fotosíntesis/fisiología , Enfermedades de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Uroporfirinógeno III Sintetasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...