Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
Am J Respir Crit Care Med ; 208(7): 758-769, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37523710

RESUMEN

Rationale: Club cell secretory protein (CC16) is an antiinflammatory protein highly expressed in the airways. CC16 deficiency has been associated with lung function deficits, but its role in asthma has not been established conclusively. Objectives: To determine 1) the longitudinal association of circulating CC16 with the presence of active asthma from early childhood through adult life and 2) whether CC16 in early childhood predicts the clinical course of childhood asthma into adult life. Methods: We assessed the association of circulating CC16 and asthma in three population-based birth cohorts: the Tucson Children's Respiratory Study (years 6-36; total participants, 814; total observations, 3,042), the Swedish Barn/Children, Allergy, Milieu, Stockholm, Epidemiological survey (years 8-24; total participants, 2,547; total observations, 3,438), and the UK Manchester Asthma and Allergy Study (years 5-18; total participants, 745; total observations, 1,626). Among 233 children who had asthma at the first survey in any of the cohorts, baseline CC16 was also tested for association with persistence of symptoms. Measurements and Main Results: After adjusting for covariates, CC16 deficits were associated with increased risk for the presence of asthma in all cohorts (meta-analyzed adjusted odds ratio per 1-SD CC16 decrease, 1.20; 95% confidence interval [CI], 1.12-1.28; P < 0.0001). The association was particularly strong for asthma with frequent symptoms (meta-analyzed adjusted relative risk ratio, 1.40; 95% CI, 1.24-1.57; P < 0.0001), was confirmed for both atopic and nonatopic asthma, and was independent of lung function impairment. After adjustment for known predictors of persistent asthma, children with asthma in the lowest CC16 tertile had a nearly fourfold increased risk for having frequent symptoms persisting into adult life compared with children with asthma in the other two CC16 tertiles (meta-analyzed adjusted odds ratio, 3.72; 95% CI, 1.78-7.76; P < 0.0001). Conclusions: Circulating CC16 deficits are associated with the presence of asthma with frequent symptoms from childhood through midadult life and predict the persistence of asthma symptoms into adulthood. These findings support a possible protective role of CC16 in asthma and its potential use for risk stratification.


Asunto(s)
Asma , Uteroglobina , Adulto , Niño , Preescolar , Humanos , Asma/sangre , Asma/epidemiología , Asma/genética , Asma/metabolismo , Uteroglobina/sangre , Uteroglobina/deficiencia , Uteroglobina/genética , Uteroglobina/metabolismo , Adolescente , Adulto Joven , Suecia/epidemiología
2.
Clin Exp Allergy ; 53(6): 648-658, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37009718

RESUMEN

BACKGROUND: Club cell 16-kDa secretory protein (CC16) is a pneumoprotein and functions as an anti-inflammatory or antioxidant protein. However, altered levels of serum CC16 as well as their effect on airways inflammation have not been fully evaluated. METHODS: We recruited 63 adult asthmatics on maintenance medications and 61 healthy controls (HCs). The asthmatic subjects were divided into two groups according to the result of bronchodilator responsiveness (BDR) test: the present BDR (n = 17) and absent BDR (n = 46) groups. Serum CC16 levels were measured by ELISA. As an in vitro study, the effect of Dermatophagoides pteronyssinus antigen 1 (Der p1) on the production of CC16 in airways epithelial cells (AECs) according to a time-dependent manner was assessed; the effects of CC16 protein on oxidative stress system, airways inflammation and remodelling were tested. RESULTS: Serum CC16 levels showed significantly higher in the asthmatics than in the HCs (p < .001) with a positive correlation with FEV1 % (r = .352, p = .005). The present BDR group had significantly lower levels of serum CC16, FEV1 % and MMEF%, but showed higher level of FeNO than the absent BDR group. Serum CC16 levels (below 496.0 ng/mL) could discriminate the present BDR group from the absent BDR group (area under the curve = 0.74, p = .004). In vitro testing demonstrated that Der p1 exposure significantly induced CC16 release from AECs for 1 h, which was progressively decreased after 6 h and followed by MMP-9 and TIMP-1 production. These findings were associated with oxidant/antioxidant disequilibrium and restored by CC16 treatment (but not dexamethasone). CONCLUSION: Decreased CC16 production contributes to persistent airways inflammation and lung function decline. CC16 may be a potential biomarker for asthmatics with BDR.


Asunto(s)
Antioxidantes , Asma , Adulto , Humanos , Asma/diagnóstico , Asma/metabolismo , Inflamación , Pruebas de Función Respiratoria , Broncodilatadores , Proteínas , Uteroglobina/metabolismo
3.
Am J Respir Crit Care Med ; 207(4): 438-451, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36066606

RESUMEN

Rationale: CC16 is a protein mainly produced by nonciliated bronchial epithelial cells (BECs) that participates in host defense. Reduced CC16 protein concentrations in BAL and serum are associated with asthma susceptibility. Objectives: Few studies have investigated the relationship between CC16 and asthma progression, and none has focused on BECs. In this study, we sought to determine if CC16 mRNA expression levels in BECs are associated with asthma severity. Methods: Association analyses between CC16 mRNA expression levels in BECs (242 asthmatics and 69 control subjects) and asthma-related phenotypes in Severe Asthma Research Program were performed using a generalized linear model. Measurements and Main Results: Low CC16 mRNA expression levels in BECs were significantly associated with asthma susceptibility and asthma severity, high systemic corticosteroids use, high retrospective and prospective asthma exacerbations, and low pulmonary function. Low CC16 mRNA expression levels were significantly associated with high T2 inflammation biomarkers (fractional exhaled nitric oxide and sputum eosinophils). CC16 mRNA expression levels were negatively correlated with expression levels of Th2 genes (IL1RL1, POSTN, SERPINB2, CLCA1, NOS2, and MUC5AC) and positively correlated with expression levels of Th1 and inflammation genes (IL12A and MUC5B). A combination of two nontraditional T2 biomarkers (CC16 and IL-6) revealed four asthma endotypes with different characteristics of T2 inflammation, obesity, and asthma severity. Conclusions: Our findings indicate that low CC16 mRNA expression levels in BECs are associated with asthma susceptibility, severity, and exacerbations, partially through immunomodulation of T2 inflammation. CC16 is a potential nontraditional T2 biomarker for asthma development and progression.


Asunto(s)
Asma , Uteroglobina , Humanos , Asma/genética , Asma/metabolismo , Biomarcadores , Células Epiteliales/metabolismo , Inflamación/metabolismo , Estudios Prospectivos , Estudios Retrospectivos , ARN Mensajero/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo
4.
Acta Biochim Pol ; 69(4): 697-702, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36515569

RESUMEN

This study was conducted to investigate the changes of Club cell protein 16 (CC16) and surfactant protein D (SP-D) levels in serum and bronchoalveolar lavage fluid (BALF) in silicotic rats and to explore their potential as early biomarkers for silicosis. Pulmonary fibrosis models of rats were constructed by exposing them to silica particles. BALF and serum were collected to determine CC16 and SP-D levels using enzyme-linked immunosorbent assay (ELISA) at different times after the exposure. Hydroxyproline (HYP) level in BALF and CC16 level in the lung tissues were also measured immunohistochemistrially. The BALF levels of CC16 decreased from 49.65 to 38.02 ng/mg after the rats were exposed to silica for 3 and 28 days, which were all significantly lower as compared with the controls (P<0.05), where the levels remained barely changed during the same period (61.27 to 56.76 ng/mg). The serum CC16 also showed a similar decrease from 9.8 ng/ml to 8.78 ng/ml during the period, while in the controls, the serum CC16 levels remained constantly between 11.04 and 10.96 ng/ml. The levels of SP-D in the serum of silica-exposed rats did not decrease as compared with the controls and BALF SP-D presented a parabolic curve change with silica exposure. Immunohistochemical examinations showed that the lung Club cells were severely damaged and CC16 expression was obviously decreased after silica exposure. BALF HYP level was higher in silica-exposed rats than in control only when the exposure was at 50 mg/ml. Our work demonstrates that expressions of CC16 and SP-D are pulmonary tissue-specific and CC16 expression is down-regulated as a result of silica-exposure. The significant relationship between CC16 and silica dose indicates that CC16 may be exploited as an early biomarker to assess silica-induced pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Ratas , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Uteroglobina/metabolismo , Dióxido de Silicio/efectos adversos , Dióxido de Silicio/metabolismo , Pulmón/metabolismo , Biomarcadores/metabolismo
5.
Front Immunol ; 13: 1037115, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311771

RESUMEN

Background: Clara cell 16 kDa protein (CC16) is a secretory protein primarily expressed in epithelial cells in the lungs. Previous studies show that CC16 exerts anti-inflammatory and immune-modulatory properties in both acute and chronic pulmonary diseases. However, despite the evidence of CC16's high biomarker potential, evaluation of its role in infectious diseases is yet very limited. Methods: Serum CC16 concentrations were measured by ELISA and assessed in two different types of severe infections. Using a case-control study design, patients treated for either severe SARS-CoV-2 or severe non-pulmonary sepsis infection were compared to age- and sex-matched healthy human subjects. Results: Serum CC16 was significantly increased in both types of infection (SARS-CoV-2: 96.22 ± 129.01 ng/ml vs. healthy controls: 14.05 ± 7.48 ng/ml, p = 0.022; sepsis: 35.37 ± 28.10 ng/ml vs. healthy controls: 15.25 ± 7.51 ng/ml, p = 0.032) but there were no distinct differences between infections with and without pulmonary focus (p = 0.089). Furthermore, CC16 serum levels were positively correlated to disease duration and inversely to the platelet count in severe SARS-CoV-2 infection. Conclusions: Increased CC16 serum levels in both SARS-CoV-2 and sepsis reinforce the high potential as a biomarker for epithelial cell damage and bronchoalveolar-blood barrier leakage in pulmonary as well as non-pulmonary infectious diseases.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Sepsis , Humanos , Biomarcadores , Proteínas Sanguíneas/metabolismo , Estudios de Casos y Controles , Enfermedades Transmisibles/metabolismo , Células Epiteliales/metabolismo , Informe de Investigación , SARS-CoV-2 , Sepsis/metabolismo , Uteroglobina/metabolismo
6.
Respir Res ; 23(1): 247, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114505

RESUMEN

BACKGROUND: The club cell secretory protein (CC16) has anti-inflammatory and antioxidant effects, and low CC16 serum levels have been associated with both risk and progression of COPD, yet the interaction between smoking and CC16 on lung function outcomes remains unknown. METHODS: Utilizing cross-sectional data on United States veterans, CC16 serum concentrations were measured by ELISA and log transformed for analyses. Spirometry was conducted and COPD status was defined by post-bronchodilator FEV1/FVC ratio < 0.7. Smoking measures were self-reported on questionnaire. Multivariable logistic and linear regression were employed to examine associations between CC16 levels and COPD, and lung function with adjustment for covariates. Unadjusted Pearson correlations described relationships between CC16 level and lung function measures, pack-years smoked, and years since smoking cessation. RESULTS: The study population (N = 351) was mostly male, white, with an average age over 60 years. An interaction between CC16 and smoking status on FEV1/FVC ratio was demonstrated among subjects with COPD (N = 245, p = 0.01). There was a positive correlation among former smokers and negative correlation among current or never smokers with COPD. Among former smokers with COPD, CC16 levels were also positively correlated with years since smoking cessation, and inversely related with pack-years smoked. Increasing CC16 levels were associated with lower odds of COPD (ORadj = 0.36, 95% CI 0.22-0.57, Padj < 0.0001). CONCLUSIONS: Smoking status is an important effect modifier of CC16 relationships with lung function. Increasing serum CC16 corresponded to increases in FEV1/FVC ratio in former smokers with COPD versus opposite relationships in current or never smokers. Additional longitudinal studies may be warranted to assess relationship of CC16 with smoking cessation on lung function among subjects with COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Uteroglobina , Antiinflamatorios/metabolismo , Antioxidantes/metabolismo , Broncodilatadores/metabolismo , Estudios Transversales , Femenino , Humanos , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Humo , Fumar/efectos adversos , Fumar/epidemiología , Nicotiana , Uteroglobina/metabolismo
7.
Respir Res ; 23(1): 174, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768822

RESUMEN

INTRODUCTION: Club cell secretory protein-16 (CC16) is a major anti-inflammatory protein expressed in the airway; however, the potential role of CC16 on overweight/obese asthma has not been assessed. In this study, we examined whether obesity reduces airway/circulatory CC16 levels using experimental and epidemiological studies. Then, we explored the mediatory role of CC16 in the relationship of overweight/obesity with clinical asthma measures. METHODS: Circulating CC16 levels were assessed by ELISA in three independent human populations, including two groups of healthy and general populations and asthma patients. The percentage of cells expressing club markers in obese vs. non-obese mice and human airways was determined by immunohistochemistry. A causal mediation analysis was conducted to determine whether circulatory CC16 acted as a mediator between overweight/obesity and clinical asthma measures. RESULTS: BMI was significantly and monotonously associated with reduced circulating CC16 levels in all populations. The percentage of CC16-expressing cells was reduced in the small airways of both mice and humans with obesity. Finally, mediation analysis revealed significant contributions of circulatory CC16 in the association between BMI and clinical asthma measures; 21.8% of its total effect in BMI's association with airway hyperresponsiveness of healthy subjects (p = 0.09), 26.4% with asthma severity (p = 0.030), and 23% with the required dose of inhaled corticosteroid (p = 0.042). In logistic regression analysis, 1-SD decrease in serum CC16 levels of asthma patients was associated with 87% increased odds for high dose ICS requirement (p < 0.001). CONCLUSIONS: We demonstrate that airway/circulating CC16, which is inversely associated with BMI, may mediate development and severity in overweight/obese asthma.


Asunto(s)
Asma , Hipersensibilidad Respiratoria , Animales , Asma/diagnóstico , Asma/epidemiología , Asma/metabolismo , Humanos , Ratones , Obesidad/diagnóstico , Obesidad/epidemiología , Sobrepeso/diagnóstico , Sobrepeso/epidemiología , Uteroglobina/metabolismo
8.
J Cyst Fibros ; 21(5): 811-820, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35367162

RESUMEN

BACKGROUND: Club cell secretory protein (CC16) exerts anti-inflammatory functions in lung disease. We sought to determine the relation of serum CC16 deficits and genetic variants that control serum CC16 to lung function among children with cystic fibrosis (CF). METHODS: We used longitudinal data from CF children (EPIC Study) with no positive cultures for Pseudomonas aeruginosa prior to enrollment. Circulating levels of CC16 and an inflammatory score (generated from CRP, SAA, calprotectin, G-CSF) were compared between participants with the lowest and highest FEV1 levels in adolescence (LLF and HLF groups, respectively; N = 130-per-group). Single nucleotide variants (SNVs) in the SCGB1A1, EHF-APIP loci were tested for association with circulating CC16 and with decline of FEV1 and FEV1/FVC% predicted levels between ages 7-16 using mixed models. RESULTS: Compared with the HLF group, the LLF group had lower levels of CC16 (geometric means: 8.2 vs 6.5 ng/ml, respectively; p = 0.0002) and higher levels of the normalized inflammatory score (-0.21 vs 0.21, p = 0.0007). Participants in the lowest CC16 and highest inflammation tertile had the highest odds for having LLF (p<0.0001 for comparison with participants in the highest CC16 and lowest inflammation tertile). Among seven SNVs associated with circulating CC16, the top SNV rs3741240 was associated with decline of FEV1/FVC and, marginally, FEV1 (p = 0.003 and 0.025, respectively; N = 611 participants, 20,801 lung function observations). CONCLUSIONS: Serum CC16 deficits are strongly associated with severity of CF lung disease and their effects are additive with systemic inflammation. The rs3741240 A allele is associated with low circulating CC16 and, possibly, accelerated lung function decline in CF.


Asunto(s)
Fibrosis Quística , Uteroglobina , Adolescente , Niño , Factor Estimulante de Colonias de Granulocitos , Humanos , Inflamación/metabolismo , Complejo de Antígeno L1 de Leucocito , Pulmón , Nucleótidos/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo
9.
Int J Mol Sci ; 22(21)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34768890

RESUMEN

Gram-negative (G-) bacteria are the leading cause of hospital-acquired pneumonia in the United States. The devastating damage caused by G- bacteria results from the imbalance of bactericidal effects and overwhelming inflammation. Despite decades of research, the underlying mechanisms by which runaway inflammation is developed remain incompletely understood. Clara Cell Protein 16 (CC16), also known as uteroglobin, is the major protein secreted by Clara cells and the most abundant protein in bronchoalveolar lavage fluid (BALF). However, the regulation and functions of CC16 during G- bacterial infection are unknown. In this study, we aimed to assess the regulation of CC16 in response to Klebsiella pneumoniae (K. pneu) and to investigate the role of CC16 in bronchial epithelial cells. After K. pneu infection, we found that CC16 mRNA expression was significantly decreased in bronchial epithelial cells. Our data also showed that K. pneu infection upregulated cytokine and chemokine genes, including IL-1ß, IL-6, and IL-8 in BEAS-2B cells. Endogenously overexpressed CC16 in BEAS-2B cells provided an anti-inflammatory effect by reducing these markers. We also observed that endogenous CC16 can repress NF-κB reporter activity. In contrast, the recombinant CC16 (rCC16) did not show an anti-inflammatory effect in K. pneu-infected cells or suppression of NF-κB promoter activity. Moreover, the overexpression of CC16 reduced reactive oxygen species (ROS) levels and protected BEAS-2B cells from K. pneu-induced apoptosis.


Asunto(s)
Inflamación/metabolismo , Neumonía Bacteriana/metabolismo , Uteroglobina , Apoptosis , Bronquios/citología , Bronquios/microbiología , Líquido del Lavado Bronquioalveolar/química , Citocinas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Inmunidad Innata , Klebsiella pneumoniae , Pulmón/microbiología , Pulmón/patología , FN-kappa B/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo
10.
J Heart Lung Transplant ; 40(12): 1517-1528, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34627707

RESUMEN

BACKGROUND: In human lung transplant recipients, a decline in club cell secretory protein (CCSP) in bronchoalveolar lavage fluid has been associated with chronic lung allograft dysfunction (CLAD) as well as the induction of exosomes and immune responses that lead to CLAD. However, the mechanisms by which CCSP decline contributes to CLAD remain unknown. METHODS: To define the mechanisms leading to CCSP decline and chronic rejection, we employed two mouse models: 1) chronic rejection after orthotopic single lung transplantation and 2) anti-major histocompatibility complex (MHC) class I-induced obliterative airway disease. RESULTS: In the chronic rejection mouse model, we detected circulating exosomes with donor MHC (H2b) and lung self-antigens and also development of antibodies to H2b and lung self-antigens and then a decline in CCSP. Furthermore, DBA2 mice that received injections of these exosomes developed antibodies to donor MHC and lung self-antigens. In the chronic rejection mouse model, natural killer (NK) and CD8 T cells were the predominant graft-infiltrating cells on day 14 of rejection followed by exosomes containing NK cell-associated and cytotoxic molecules on day 14 and 28. When NK cells were depleted, exosomes with NK cell-associated and cytotoxic molecules as well as fibrosis decreased. CONCLUSIONS: Induction of exosomes led to immune responses to donor MHC and lung self-antigens, resulting in CCSP decline, leading to NK cell infiltration and release of exosomes from NK cells. These results suggest a novel role for exosomes derived from NK cells in the pathogenesis of chronic lung allograft rejection.


Asunto(s)
Bronquiolitis Obliterante/etiología , Exosomas/fisiología , Rechazo de Injerto/etiología , Células Asesinas Naturales/fisiología , Trasplante de Pulmón/efectos adversos , Uteroglobina/metabolismo , Animales , Anticuerpos/metabolismo , Autoantígenos/metabolismo , Bronquiolitis Obliterante/metabolismo , Modelos Animales de Enfermedad , Rechazo de Injerto/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Ratones
11.
Toxicol Appl Pharmacol ; 432: 115754, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634286

RESUMEN

Exposure to dust from active and abandoned mining operations may be a very significant health hazard, especially to sensitive populations. We have previously reported that inhalation of real-world mine tailing dusts during lung development can alter lung function and structure in adult male mice. These real-world dusts contain a mixture of metal(loid)s, including arsenic. To determine whether arsenic in inhaled dust plays a role in altering lung development, we exposed C57Bl/6 mice to a background dust (0 arsenic) or to the background dust containing either 3% or 10% by mass, calcium arsenate. Total level of exposure was kept at 100 µg/m3. Calcium arsenate was selected since arsenate is the predominant species found in mine tailings. We found that inhalation exposure during in utero and postnatal lung development led to significant increases in pulmonary baseline resistance, airway hyper-reactivity, and airway collagen and smooth muscle expression in male C57Bl/6 mice. Responses were dependent on the level of calcium arsenate in the simulated dust. These changes were not associated with increased expression of TGF-ß1, a marker of epithelial to mesenchymal transition. However, responses were correlated with decreases in the expression of club cell protein 16 (CC16). Dose-dependent decreases in CC16 expression and increases in collagen around airways was seen for animals exposed in utero only (GD), animals exposed postnatally only (PN) and animals continuously exposed throughout development (GDPN). These data suggest that arsenic inhalation during lung development can decrease CC16 expression leading to functional and structural alterations in the adult lung.


Asunto(s)
Arseniatos/toxicidad , Compuestos de Calcio/toxicidad , Pulmón/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Factores de Edad , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Resistencia de las Vías Respiratorias/efectos de los fármacos , Animales , Broncoconstricción/efectos de los fármacos , Colágeno/metabolismo , Regulación hacia Abajo , Polvo , Femenino , Edad Gestacional , Exposición por Inhalación , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Embarazo , Uteroglobina/metabolismo
12.
Cell Cycle ; 20(18): 1923-1934, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34437822

RESUMEN

This study examined the potential roles of CC10 (Clara cell 10-kD protein) and ILC2s (type 2 innate lymphoid cells) in allergic rhinitis (AR). After ovalbumin was used to construct the AR model, microarray analysis was performed to reveal the key differentially expressed genes. The phenotypic changes of nasal mucosa were examined by H&E staining. Western blot analysis, qRT-PCR, ELISA and immunohistochemistry were performed to identify the levels of cytokines. The lineage markers (CD127 and CD117) of ILC2s were detected using immunofluorescence. The microarray analysis and qRT-PCR results showed that CC10 overexpression inhibited the expression of A20, BAFF, and IL-4 R in vivo. Also, CC10 overexpression was found to ameliorate the damage of nasal mucosa in AR mice. Investigations revealed that the ILC2s were activated in AR mice and AR patients with high levels of IgE, IgG1, IL-4, IL-5, IL-13, IL-25, and IL-33. Moreover, CD127+ was found to activate ILC2s. However, CC10 overexpression suppressed the activation of ILC2s. In conclusion, this research suggested that CC10 could suppress the activation of ILC2s to attenuate the damage of nasal mucosa and that CD127+ may be a biomarker of the activation of ILC2s in AR mice and AR patients.


Asunto(s)
Inmunidad Innata , Linfocitos/inmunología , Rinitis Alérgica/inmunología , Rinitis Alérgica/metabolismo , Transducción de Señal/genética , Uteroglobina/metabolismo , Animales , Biomarcadores/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Femenino , Células HEK293 , Humanos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/genética , Ratones , Ratones Endogámicos C57BL , Mucosa Nasal/inmunología , Mucosa Nasal/metabolismo , Ovalbúmina/efectos adversos , Rinitis Alérgica/inducido químicamente , Transducción de Señal/inmunología , Transfección , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Uteroglobina/genética
13.
Aging (Albany NY) ; 13(15): 19442-19459, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34339391

RESUMEN

CC16 is almost exclusively expressed in non-ciliated epithelial Clara cells, and widely used as a Clara cell marker. Diesel exhaust particles (DEPs), the fine particulate matters produced by diesel engines, cause or exacerbate airway-related diseases. Our previous study documented that DEP inhibits the CC16 expression in the immortalized mouse Clara cell line through methylation of C/EBPα promoter. However, the molecular mechanism by which DEP regulates CC16 secretion is unclear. Here, we isolated CC16 containing Clara cells (CC16+) from human distal lung, and found that DEP inhibited CC16 secretion from CC16+ cells via methylation of C/EBPα and inhibition of Munc18b transcription. CC16+ cell conditioned media containing different concentrations of CC16 was prepared and used for culture of airway epithelial cells BEAS-2B with no expression of CC16. A positive correlation was observed between CC16 level and DEP-induced autophagy activity, and a negative correlation between CC16 level and DEP-induced pro-inflammatory cytokine TNF-α, IL-6, and IL-8 level, suggesting that CC16 might mitigate DEP-induced inflammation via promoting autophagy in BEAS-2B cells. This result was further confirmed by adding recombinant CC16 to BEAS-2B cells exposed to DEP. Moreover, CC16 level was significantly increased when CC16+ cells were cultured in BEAS-2B cell conditioned medium containing TNF-α or the normal medium supplemented with recombinant TNF-α, suggesting that TNF-α induced CC16 production and secretion from CC16+ cells. Collectively, these data point that CC16 and TNF-α form a negative feedback loop, and this negative feedback loop between Clara cells and normal airway epithelial cells protects against DEP exposure-induced inflammation.


Asunto(s)
Células Epiteliales/metabolismo , Inflamación/inducido químicamente , Exposición por Inhalación/efectos adversos , Neumonía/inducido químicamente , Emisiones de Vehículos/toxicidad , Animales , Citocinas/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Ratones , Neumonía/metabolismo , Neumonía/patología , Regiones Promotoras Genéticas , Ratas , Análisis de la Célula Individual , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo
14.
Front Immunol ; 12: 630096, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717159

RESUMEN

Background: Distal airway metaplasia may precede honeycombing in progressive fibrosing interstitial lung disease (ILD). The SCGB1A1+ bronchiolar-specific club cell may play a role in this aberrant regenerative process. Objective: To assess the presence of club cells in the small airways of patients suffering from ILD. Methods: Small airways (internal diameter <2 mm) in lung samples [surgical lung biopsy (SLB) and/or transbronchial lung cryobiopsy (TBLC)] from 14 patients suffering from ILD and 10 controls were morphologically assessed and stained for SCGB1A1. SCGB1A1 was weighted by epithelial height as a marker of airway generation (SCGB1A1/EH). Correlations between clinical, functional, and high-resolution CT (HRCT) prognostic factors and histomorphometry were assessed. Results: Small airways from samples with ILD patterns were significantly less dense in terms of SCGB1A1+ cells [0.064 (0.020-0.172)] as compared to controls' sample's small airways [0.393 (0.082-0.698), p < 0.0001]. Usual interstitial pneumonia (UIP) patterns most frequently contained small airways with limited or absent SCGB1A1 expression (SCGB1A1/EH <0.025): UIP (18/33; 55%) as compared with non-UIP patterns (4/31; 13%) or controls (0/29; 0%): p < 0.0001. In addition, correlations with HRCT indicated a significant negative relationship between SCGB1A1 and bronchiectasis as a feature of bronchiolization (Rho -0.63, p < 0.001) and a positive relationship with both forced vital capacity (FVC) and Hounsfield unit (HU)-distribution pattern in kurtosis (Rho 0.38 and 0.50, respectively, both p < 0.001) as markers of fibrotic changes. Conclusion: Compared with controls, the small airways of patients with ILD more often lack SCGB1A1, especially so in UIP. Low densities of SCGB1A1-marked cells correlate with bronchiectasis and fibrotic changes. Further research investigating SCGB1A1 staining as a pathological feature of the bronchiolization process is merited.


Asunto(s)
Enfermedades Pulmonares Intersticiales/metabolismo , Enfermedades Pulmonares Intersticiales/patología , Metaplasia/patología , Adulto , Anciano , Bronquiectasia/patología , Bronquiolos/patología , Células Epiteliales/patología , Femenino , Humanos , Pulmón/patología , Masculino , Metaplasia/fisiopatología , Persona de Mediana Edad , Estudios Prospectivos , Fumar , Uteroglobina/metabolismo
15.
Hum Cell ; 34(3): 785-799, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33683656

RESUMEN

Club cells are critical in maintaining airway integrity via, in part, secretion of immunomodulatory Club cell 10 kd protein (CC10) and xenobiotic detoxification. Aryl hydrocarbon receptor (AhR) is important in xenobiotic metabolism, but its role in Club cell function is unclear. To this end, an AhR ligand, 6-formylindolo[3,2-b]carbazole (FICZ, 10 nM) was found to induce, in a ligand and AhR-dependent manner, endoplasmic reticulum stress, phospholipid remodeling, free fatty acid and triglyceride synthesis, leading to perilipin 2-dependent lipid droplet (LD) biogenesis in a Club cell-like cell line, NL20. The increase in LDs was due, in part, to the blockade of adipose triglyceride lipase to LDs, while perilipin 5 facilitated LDs-mitochondria connection, leading to the breakdown of LDs via mitochondrial ß-oxidation and acetyl-coA generation. In FICZ-treated cells, increased CC10 secretion and its intracellular association with LDs were noted. Administration of low (0.28 ng), medium (1.42 ng), and high (7.10 ng) doses of FICZ in C57BL/6 mice significantly enhanced lipopolysaccharide (LPS, 0.1 µg)-induced airway inflammation, mucin secretion, pro-inflammatory cytokines and CC10 in the bronchoalveolar lavage fluids, as compared to those seen in mice receiving LPS alone, suggesting the importance of AhR signaling in controlling the metabolic homeostasis and functions of Club cells.


Asunto(s)
Células Epiteliales/metabolismo , Gotas Lipídicas/metabolismo , Receptores de Hidrocarburo de Aril/fisiología , Sistema Respiratorio/citología , Animales , Carbazoles/farmacología , Línea Celular , Humanos , Inactivación Metabólica , Ligandos , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Perilipina-1/farmacología , Transducción de Señal/fisiología , Uteroglobina/metabolismo , Xenobióticos/metabolismo
16.
Allergy ; 76(8): 2461-2474, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33528894

RESUMEN

BACKGROUND: While several systemic immunomodulatory effects of allergen-specific immunotherapy (AIT) have been discovered, local anti-inflammatory mechanisms in the respiratory tract are largely unknown. We sought to elucidate local and epithelial mechanisms underlying allergen-specific immunotherapy in a genome-wide approach. METHODS: We induced sputum in hay fever patients and healthy controls during the pollen peak season and stratified patients by effective allergen immunotherapy or as untreated. Sputum was directly processed after induction and subjected to whole transcriptome RNA microarray analysis. Nasal secretions were analyzed for Secretoglobin1A1 (SCGB1A1) and IL-24 protein levels in an additional validation cohort at three defined time points during the 3-year course of AIT. Subsequently, RNA was extracted and subjected to an array-based whole transcriptome analysis. RESULTS: Allergen-specific immunotherapy inhibited pro-inflammatory CXCL8, IL24, and CCL26mRNA expression, while SCGB1A1, IL7, CCL5, CCL23, and WNT5BmRNAs were induced independently of the asthma status and allergen season. In our validation cohort, local increase of SCGB1A1 occurred concomitantly with the reduction of local IL-24 in upper airways during the course of AIT. Additionally, SCGB1A1 was identified as a suppressor of epithelial gene expression. CONCLUSIONS: Allergen-specific immunotherapy induces a yet unknown local gene expression footprint in the lower airways that on one hand appears to be a result of multiple regulatory pathways and on the other hand reveals SCGB1A1 as novel anti-inflammatory mediator of long-term allergen-specific therapeutic intervention in the local environment.


Asunto(s)
Desensibilización Inmunológica , Rinitis Alérgica Estacional , Uteroglobina/metabolismo , Alérgenos , Humanos , Sistema Respiratorio
17.
J Immunol Res ; 2021: 6647753, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33575362

RESUMEN

BACKGROUND: Recently, identification of immunosuppressive polymorphonuclear leukocytes (PMNL) that were traditionally described as proinflammatory cells emerged in the field of posttraumatic immunity. To understand their local and remote distribution after trauma, PMNL-subsets and the impact of immunomodulatory Club Cell protein (CC)16 that correlates with pulmonary complications were assessed. METHODS: C57BL/6N mice were divided into three groups, receiving isolated blunt chest trauma (TxT), undergoing TxT followed by cecal ligation and puncture (CLP, TxT + CLP) after 24 h, or sham undergoing analgosedation (n = 18/group). Further, each group was subdivided into three groups receiving either no treatment (ctrl) or intratracheal neutralization of CC16 by application of anti-CC16-antibody or application of an unspecific IgG control antibody (n = 6/group). Treatment was set at the time point after TxT. Analyses followed 6 h post-CLP. PMNL were characterized via expression of CD11b, CD16, CD45, CD62L, and Ly6G by flow cytometry in bone marrow (BM), blood, spleen, lung, liver, and bronchoalveolar and peritoneal lavage fluid (BALF and PL). Apoptosis was assessed by activated (cleaved) caspase-3. Results from untreated ctrl and IgG-treated mice were statistically comparable between all corresponding sham, TxT, and TxT + CLP groups. RESULTS: Immature (CD16dimCD62Lbright) PMNL increased significantly in BM, circulation, and spleen after TxT vs. sham and were significantly attenuated in the lungs, BALF, PL, and liver. Classical-shaped (CD16brightCD62Lbright) PMNL increased after TxT vs. sham in peripheral tissue and were significantly attenuated in circulation, proposing a trauma-induced migration of mature or peripheral differentiation of circulating immature PMNL. Immunosuppressive (CD16brightCD62Ldim) PMNL decreased significantly in the lungs and spleen, while they systemically increased after TxT vs. sham. CLP in the TxT + CLP group reduced immunosuppressive PMNL in PL and increased their circulatory rate vs. isolated TxT, showing local reduction in affected tissue and their increase in nonaffected tissue. CC16 neutralization enhanced the fraction of immunosuppressive PMNL following TxT vs. sham and decreased caspase-3 in the lungs post-CLP in the TxT + CLP group, while apoptotic cells in the liver diminished post-TxT. Posttraumatic CC16 neutralization promotes the subset of immunosuppressive PMNL and antagonizes their posttraumatic distribution. CONCLUSION: Since CC16 affects both the distribution of PMNL subsets and apoptosis in tissues after trauma, it may constitute as a novel target to beneficially shape the posttraumatic tissue microenvironment and homeostasis to improving outcomes.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Selectinas/metabolismo , Sepsis/complicaciones , Uteroglobina/genética , Lesión Pulmonar Aguda/patología , Animales , Biomarcadores , Modelos Animales de Enfermedad , Inmunohistoquímica , Inmunofenotipificación , Masculino , Ratones , Infiltración Neutrófila/inmunología , Neutrófilos/patología , Sepsis/etiología , Traumatismos Torácicos/complicaciones , Uteroglobina/metabolismo
18.
Transplantation ; 105(6): 1337-1346, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32890135

RESUMEN

BACKGROUND: Chronic lung allograft dysfunction (CLAD), is a major hurdle for long-term lung allograft survival after lung transplant and roughly 50% of lung transplant recipients (LTxRs) develop CLAD within 5 years. The mechanisms of CLAD development remain unknown. Donor-specific immune responses to HLA and lung self-antigens (SAgs) are vital to the pathogenesis of CLAD. Reduction in Club cell secretory protein (CCSP) has been reported in bronchoalveolar lavage (BAL) fluid samples from LTxRs with bronchiolitis obliterans syndrome (BOS). CCSP levels in BAL fluid and development of antibodies to lung SAgs in plasma were determined by ELISA. Cytokines in BAL fluid were analyzed by 30-plex Luminex panel. Exosomes from BAL fluid or plasma were analyzed for SAgs, natural killer (NK) cells markers, and cytotoxic molecules. RESULTS: We demonstrate that LTxRs with BOS have lower CCSP levels up to 9 months before BOS diagnosis. LTxRs with antibodies to SAgs 1-year posttransplant also developed DSA (43%) and had lower CCSP. BOS with lower CCSP also induced Interleukin-8 and reduced vascular endothelial growth factor. Exosomes from BOS contained increased SAgs, NK cells markers, and cytotoxic molecules. CONCLUSIONS: We conclude lower CCSP leads to inflammation, pro-inflammatory cytokine production, immune responses to HLA and SAgs, and induction of exosomes. For the first time, we demonstrate that CCSP loss results in exosome release from NK cells capable of stimulating innate and adaptive immunity posttransplant. This increases the risk of BOS, suggesting a role of NK cell exosomes in CLAD development.


Asunto(s)
Anticuerpos/sangre , Autoantígenos , Bronquiolitis Obliterante/inmunología , Colágeno Tipo V/inmunología , Exosomas/inmunología , Rechazo de Injerto/inmunología , Antígenos HLA/inmunología , Trasplante de Pulmón/efectos adversos , Tubulina (Proteína)/inmunología , Uteroglobina/inmunología , Bronquiolitis Obliterante/sangre , Bronquiolitis Obliterante/diagnóstico , Enfermedad Crónica , Estudios Transversales , Citocinas/metabolismo , Exosomas/metabolismo , Rechazo de Injerto/sangre , Rechazo de Injerto/diagnóstico , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Estudios Retrospectivos , Resultado del Tratamiento , Uteroglobina/metabolismo
19.
Am J Respir Crit Care Med ; 203(11): 1410-1418, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33326355

RESUMEN

Rationale CC16 (club cell secretory protein) is a pneumoprotein produced predominantly by pulmonary club cells. Circulating CC16 is associated with protection from the inception and progression of the two most common obstructive lung diseases (asthma and chronic obstructive pulmonary disease). Objectives Although exact mechanisms remain elusive, studies consistently suggest a causal role of CC16 in mediating antiinflammatory and antioxidant functions in the lung. We sought to determine any novel receptor systems that could participate in CC16's role in obstructive lung diseases. Methods Protein alignment of CC16 across species led to the discovery of a highly conserved sequence of amino acids, leucine-valine-aspartic acid (LVD), a known integrin-binding motif. Recombinant CC16 was generated with and without the putative integrin-binding site. A Mycoplasma pneumoniae mouse model and a fluorescent cellular adhesion assay were used to determine the impact of the LVD site regarding CC16 function during live infection and on cellular adhesion during inflammatory conditions. Measurements and Main Results CC16 bound to integrin α4ß1), also known as the adhesion molecule VLA-4 (very late antigen 4), dependent on the presence of the LVD integrin-binding motif. During infection, recombinant CC16 rescued lung function parameters both when administered to the lung and intravenously but only when the LVD integrin-binding site was intact; likewise, neutrophil recruitment during infection and leukocyte adhesion were both impacted by the loss of the LVD site. Conclusions We discovered a novel receptor for CC16, VLA-4, which has important mechanistic implications for the role of CC16 in circulation as well as in the lung compartment.


Asunto(s)
Integrina alfa4beta1/metabolismo , Mycoplasma pneumoniae , Neumonía por Mycoplasma/prevención & control , Uteroglobina/metabolismo , Animales , Adhesión Celular , Modelos Animales de Enfermedad , Ratones , Infiltración Neutrófila/fisiología , Neumonía por Mycoplasma/metabolismo , Unión Proteica
20.
Front Immunol ; 11: 584310, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117399

RESUMEN

Alveolar macrophage (AM) is a mononuclear phagocyte key to the defense against respiratory infections. To understand AM's role in airway disease development, we examined the influence of Secretoglobin family 1a member 1 (SCGB1A1), a pulmonary surfactant protein, on AM development and function. In a murine model, high-throughput RNA-sequencing and gene expression analyses were performed on purified AMs isolated from mice lacking in Scgb1a1 gene and were compared with that from mice expressing the wild type Scgb1a1 at weaning (4 week), puberty (8 week), early adult (12 week), and middle age (40 week). AMs from early adult mice under Scgb1a1 sufficiency demonstrated a total of 37 up-regulated biological pathways compared to that at weaning, from which 30 were directly involved with antigen presentation, anti-viral immunity and inflammation. Importantly, these pathways under Scgb1a1 deficiency were significantly down-regulated compared to that in the age-matched Scgb1a1-sufficient counterparts. Furthermore, AMs from Scgb1a1-deficient mice showed an early activation of inflammatory pathways compared with that from Scgb1a1-sufficient mice. Our in vitro experiments with AM culture established that exogenous supplementation of SCGB1a1 protein significantly reduced AM responses to microbial stimuli where SCGB1a1 was effective in blunting the release of cytokines and chemokines (including IL-1b, IL-6, IL-8, MIP-1a, TNF-a, and MCP-1). Taken together, these findings suggest an important role for Scgb1a1 in shaping the AM-mediated inflammation and immune responses, and in mitigating cytokine surges in the lungs.


Asunto(s)
Inflamación/inmunología , Inflamación/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Uteroglobina/inmunología , Uteroglobina/metabolismo , Animales , Quimiocinas/inmunología , Quimiocinas/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Regulación hacia Abajo/inmunología , Expresión Génica/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/inmunología , Regulación hacia Arriba/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...