Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 4(5): 559-574, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35606596

RESUMEN

Regulatory T (Treg) cells are critical for maintaining immune homeostasis and preventing autoimmunity. Here, we show that the non-oxidative pentose phosphate pathway (PPP) regulates Treg function to prevent autoimmunity. Deletion of transketolase (TKT), an indispensable enzyme of non-oxidative PPP, in Treg cells causes a fatal autoimmune disease in mice, with impaired Treg suppressive capability despite regular Treg numbers and normal Foxp3 expression levels. Mechanistically, reduced glycolysis and enhanced oxidative stress induced by TKT deficiency triggers excessive fatty acid and amino acid catabolism, resulting in uncontrolled oxidative phosphorylation and impaired mitochondrial fitness. Reduced α-KG levels as a result of reductive TCA cycle activity leads to DNA hypermethylation, thereby limiting functional gene expression and suppressive activity of TKT-deficient Treg cells. We also find that TKT levels are frequently downregulated in Treg cells of people with autoimmune disorders. Our study identifies the non-oxidative PPP as an integrator of metabolic and epigenetic processes that control Treg function.


Asunto(s)
Autoinmunidad , Vía de Pentosa Fosfato , Linfocitos T Reguladores , Transcetolasa , Animales , Autoinmunidad/genética , Autoinmunidad/inmunología , Epigénesis Genética/genética , Epigénesis Genética/inmunología , Glucólisis , Humanos , Ratones , Vía de Pentosa Fosfato/genética , Vía de Pentosa Fosfato/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Transcetolasa/genética , Transcetolasa/inmunología
2.
Front Immunol ; 12: 797091, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35082786

RESUMEN

The efficient removal of apoptotic cells (ACs), a process termed as efferocytosis, is essential for immune homeostasis. While recent work has established an important interplay between efferocytosis and cellular metabolic changing, underlying mechanisms remain poorly known. Here, we discovered that pentose phosphate pathway (PPP) regulates tolerogenic ACs clearance and immune tolerance. ACs decreased levels of PPP-related genes and metabolites in macrophages. AG1, the agonist of PPP, increased the activity of PPP but greatly reduced macrophage phagocytosis of ACs and enhanced the inflammatory response during efferocytosis. miR-323-5p regulated the expression of PPP-related genes and its levels increased during efferocytosis. miR-323-5p inhibitor greatly promoted levels of PPP-related genes, reduced the macrophage phagocytosis of ACs, and increased inflammatory response during efferocytosis, suggesting that miR-323-5p was essential in regulating PPP activity and ACs clearance in macrophages. Correspondingly, the PPP agonist AG1 exacerbated the lupus-like symptoms in the AC-induced systemic lupus erythematosus (SLE) model. Our study reveals that regulating PPP-dependent metabolic reprogramming is critical for tolerogenic ACs phagocytosis and immune tolerance.


Asunto(s)
Apoptosis/inmunología , Tolerancia Inmunológica/inmunología , Macrófagos/inmunología , Vía de Pentosa Fosfato/inmunología , Fagocitosis/inmunología , Animales , Apoptosis/genética , Células Cultivadas , Cromatografía Liquida/métodos , Femenino , Expresión Génica/inmunología , Humanos , Tolerancia Inmunológica/genética , Células Jurkat , Macrófagos/metabolismo , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/inmunología , Metabolómica/métodos , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/inmunología , Vía de Pentosa Fosfato/genética , Fagocitosis/genética , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem/métodos
3.
FEBS J ; 288(12): 3772-3783, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33249748

RESUMEN

Beyond storing and supplying energy in the liver and muscles, glycogen also plays critical roles in cell differentiation, signaling, redox regulation, and stemness under various physiological and pathophysiological conditions. Such versatile functions have been revealed by various forms of glycogen storage diseases. Here, we outline the source of carbon flux in glycogen metabolism and discuss how glycogen metabolism guides CD8+ T-cell memory formation and maintenance. Likewise, we review how this affects macrophage polarization and inflammatory responses. Furthermore, we dissect how glycogen metabolism supports tumor development by promoting tumor-repopulating cell growth in hypoxic tumor microenvironments. This review highlights the essential role of the gluconeogenesis-glycogenesis-glycogenolysis-PPP metabolic chain in redox homeostasis, thus providing insights into potential therapeutic strategies against major chronic diseases including cancer.


Asunto(s)
Glucosa/metabolismo , Glucógeno/metabolismo , Hipoxia/metabolismo , Hígado/metabolismo , Neoplasias/metabolismo , Linfocitos T/metabolismo , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Metabolismo Energético/inmunología , Gluconeogénesis/inmunología , Glucosa/inmunología , Glucógeno/inmunología , Glucogenólisis/inmunología , Homeostasis/inmunología , Humanos , Hipoxia/inmunología , Hipoxia/patología , Memoria Inmunológica , Hígado/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Vía de Pentosa Fosfato/inmunología , Linfocitos T/inmunología
4.
Cell ; 182(3): 641-654.e20, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32615085

RESUMEN

Targeting glycolysis has been considered therapeutically intractable owing to its essential housekeeping role. However, the context-dependent requirement for individual glycolytic steps has not been fully explored. We show that CRISPR-mediated targeting of glycolysis in T cells in mice results in global loss of Th17 cells, whereas deficiency of the glycolytic enzyme glucose phosphate isomerase (Gpi1) selectively eliminates inflammatory encephalitogenic and colitogenic Th17 cells, without substantially affecting homeostatic microbiota-specific Th17 cells. In homeostatic Th17 cells, partial blockade of glycolysis upon Gpi1 inactivation was compensated by pentose phosphate pathway flux and increased mitochondrial respiration. In contrast, inflammatory Th17 cells experience a hypoxic microenvironment known to limit mitochondrial respiration, which is incompatible with loss of Gpi1. Our study suggests that inhibiting glycolysis by targeting Gpi1 could be an effective therapeutic strategy with minimum toxicity for Th17-mediated autoimmune diseases, and, more generally, that metabolic redundancies can be exploited for selective targeting of disease processes.


Asunto(s)
Diferenciación Celular/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Glucosa-6-Fosfato Isomerasa/metabolismo , Glucólisis/genética , Fosforilación Oxidativa , Vía de Pentosa Fosfato/fisiología , Células Th17/metabolismo , Animales , Hipoxia de la Célula/genética , Hipoxia de la Célula/inmunología , Quimera/genética , Cromatografía de Gases , Cromatografía Liquida , Infecciones por Clostridium/inmunología , Citocinas/deficiencia , Citocinas/genética , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Glucosa-6-Fosfato Isomerasa/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Glucólisis/inmunología , Homeostasis/genética , Homeostasis/inmunología , Inflamación/genética , Inflamación/inmunología , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Membrana Mucosa/microbiología , Vía de Pentosa Fosfato/genética , Vía de Pentosa Fosfato/inmunología , RNA-Seq , Análisis de la Célula Individual , Células Th17/inmunología , Células Th17/patología
5.
Nat Chem Biol ; 16(7): 731-739, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32393898

RESUMEN

Glucose is catabolized by two fundamental pathways, glycolysis to make ATP and the oxidative pentose phosphate pathway to make reduced nicotinamide adenine dinucleotide phosphate (NADPH). The first step of the oxidative pentose phosphate pathway is catalyzed by the enzyme glucose-6-phosphate dehydrogenase (G6PD). Here we develop metabolite reporter and deuterium tracer assays to monitor cellular G6PD activity. Using these, we show that the most widely cited G6PD antagonist, dehydroepiandosterone, does not robustly inhibit G6PD in cells. We then identify a small molecule (G6PDi-1) that more effectively inhibits G6PD. Across a range of cultured cells, G6PDi-1 depletes NADPH most strongly in lymphocytes. In T cells but not macrophages, G6PDi-1 markedly decreases inflammatory cytokine production. In neutrophils, it suppresses respiratory burst. Thus, we provide a cell-active small molecule tool for oxidative pentose phosphate pathway inhibition, and use it to identify G6PD as a pharmacological target for modulating immune response.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Linfocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Animales , Línea Celular , Deshidroepiandrosterona/farmacología , Relación Dosis-Respuesta a Droga , Pruebas de Enzimas , Glucosa/metabolismo , Glucosafosfato Deshidrogenasa/inmunología , Glucosafosfato Deshidrogenasa/metabolismo , Glucólisis/inmunología , Células HCT116 , Células Hep G2 , Humanos , Inmunidad Innata , Activación de Linfocitos/efectos de los fármacos , Linfocitos/citología , Linfocitos/enzimología , Linfocitos/inmunología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/citología , Macrófagos/enzimología , Macrófagos/inmunología , NADP/antagonistas & inhibidores , NADP/metabolismo , Neutrófilos/citología , Neutrófilos/enzimología , Neutrófilos/inmunología , Vía de Pentosa Fosfato/inmunología
6.
Proc Natl Acad Sci U S A ; 116(15): 7439-7448, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30910955

RESUMEN

Cellular metabolism and signaling pathways are key regulators to determine conventional T cell fate and function, but little is understood about the role of cell metabolism for natural killer T (NKT) cell survival, proliferation, and function. We found that NKT cells operate distinct metabolic programming from CD4 T cells. NKT cells are less efficient in glucose uptake than CD4 T cells with or without activation. Gene-expression data revealed that, in NKT cells, glucose is preferentially metabolized by the pentose phosphate pathway and mitochondria, as opposed to being converted into lactate. In fact, glucose is essential for the effector functions of NKT cells and a high lactate environment is detrimental for NKT cell survival and proliferation. Increased glucose uptake and IFN-γ expression in NKT cells is inversely correlated with bacterial loads in response to bacterial infection, further supporting the significance of glucose metabolism for NKT cell function. We also found that promyelocytic leukemia zinc finger seemed to play a role in regulating NKT cells' glucose metabolism. Overall, our study reveals that NKT cells use distinct arms of glucose metabolism for their survival and function.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Mitocondrias/metabolismo , Células T Asesinas Naturales/inmunología , Fosforilación Oxidativa , Vía de Pentosa Fosfato/inmunología , Animales , Linfocitos T CD4-Positivos/citología , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Glucosa/genética , Glucosa/inmunología , Ratones , Ratones Noqueados , Mitocondrias/genética , Células T Asesinas Naturales/citología , Vía de Pentosa Fosfato/genética , Proteína de la Leucemia Promielocítica con Dedos de Zinc/genética , Proteína de la Leucemia Promielocítica con Dedos de Zinc/inmunología
7.
Front Immunol ; 9: 202, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29503646

RESUMEN

Metabolism provides substrates for reactive oxygen species (ROS) and nitric oxide (NO) generation, which are a part of the macrophage (Mφ) anti-microbial response. Mφs infected with Trypanosoma cruzi (Tc) produce insufficient levels of oxidative species and lower levels of glycolysis compared to classical Mφs. How Mφs fail to elicit a potent ROS/NO response during infection and its link to glycolysis is unknown. Herein, we evaluated for ROS, NO, and cytokine production in the presence of metabolic modulators of glycolysis and the Krebs cycle. Metabolic status was analyzed by Seahorse Flux Analyzer and mass spectrometry and validated by RNAi. Tc infection of RAW264.7 or bone marrow-derived Mφs elicited a substantial increase in peroxisome proliferator-activated receptor (PPAR)-α expression and pro-inflammatory cytokine release, and moderate levels of ROS/NO by 18 h. Interferon (IFN)-γ addition enhanced the Tc-induced ROS/NO release and shut down mitochondrial respiration to the levels noted in classical Mφs. Inhibition of PPAR-α attenuated the ROS/NO response and was insufficient for complete metabolic shift. Deprivation of glucose and inhibition of pyruvate transport showed that Krebs cycle and glycolysis support ROS/NO generation in Tc + IFN-γ stimulated Mφs. Metabolic profiling and RNAi studies showed that glycolysis-pentose phosphate pathway (PPP) at 6-phosphogluconate dehydrogenase was essential for ROS/NO response and control of parasite replication in Mφ. We conclude that IFN-γ, but not inhibition of PPAR-α, supports metabolic upregulation of glycolytic-PPP for eliciting potent ROS/NO response in Tc-infected Mφs. Chemical analogs enhancing the glucose-PPP will be beneficial in controlling Tc replication and dissemination by Mφs.


Asunto(s)
Cardiomiopatía Chagásica/inmunología , Interacciones Huésped-Parásitos/inmunología , Macrófagos/inmunología , Vía de Pentosa Fosfato/inmunología , Trypanosoma cruzi/inmunología , Animales , Cardiomiopatía Chagásica/parasitología , Modelos Animales de Enfermedad , Humanos , Interferón gamma/inmunología , Macrófagos/parasitología , Ratones , Ratones Noqueados , Óxido Nítrico/inmunología , Óxido Nítrico/metabolismo , PPAR alfa/genética , PPAR alfa/inmunología , Cultivo Primario de Células , Células RAW 264.7 , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
8.
Nat Cell Biol ; 20(1): 21-27, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29230018

RESUMEN

CD8+ memory T (Tm) cells are fundamental for protective immunity against infections and cancers 1-5 . Metabolic activities are crucial in controlling memory T-cell homeostasis, but mechanisms linking metabolic signals to memory formation and survival remain elusive. Here we show that CD8+ Tm cells markedly upregulate cytosolic phosphoenolpyruvate carboxykinase (Pck1), the hub molecule regulating glycolysis, tricarboxylic acid cycle and gluconeogenesis, to increase glycogenesis via gluconeogenesis. The resultant glycogen is then channelled to glycogenolysis to generate glucose-6-phosphate and the subsequent pentose phosphate pathway (PPP) that generates abundant NADPH, ensuring high levels of reduced glutathione in Tm cells. Abrogation of Pck1-glycogen-PPP decreases GSH/GSSG ratios and increases levels of reactive oxygen species (ROS), leading to impairment of CD8+ Tm formation and maintenance. Importantly, this metabolic regulatory mechanism could be readily translated into more efficient T-cell immunotherapy in mouse tumour models.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Glucógeno/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Melanoma Experimental/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Neoplasias Cutáneas/genética , Ácido 3-Mercaptopropiónico/farmacología , Traslado Adoptivo , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/trasplante , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Ciclo del Ácido Cítrico/inmunología , Inhibidores Enzimáticos/farmacología , Femenino , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Gluconeogénesis/inmunología , Glucosa/inmunología , Glucógeno/inmunología , Glucólisis/efectos de los fármacos , Glucólisis/genética , Glucólisis/inmunología , Homeostasis/inmunología , Memoria Inmunológica , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/inmunología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , NADP/inmunología , NADP/metabolismo , Vía de Pentosa Fosfato/efectos de los fármacos , Vía de Pentosa Fosfato/genética , Vía de Pentosa Fosfato/inmunología , Fosfoenolpiruvato Carboxiquinasa (GTP)/antagonistas & inhibidores , Fosfoenolpiruvato Carboxiquinasa (GTP)/inmunología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/metabolismo
9.
Metabolism ; 54(8): 1027-33, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16092052

RESUMEN

Previous studies have shown that glucose-6-phosphate dehydrogenase (G6PDase) and 6-phosphogluconate dehydrogenase form a supramolecular complex in human neutrophils that undergoes retrograde trafficking in cells from pregnant women, but anterograde trafficking in cells from nonpregnant individuals. Using fluorescence resonance energy transfer techniques, we now demonstrate that transaldolase (TALase), a key regulatory enzyme in the nonoxidative branch of the hexose monophosphate shunt, is in close physical proximity with G6PDase, but not with lactate dehydrogenase, thus suggesting the formation of a TALase-G6PDase complex. Moreover, immunofluorescence microscopy demonstrated that TALase undergoes anterograde trafficking in neutrophils from nonpregnant individuals, whereas retrograde trafficking is found during pregnancy. However, pregnancy did not affect lactate dehydrogenase distribution. Colchicine treatment blocked the retrograde distribution of TALase, suggesting that microtubules are involved in TALase trafficking. We suggest that TALase is part of a supramolecular hexose monophosphate shunt complex, which likely increases the efficiency of the shunt via substrate channeling. We further suggest that TALase's retrograde motion contributes to uncoupling the shunt from its source of glucose-6-phosphate at the plasma membrane, thereby blunting nicotinamide adenine dinucleotide phosphate (reduced form) production and downstream oxidant production by neutrophils.


Asunto(s)
Glucosafosfato Deshidrogenasa/metabolismo , Complejos Multienzimáticos/metabolismo , Neutrófilos/enzimología , Embarazo/metabolismo , Transaldolasa/metabolismo , Membrana Celular/enzimología , Femenino , Humanos , Neutrófilos/inmunología , Vía de Pentosa Fosfato/inmunología , Embarazo/inmunología , Transporte de Proteínas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...