Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 492
Filtrar
1.
IEEE J Biomed Health Inform ; 28(5): 2759-2768, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442058

RESUMEN

Cardiac valve event timing plays a crucial role when conducting clinical measurements using echocardiography. However, established automated approaches are limited by the need of external electrocardiogram sensors, and manual measurements often rely on timing from different cardiac cycles. Recent methods have applied deep learning to cardiac timing, but they have mainly been restricted to only detecting two key time points, namely end-diastole (ED) and end-systole (ES). In this work, we propose a deep learning approach that leverages triplane recordings to enhance detection of valve events in echocardiography. Our method demonstrates improved performance detecting six different events, including valve events conventionally associated with ED and ES. Of all events, we achieve an average absolute frame difference (aFD) of maximum 1.4 frames (29 ms) for start of diastasis, down to 0.6 frames (12 ms) for mitral valve opening when performing a ten-fold cross-validation with test splits on triplane data from 240 patients. On an external independent test consisting of apical long-axis data from 180 other patients, the worst performing event detection had an aFD of 1.8 (30 ms). The proposed approach has the potential to significantly impact clinical practice by enabling more accurate, rapid and comprehensive event detection, leading to improved clinical measurements.


Asunto(s)
Aprendizaje Profundo , Ecocardiografía , Humanos , Ecocardiografía/métodos , Válvulas Cardíacas/diagnóstico por imagen , Válvulas Cardíacas/fisiología , Masculino , Interpretación de Imagen Asistida por Computador/métodos
2.
Artif Organs ; 48(4): 326-335, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37849378

RESUMEN

Heart valves serve a vital hemodynamic function to ensure unidirectional blood flow. Additionally, native heart valves serve biological functions such as growth and self-repair. Heart valve implants mimic the hemodynamic function of native heart valves, but are unable to fulfill their biological functions. We developed partial heart transplantation to deliver heart valve implants that fulfill all functions of native heart valves. This is particularly advantageous for children, who require growing heart valve implants. This invited review outlines the past, present and future of partial heart transplantation.


Asunto(s)
Trasplante de Corazón , Implantación de Prótesis de Válvulas Cardíacas , Prótesis Valvulares Cardíacas , Niño , Humanos , Válvulas Cardíacas/fisiología , Hemodinámica/fisiología
3.
Ann Biomed Eng ; 52(3): 611-626, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37989903

RESUMEN

Inverse finite element analysis (iFEA) of the atrioventricular heart valves (AHVs) can provide insights into the in-vivo valvular function, such as in-vivo tissue strains; however, there are several limitations in the current state-of-the-art that iFEA has not been widely employed to predict the in-vivo, patient-specific AHV leaflet mechanical responses. In this exploratory study, we propose the use of Bayesian optimization (BO) to study the AHV functional behaviors in-vivo. We analyzed the efficacy of Bayesian optimization to estimate the isotropic Lee-Sacks material coefficients in three benchmark problems: (i) an inflation test, (ii) a simplified leaflet contact model, and (iii) an idealized AHV model. Then, we applied the developed BO-iFEA framework to predict the leaflet properties for a patient-specific tricuspid valve under a congenital heart defect condition. We found that the BO could accurately construct the objective function surface compared to the one from a [Formula: see text] grid search analysis. Additionally, in all cases the proposed BO-iFEA framework yielded material parameter predictions with average element errors less than 0.02 mm/mm (normalized by the simulation-specific characteristic length). Nonetheless, the solutions were not unique due to the presence of a long-valley minima region in the objective function surfaces. Parameter sets along this valley can yield functionally equivalent outcomes (i.e., closing behavior) and are typically observed in the inverse analysis or parameter estimation for the nonlinear mechanical responses of the AHV. In this study, our key contributions include: (i) a first-of-its-kind demonstration of the BO method used for the AHV iFEA; and (ii) the evaluation of a candidate AHV in-silico modeling approach wherein the chordae could be substituted with equivalent displacement boundary conditions, rendering the better iFEA convergence and a smoother objective surface.


Asunto(s)
Válvulas Cardíacas , Válvula Tricúspide , Humanos , Análisis de Elementos Finitos , Teorema de Bayes , Válvulas Cardíacas/fisiología , Válvula Tricúspide/fisiología , Simulación por Computador
4.
Comput Biol Med ; 167: 107623, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37922603

RESUMEN

The development of tissue-engineered cardiovascular implants can improve the lives of large segments of our society who suffer from cardiovascular diseases. Regenerative tissues are fabricated using a process called tissue maturation. Furthermore, it is highly challenging to produce cardiovascular regenerative implants with sufficient mechanical strength to withstand the loading conditions within the human body. Therefore, biohybrid implants for which the regenerative tissue is reinforced by standard reinforcement material (e.g. textile or 3d printed scaffold) can be an interesting solution. In silico models can significantly contribute to characterizing, designing, and optimizing biohybrid implants. The first step towards this goal is to develop a computational model for the maturation process of tissue-engineered implants. This paper focuses on the mechanical modeling of textile-reinforced tissue-engineered cardiovascular implants. First, an energy-based approach is proposed to compute the collagen evolution during the maturation process. Then, the concept of structural tensors is applied to model the anisotropic behavior of the extracellular matrix and the textile scaffold. Next, the newly developed material model is embedded into a special solid-shell finite element formulation with reduced integration. Finally, our framework is used to compute two structural problems: a pressurized shell construct and a tubular-shaped heart valve. The results show the ability of the model to predict collagen growth in response to the boundary conditions applied during the maturation process. Consequently, the model can predict the implant's mechanical response, such as the deformation and stresses of the implant.


Asunto(s)
Prótesis Valvulares Cardíacas , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Válvulas Cardíacas/fisiología , Colágeno , Matriz Extracelular , Estrés Mecánico
5.
Int J Numer Method Biomed Eng ; 39(9): e3754, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37452648

RESUMEN

A new general contact model is proposed for preventing inter-leaflet penetration of bio-prosthetic heart valves (BHV) at the end of the systole, which has the advantage of applying kinematic constraints directly and creating smooth free edges. At the end of each time step, the impenetrability constraints and momentum exchange between the impacting bodies are applied separately based on the coefficient of restitution. The contact method is implemented in a rotation-free, large deformation, and thin shell finite-element (FE) framework based on loop's subdivision surfaces. A nonlinear, anisotropic material model for a BHV is employed which uses Fung-elastic constitutive laws for in-plane and bending responses, respectively. The contact model is verified and validated against several benchmark problems. For a BHV-specific validation, the computed strains on different regions of a BHV under constant pressure are compared with experimentally measured data. Finally, dynamic simulations of BHV under physiological pressure waveform are performed for symmetrical and asymmetrical fiber orientations incorporating the new contact model and compared with the penalty contact method. The proposed contact model provides the coaptation area of a functioning BHV during the closing phase for both of the fiber orientations. Our results show that fiber orientation affects the dynamic of leaflets during the opening and closing phases. A swirling motion for the BHV with asymmetrical fiber orientation is observed, similar to experimental data. To include the fluid effects, fluid-structure interaction (FSI) simulation of the BHV is performed and compared to the dynamic results.


Asunto(s)
Prótesis Valvulares Cardíacas , Modelos Cardiovasculares , Rotación , Simulación por Computador , Válvulas Cardíacas/fisiología , Estrés Mecánico
6.
J Exp Biol ; 226(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37306013

RESUMEN

Drosophila, like all insects, has an open circulatory system for the distribution of haemolymph and its components. The circulation of the haemolymph is essentially driven by the pumping activity of the linear heart. The heart is constructed as a tube into which the haemolymph is sucked and pumped forward by rhythmic contractions running from the posterior to the anterior, where it leaves the heart tube. The heart harbours cardiac valves to regulate flow directionality, with a single heart valve differentiating during larval development to separate the heart tube into two chambers. During metamorphosis, the heart is partially restructured, with the linear heart tube with one terminal wide-lumen heart chamber being converted into a linear four-chambered heart tube with three valves. As in all metazoan circulatory systems, the cardiac valves play an essential role in regulating the direction of blood flow. We provide evidence that the valves in adult flies arise via transdifferentiation, converting lumen-forming contractile cardiomyocytes into differently structured valve cells. Interestingly, adult cardiac valves exhibit a similar morphology to their larval counterparts, but act differently upon heart beating. Applying calcium imaging in living specimens to analyse activity in valve cells, we show that adult cardiac valves operate owing to muscle contraction. However, valve cell shape dynamics are altered compared with larval valves, which led us to propose our current model of the opening and closing mechanisms in the fly heart.


Asunto(s)
Drosophila , Corazón , Animales , Corazón/anatomía & histología , Válvulas Cardíacas/fisiología , Miocitos Cardíacos/fisiología , Diferenciación Celular , Hemodinámica
7.
Int J Numer Method Biomed Eng ; 39(3): e3678, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36579792

RESUMEN

We propose a mathematical and numerical model for the simulation of the heart function that couples cardiac electrophysiology, active and passive mechanics and hemodynamics, and includes reduced models for cardiac valves and the circulatory system. Our model accounts for the major feedback effects among the different processes that characterize the heart function, including electro-mechanical and mechano-electrical feedback as well as force-strain and force-velocity relationships. Moreover, it provides a three-dimensional representation of both the cardiac muscle and the hemodynamics, coupled in a fluid-structure interaction (FSI) model. By leveraging the multiphysics nature of the problem, we discretize it in time with a segregated electrophysiology-force generation-FSI approach, allowing for efficiency and flexibility in the numerical solution. We employ a monolithic approach for the numerical discretization of the FSI problem. We use finite elements for the spatial discretization of partial differential equations. We carry out a numerical simulation on a realistic human left heart model, obtaining results that are qualitatively and quantitatively in agreement with physiological ranges and medical images.


Asunto(s)
Técnicas Electrofisiológicas Cardíacas , Hidrodinámica , Humanos , Modelos Cardiovasculares , Corazón/fisiología , Válvulas Cardíacas/fisiología , Simulación por Computador , Miocardio
8.
Biomed Tech (Berl) ; 67(6): 461-470, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36094469

RESUMEN

Bioreactors are important tools for the pre-conditioning of tissue-engineered heart valves. The current state of the art mostly provides for timed, physical and biochemical stimulation in the bioreactor systems according to standard protocols (SOP). However, this does not meet to the individual biological variability of living tissue-engineered constructs. To achieve this, it is necessary to implement (i) sensory systems that detect the actual status of the implant and (ii) controllable bioreactor systems that allow patient-individualized pre-conditioning. During the maturation process, a pulsatile transvalvular flow of culture medium is generated within the bioreactor. For the improvement of this conditioning procedure, the relationship between the mechanical and biochemical stimuli and the corresponding tissue response has to be analyzed by performing reproducible and comparable experiments. In this work, a technological framework for maturation experiments of tissue-engineered heart valves in a pulsating bioreactor is introduced. The aim is the development of a bioreactor system that allows for continuous control and documentation of the conditioning process to increase reproducibility and comparability of experiments. This includes hardware components, a communication structure and software including online user communication and supervision. Preliminary experiments were performed with a tissue-engineered heart valve to evaluate the function of the new system. The results of the experiment proof the adequacy of the setup. Consequently, the concept is an important step for further research towards controlled maturation of tissue-engineered heart valves. The integration of molecular and histological sensor systems will be the next important step towards a fully automated, self-controlled preconditioning system.


Asunto(s)
Prótesis Valvulares Cardíacas , Humanos , Reproducibilidad de los Resultados , Reactores Biológicos , Ingeniería de Tejidos/métodos , Válvulas Cardíacas/fisiología
9.
Biomech Model Mechanobiol ; 21(1): 5-54, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34613528

RESUMEN

Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell-cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell-cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell-cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell-cell signaling to highlight their potential role in future CVTE strategies.


Asunto(s)
Válvulas Cardíacas , Ingeniería de Tejidos , Fenómenos Biomecánicos , Comunicación Celular , Válvulas Cardíacas/fisiología , Transducción de Señal , Ingeniería de Tejidos/métodos
10.
Cell Mol Life Sci ; 78(19-20): 6669-6687, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34557935

RESUMEN

The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-ß, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.


Asunto(s)
Genoma/genética , Válvulas Cardíacas/fisiología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/genética , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Genómica/métodos , Defectos de los Tabiques Cardíacos/genética , Miocardio/patología , Organogénesis/genética , Marcapaso Artificial , Vía de Señalización Wnt/genética , Proteínas de Pez Cebra/genética
11.
Biomed Mater ; 16(1): 015014, 2021 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-33586662

RESUMEN

The current biological valve products used in transcatheter aortic valve replacement (TAVR) are mainly made of glutaraldehyde (GLUT)-crosslinked porcine and bovine pericardia, which need to be transported and stored in GLUT solution. This leads to prolonged preparation time and the presence of GLUT residue. Therefore, there has been interest in developing TAVR valves using a pre-crimped valve (also known as a dry valve). Herein, a natural, inexpensive, and widely available swim bladder was selected as the source of a biological valve functioning as a dry valve and was obtained via acellular processes and crosslinking fixation. With the help of multiple hydrogen bonds between polyphenols (represented by procyanidin and curcumin) and tissue, as well as the chemical crosslinking of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) with tissue, we found that this novel combined crosslinking method was able to successfully crosslink with an acellular swim bladder. The stabilities, mechanical properties, resistance to pre-folding/pre-compressing, flattening capability in water, hemocompatibility, cytocompatibility, and anti-calcification capability were systematically measured via a series of experiments. We demonstrated that this dry valve resulting from a combination of EDC/polyphenols exhibited superior properties compared with those of a control pericardial-based valve.


Asunto(s)
Sacos Aéreos/química , Bioprótesis , Glutaral/química , Prótesis Valvulares Cardíacas , Válvulas Cardíacas/fisiología , Enlace de Hidrógeno , Pericardio/química , Diseño de Prótesis/métodos , Animales , Plaquetas/citología , Carpas , Bovinos , Adhesión Celular , Colágeno , Reactivos de Enlaces Cruzados/química , Elastina , Masculino , Ensayo de Materiales , Plasma Rico en Plaquetas/metabolismo , Polifenoles/química , Ratas , Ratas Sprague-Dawley , Estrés Mecánico , Porcinos , Resistencia a la Tracción
12.
J Med Eng Technol ; 45(1): 41-51, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33448912

RESUMEN

Mechanical Heart Valves (MHVs) are known for their excellent lifespan and feasibly are the most reliable and stable valves amongst all prosthetic valves. Successful bileaflet MHVs such as the St. Jude Medical (SJM) are known for providing central blood flow and minimal pressure drop across the valve. However, due to their non-physiological flow conditions, they still suffer from hemodynamic complications, that is, red blood cell (RBC) lysis and/or thrombogenicity, to date. Our hypothesis is that the design of MHVs can be improved so that their hemodynamics can be comparable to those of tissue valves. In this study, a new concept for the design of MHVs is proposed. To accomplish this, we identified the major design limitations of bileaflet MHVs, such as the gold standard SJM valve as well as the believed contributing factors to their thrombogenicity. We developed a novel design architecture for bileaflet MHVs that addressed these limitations, and from it, the Apex Valve (AV). Our experimental assessment of the AV found that its hemodynamics were closer to that of a bioprosthetic valve than of a bileaflet MHV. This design has been filed as a US Provisional Patent.


Asunto(s)
Prótesis Valvulares Cardíacas , Válvulas Cardíacas/fisiología , Hemodinámica , Modelos Cardiovasculares , Diseño de Prótesis
13.
Biomech Model Mechanobiol ; 20(1): 223-241, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32809131

RESUMEN

Atrioventricular heart valves (AHVs) regulate the unidirectional flow of blood through the heart by opening and closing of the leaflets, which are supported in their functions by the chordae tendineae (CT). The leaflets and CT are primarily composed of collagen fibers that act as the load-bearing component of the tissue microstructures. At the CT-leaflet insertion, the collagen fiber architecture is complex, and has been of increasing focus in the previous literature. However, these previous studies have not been able to quantify the load-dependent changes in the tissue's collagen fiber orientations and alignments. In the present study, we address this gap in knowledge by quantifying the changes in the collagen fiber architecture of the mitral and tricuspid valve's strut CT-leaflet insertions in response to the applied loads by using a unique approach, which combines polarized spatial frequency domain imaging with uniaxial mechanical testing. Additionally, we characterized these microstructural changes across the same specimen without the need for tissue fixatives. We observed increases in the collagen fiber alignments in the CT-leaflet insertion with increased loading, as described through the degree of optical anisotropy. Furthermore, we used a leaflet-CT-papillary muscle entity method during uniaxial testing to quantify the chordae tendineae mechanics, including the derivation of the Ogden-type constitutive modeling parameters. The results from this study provide a valuable insight into the load-dependent behaviors of the strut CT-leaflet insertion, offering a research avenue to better understand the relationship between tissue mechanics and the microstructure, which will contribute to a deeper understanding of AHV biomechanics.


Asunto(s)
Cuerdas Tendinosas/fisiología , Colágenos Fibrilares/química , Válvulas Cardíacas/fisiología , Animales , Anisotropía , Fenómenos Biomecánicos , Birrefringencia , Femenino , Masculino , Porcinos , Válvula Tricúspide/fisiología , Soporte de Peso
14.
Methods Mol Biol ; 2180: 731-739, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32797446

RESUMEN

Malfunctioning heart valves can cause severe health problems, which if left untreated can lead to death. One of the treatment options is to replace a diseased heart valve with a decellularized valve construct prepared from human or animal material. Decellularized tissue scaffolds closely resemble properties of native tissue, while lacking immunogenic factors of cellular components. After transplantation, circulating stem and progenitor cells of the patient adhere to the scaffold resulting in in vivo tissue regeneration of the valve. Decellularized heart valve scaffold implants need to be stored to be readily available whenever needed, which can be done by freeze-drying. The advantage of freeze-drying is that it does not require bulky and energy-consuming freezing equipment for storage and allows easy transport. This chapter outlines the entire process from decellularization to freeze-drying to obtain dry decellularized heart valves, which after a simple rehydration step, can be used as implants. The protocol is described for porcine heart valves, but procedures can easily be adapted for material obtained from other species.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Crioprotectores/química , Matriz Extracelular/química , Liofilización/métodos , Válvulas Cardíacas/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Proliferación Celular , Células Cultivadas , Prótesis Valvulares Cardíacas , Válvulas Cardíacas/fisiología , Porcinos
15.
Sci Rep ; 10(1): 20088, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208784

RESUMEN

Measurements of the left ventricular (LV) pressure trace are rarely performed despite high clinical interest. We estimated the LV pressure trace for an individual heart by scaling the isovolumic, ejection and filling phases of a normalized, averaged LV pressure trace to the time-points of opening and closing of the aortic and mitral valves detected in the individual heart. We developed a signal processing algorithm that automatically detected the time-points of these valve events from the motion signal of a miniaturized accelerometer attached to the heart surface. Furthermore, the pressure trace was used in combination with measured displacement from the accelerometer to calculate the pressure-displacement loop area. The method was tested on data from 34 animals during different interventions. The accuracy of the accelerometer-detected valve events was very good with a median difference of 2 ms compared to valve events defined from hemodynamic reference recordings acquired simultaneously with the accelerometer. The average correlation coefficient between the estimated and measured LV pressure traces was r = 0.98. Finally, the LV pressure-displacement loop areas calculated using the estimated and measured pressure traces showed very good correlation (r = 0.98). Hence, the pressure-displacement loop area can be assessed solely from accelerometer recordings with very good accuracy.


Asunto(s)
Acelerometría/métodos , Válvulas Cardíacas/fisiología , Hemodinámica , Función Ventricular Izquierda/fisiología , Presión Ventricular , Animales , Perros , Frecuencia Cardíaca
16.
Sci Rep ; 10(1): 19882, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199702

RESUMEN

Regenerative tissue-engineered matrix-based heart valves (TEM-based TEHVs) may become an alternative to currently-used bioprostheses for transcatheter valve replacement. We recently identified TEM-based TEHVs-geometry as one key-factor guiding their remodeling towards successful long-term performance or failure. While our first-generation TEHVs, with a simple, non-physiological valve-geometry, failed over time due to leaflet-wall fusion phenomena, our second-generation TEHVs, with a computational modeling-inspired design, showed native-like remodeling resulting in long-term performance. However, a thorough understanding on how TEHV-geometry impacts the underlying host cell response, which in return determines tissue remodeling, is not yet fully understood. To assess that, we here present a comparative samples evaluation derived from our first- and second-generation TEHVs. We performed an in-depth qualitative and quantitative (immuno-)histological analysis focusing on key-players of the inflammatory and remodeling cascades (M1/M2 macrophages, α-SMA+- and endothelial cells). First-generation TEHVs were prone to chronic inflammation, showing a high presence of macrophages and α-SMA+-cells, hinge-area thickening, and delayed endothelialization. Second-generation TEHVs presented with negligible amounts of macrophages and α-SMA+-cells, absence of hinge-area thickening, and early endothelialization. Our results suggest that TEHV-geometry can significantly influence the host cell response by determining the infiltration and presence of macrophages and α-SMA+-cells, which play a crucial role in orchestrating TEHV remodeling.


Asunto(s)
Válvulas Cardíacas/fisiología , Inflamación/inmunología , Macrófagos/metabolismo , Ingeniería de Tejidos/métodos , Actinas/metabolismo , Animales , Bioprótesis , Diseño Asistido por Computadora , Válvulas Cardíacas/inmunología , Humanos , Fenotipo , Reemplazo de la Válvula Aórtica Transcatéter
17.
Cell Tissue Bank ; 21(4): 573-584, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32809090

RESUMEN

Residual chemicals that are presented during tissue processing in human tissue banks can be a risk for the allograft recipient. Determine the residual concentrations of the antibiotics and detergent used in the process of human decellularized tissue-engineered heart valves stored in isotonic saline solution up to 18 months. A total of 24 human decellularized allografts were stored in sterile sodium chloride and analyzed immediately after the decellularization process (0 months) and after storage for 6, 12, and 18 months, which includes the use of sodium dodecyl sulfate (SDS) and antibiotics (cefoxitin, vancomycin hydrochloride, lincomycin hydrochloride, polymyxin B sulfate). These valves were used for suitability tests, the zone of inhibition evaluation, and direct contact cytotoxicity assay. The stock solution from 32 valves was used for LC-MS/MS analysis of antibiotics and SDS. Tissue samples from decellularized valves showed a zone of inhibition formation for S. aureus and B. subtilis, suggesting the presence of an inhibitory molecule in the tissue. Cytotoxicity tests were negative. Polymyxin B, vancomycin, and SDS were detected and quantified in human decellularized aortic and pulmonary allografts during all periods of the study. There were no traces of residual cefoxitin and lincomycin in the tissue stock solution. We found residual concentrations of the antibiotics and detergent used in the process of human decellularized tissue-engineered heart valves stored in isotonic saline solution up to 18 months.


Asunto(s)
Antibacterianos/análisis , Detergentes/análisis , Válvulas Cardíacas/fisiología , Espectrometría de Masas en Tándem , Ingeniería de Tejidos , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Cromatografía Liquida , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Ratones , Pruebas de Sensibilidad Microbiana
18.
Artif Organs ; 44(11): E482-E493, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32364253

RESUMEN

The objective of this study was to evaluate the effect of chemical treatment with glutamic acid to avoid calcification of biological cardiac valves. The bovine pericardium (BP) tissues were fixed with 0.5% glutaraldehyde (BP/GA), followed by treatment with glutamic acid (BP/GA + Glu) for neutralization of the free aldehyde groups. Microscopic analysis showed that the wavy structure of collagen fibrils was preserved, but changes in elastin's integrity occurred. However, the treatment did not promote undesirable changes in the thermal and mechanical properties of the modified BPs. These samples were systematically studied in rat subcutaneous tissue: control (BP/GA) and anticalcificant (BP/GA + Glu). After 60 days, both groups induced similar inflammatory reactions. In terms of calcification, BP/GA + Glu remained more stable with a lower index (3.1 ± 0.2 µg Ca2+ /mg dry tissue), whereas for BP/GA it was 5.7 ± 1.3 µg Ca2+ /mg dry tissue. Bioprostheses made from BP/GA + Glu were implanted in the pulmonary position in sheep, and in vivo echocardiographic analyses revealed maintenance of valvar function after 180 days, with low gradients and minimal valve insufficiency. The explanted tissues of the BP/GA + Glu group had a lower average calcium content 3.8 ± 3.0 µg Ca2+ /mg dry tissue. The results indicated high anticalcification efficiency of BP/GA + Glu in both subcutaneous implant in rats and in the experimental sheep model, which is an advantage that should encourage the industrial application of these materials for the manufacture of bioprostheses.


Asunto(s)
Bioprótesis , Calcificación Fisiológica/efectos de los fármacos , Bovinos , Ácido Glutámico/farmacología , Prótesis Valvulares Cardíacas , Animales , Bovinos/fisiología , Glutaral/farmacología , Válvulas Cardíacas/efectos de los fármacos , Válvulas Cardíacas/fisiología , Pericardio/efectos de los fármacos , Pericardio/fisiología
19.
Ann Biomed Eng ; 48(5): 1475-1490, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32034607

RESUMEN

Computer modeling and simulation is a powerful tool for assessing the performance of medical devices such as bioprosthetic heart valves (BHVs) that promises to accelerate device design and regulation. This study describes work to develop dynamic computer models of BHVs in the aortic test section of an experimental pulse-duplicator platform that is used in academia, industry, and regulatory agencies to assess BHV performance. These computational models are based on a hyperelastic finite element extension of the immersed boundary method for fluid-structure interaction (FSI). We focus on porcine tissue and bovine pericardial BHVs, which are commonly used in surgical valve replacement. We compare our numerical simulations to experimental data from two similar pulse duplicators, including a commercial ViVitro system and a custom platform related to the ViVitro pulse duplicator. Excellent agreement is demonstrated between the computational and experimental results for bulk flow rates, pressures, valve open areas, and the timing of valve opening and closure in conditions commonly used to assess BHV performance. In addition, reasonable agreement is demonstrated for quantitative measures of leaflet kinematics under these same conditions. This work represents a step towards the experimental validation of this FSI modeling platform for evaluating BHVs.


Asunto(s)
Frecuencia Cardíaca , Prótesis Valvulares Cardíacas , Modelos Cardiovasculares , Animales , Bioprótesis , Bovinos , Válvulas Cardíacas/fisiología , Porcinos
20.
Ann Biomed Eng ; 48(6): 1683-1693, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32052320

RESUMEN

The scarcity of data available on the best approach for pulmonary fetal valve replacement or implantation necessitate an investigation on whether practices using adult transcatheter valves could be translated to fetal applications. The objective of this study is to evaluate the hemodynamic characteristics and the turbulent properties of a fetal sized trileaflet transcatheter pulmonary valve in comparison with an adult balloon-expandable valve in order to assess the possibility of designing valves for fetal applications using dynamic similarity. A 6 mm fetal trileaflet valve and a 26 mm SAPIEN 3 valve were assessed in a pulse duplicator. Particle image velocimetry was performed. Pressure gradient (ΔP), effective orifice area (EOA), regurgitant fractions (RF), pinwheeling indices (PI) and turbulent stresses were evaluated. ΔP was 8.56 ± 0.139 and 7.76 ± 0.083 mmHg with fetal valve and SAPIEN respectively (p < 0.0001); EOA was 0.10 ± 0.0007 and 2.1 ± 0.025 cm2 with fetal valve and SAPIEN respectively (p < 0.0001); RF with the fetal valve was 2.35 ± 1.99% and with SAPIEN 10.92 ± 0.11% (p < 0.0001); PI with fetal valve was 0.404 ± 0.01 and with SAPIEN 0.37 ± 0.07; The flow regime with the fetal valve was turbulent and Reynolds numbers reached about 7000 while those with the SAPIEN reached about 20,000 at peak velocity. Turbulent stresses were significantly higher with fetal valve compared with SAPIEN. Instantaneous viscous shear stresses with fetal valve were 5.8 times higher than those obtained with SAPIEN and Reynolds shear stresses were 2.5 times higher during peak systole. The fetal valve implantation leads to a turbulent flow (specific to this particular type and design of valve) regime unlike what is expected of a small valve with different flow properties compared to adult valves.


Asunto(s)
Feto , Implantación de Prótesis de Válvulas Cardíacas , Válvulas Cardíacas/fisiología , Adulto , Aleaciones , Aluminio , Prótesis Valvulares Cardíacas , Hemodinámica , Humanos , Estrés Mecánico , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...