Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 529(11): 2995-3012, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33754334

RESUMEN

Auditory efferents originate in the central auditory system and project to the cochlea. Although the specific anatomy of the olivocochlear (OC) efferents can vary between species, two types of auditory efferents have been identified based upon the general location of their cell bodies and their distinctly different axon terminations in the organ of Corti. In the mouse, the relatively small somata of the lateral (LOC) efferents reside in the lateral superior olive (LSO), have unmyelinated axons, and terminate around ipsilateral inner hair cells (IHCs), primarily against the afferent processes of type I auditory nerve fibers. In contrast, the larger somata of the medial (MOC) efferents are distributed in the ventral nucleus of the trapezoid body (VNTB), have myelinated axons, and terminate bilaterally against the base of multiple outer hair cells (OHCs). Using in vivo retrograde cell body marking, anterograde axon tracing, immunohistochemistry, and electron microscopy, we have identified a group of efferent neurons in mouse, whose cell bodies reside in the ventral nucleus of the lateral lemniscus (VNLL). By virtue of their location, we call them dorsal efferent (DE) neurons. Labeled DE cells were immuno-negative for tyrosine hydroxylase, glycine, and GABA, but immuno-positive for choline acetyltransferase. Morphologically, DEs resembled LOC efferents by their small somata, unmyelinated axons, and ipsilateral projection to IHCs. These three classes of efferent neurons all project axons directly to the cochlea and exhibit cholinergic staining characteristics. The challenge is to discover the contributions of this new population of neurons to auditory efferent function.


Asunto(s)
Vías Auditivas/fisiología , Cóclea/fisiología , Neuronas Eferentes/fisiología , Cuerpo Trapezoide/fisiología , Animales , Vías Auditivas/ultraestructura , Cóclea/ultraestructura , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Neuronas Eferentes/ultraestructura , Órgano Espiral/fisiología , Órgano Espiral/ultraestructura , Cuerpo Trapezoide/ultraestructura
2.
J Comp Neurol ; 528(12): 2068-2098, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32012264

RESUMEN

Many animals rely on acoustic cues to decide what action to take next. Unraveling the wiring patterns of the auditory neural pathways is prerequisite for understanding such information processing. Here, we reconstructed the first step of the auditory neural pathway in the fruit fly brain, from primary to secondary auditory neurons, at the resolution of transmission electron microscopy. By tracing axons of two major subgroups of auditory sensory neurons in fruit flies, low-frequency tuned Johnston's organ (JO)-B neurons and high-frequency tuned JO-A neurons, we observed extensive connections from JO-B neurons to the main second-order neurons in both the song-relay and escape pathways. In contrast, JO-A neurons connected strongly to a neuron in the escape pathway. Our findings suggest that heterogeneous JO neuronal populations could be recruited to modify escape behavior whereas only specific JO neurons contribute to courtship behavior. We also found that all JO neurons have postsynaptic sites at their axons. Presynaptic modulation at the output sites of JO neurons could affect information processing of the auditory neural pathway in flies.


Asunto(s)
Vías Auditivas/ultraestructura , Drosophila melanogaster/ultraestructura , Células Receptoras Sensoriales/ultraestructura , Animales , Conducta Animal/fisiología , Drosophila melanogaster/fisiología , Reacción de Fuga/fisiología , Microscopía Electrónica de Transmisión , Conducta Sexual Animal/fisiología
3.
Acta Otolaryngol ; 139(8): 677-684, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31124733

RESUMEN

Aim: Severe biotin deficiency associated with biotinidase enzyme deficiency in newborns is seen as severe neurological problems and hearing loss. However, the effect on the infant of deficiencies in the maternal diet during pregnancy are not clear. Material and methods: The study included 16 female Wistar albino rats and 4 male Wistar albino rats, that were mated and then the females were separated into 4 groups. At 40 days after the birth, 3 pups were selected from each group, and these 12 pups were evaluated with DPOAE and ABR electrophysiologically and the cochlea was examined ultrastructurally with electron microscopy. Results: In the DPOAE evaluation, At 8000 and 11,000 Hz, the signal-noise ratios in the B-N and B-B groups were statistically significantly higher (p < .05). In ABR, lengthening of the latency periods was determined in all the waves at both 8 and 16 kHz in the B-B group. When the IPL periods were examined, lengthening in IPL 1-5 was statistically significant in the B-B group only at 8 kHz. Conclusions: Biotin can be said to have an effect on hearing pathways. However, specifically where on the hearing pathways that biotin is involved has not been clarified.


Asunto(s)
Vías Auditivas/efectos de los fármacos , Deficiencia de Biotinidasa/complicaciones , Feto/efectos de los fármacos , Animales , Vías Auditivas/embriología , Vías Auditivas/ultraestructura , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico , Femenino , Lactancia , Masculino , Microscopía Electrónica , Órgano Espiral/ultraestructura , Embarazo , Ratas Wistar
4.
Neuron ; 100(3): 534-549, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30408442

RESUMEN

The calyx of Held is the preeminent model for the study of synaptic function in the mammalian CNS. Despite much work on the synapse and associated circuit, its role in hearing remains enigmatic. We propose that the calyx is one of the key adaptations that enables an animal to lateralize transient sounds. The calyx is part of a binaural circuit that is biased toward high sound frequencies and is sensitive to intensity differences between the ears. This circuit also shows marked sensitivity to interaural time differences, but only for brief sound transients ("clicks"). In a natural environment, such transients are rare except as adventitious sounds generated by other animals moving at close range. We argue that the calyx, and associated temporal specializations, evolved to enable spatial localization of sound transients, through a neural code congruent with the circuit's sensitivity to interaural intensity differences, thereby conferring a key benefit to survival.


Asunto(s)
Vías Auditivas/fisiología , Red Nerviosa/fisiología , Localización de Sonidos/fisiología , Cuerpo Trapezoide/fisiología , Estimulación Acústica/métodos , Animales , Vías Auditivas/ultraestructura , Humanos , Red Nerviosa/ultraestructura , Factores de Tiempo , Cuerpo Trapezoide/ultraestructura
5.
Microscopy (Oxf) ; 66(3): 187-197, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339777

RESUMEN

The current study describes a new support system for fine focusing and near-perfect astigmatism correction for scanning electron microscopy (SEM). The signal-to-noise ratio of a series of SEM images obtained from fast scan rates (TV scan) was adopted as a new metric for evaluating focus. Measured signal-to-noise ratio values were converted to an acoustic signal (sound wave frequency) using digital image processing techniques, enabling the SEM user to evaluate image focus using the auditory modality. Accurate focusing and correcting astigmatism in general-purpose SEM is traditionally time-consuming and difficult. The proposed system may substantially reduce the required operation time for fine focusing. Moreover, the system is relatively immune to noise, successfully supporting focus and astigmatism correction with very noisy SEM images. Our proposed focus support system may be helpful for general-purpose SEM observation of a variety of specimens under a wide range of operating conditions.


Asunto(s)
Astigmatismo/fisiopatología , Fijación Ocular/fisiología , Microscopía Electrónica de Rastreo/métodos , Vías Auditivas/fisiopatología , Vías Auditivas/ultraestructura , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Relación Señal-Ruido
6.
J Comp Neurol ; 525(9): 2090-2108, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28118481

RESUMEN

Dopamine (DA) is a conserved modulator of vertebrate neural circuitry, yet our knowledge of its role in peripheral auditory processing is limited to mammals. The present study combines immunohistochemistry, neural tract tracing, and electron microscopy to investigate the origin and synaptic characteristics of DA fibers innervating the inner ear and the hindbrain auditory efferent nucleus in the plainfin midshipman, a vocal fish that relies upon the detection of mate calls for reproductive success. We identify a DA cell group in the diencephalon as a common source for innervation of both the hindbrain auditory efferent nucleus and saccule, the main hearing endorgan of the inner ear. We show that DA terminals in the saccule contain vesicles but transmitter release appears paracrine in nature, due to the apparent lack of synaptic contacts. In contrast, in the hindbrain, DA terminals form traditional synaptic contacts with auditory efferent neuronal cell bodies and dendrites, as well as unlabeled axon terminals, which, in turn, form inhibitory-like synapses on auditory efferent somata. Our results suggest a distinct functional role for brain-derived DA in the direct and indirect modulation of the peripheral auditory system of a vocal nonmammalian vertebrate.


Asunto(s)
Vías Auditivas/fisiología , Vías Auditivas/ultraestructura , Neuronas Dopaminérgicas/fisiología , Neuronas Dopaminérgicas/ultraestructura , Oído Interno/citología , Aminoácidos/metabolismo , Animales , Colina O-Acetiltransferasa/metabolismo , Colina O-Acetiltransferasa/ultraestructura , Dopamina beta-Hidroxilasa/metabolismo , Oído Interno/ultraestructura , Peces/anatomía & histología , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Sinapsis/metabolismo , Sinapsis/ultraestructura , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/ultraestructura
7.
Handb Clin Neurol ; 129: 357-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25726279

RESUMEN

Presbycusis or age-related hearing loss (ARHL) affects most elderly people. It is characterized by reduced hearing thresholds and speech understanding with the well-known negative consequences for communication and quality of social life. The hearing loss is connected to age-related histologic changes, as described and classified by Schuknecht. Aging itself is a multifactorial, genetically driven process that is influenced by oxidative stress that gradually leads to reduced endocochlear potential and cell loss of key players in sound transmission and supporting structures. Oxidative stress is caused by damaging factors like noise, infection, and other systemic factors. All reparative mechanisms in acute and chronic cochlear damage attempt to reduce oxidative stress and to balance inner-ear homeostasis. Accurate clinical assessment of ARHL starts with the differentiation between peripheral and central components. Treatment of the peripheral hearing loss often involves hearing aids, whereas auditory and psychologic training seems to be important in central auditory disturbance.


Asunto(s)
Envejecimiento/fisiología , Vías Auditivas/patología , Vías Auditivas/fisiología , Trastornos de la Audición/patología , Animales , Vías Auditivas/ultraestructura , Trastornos de la Audición/epidemiología , Humanos
8.
Brain Struct Funct ; 220(3): 1477-96, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24623157

RESUMEN

The cochlear root neurons (CRNs) are key components of the primary acoustic startle circuit; mediating auditory alert and escape behaviors in rats. They receive a great variety of inputs which serve to elicit and modulate the acoustic startle reflex (ASR). Recently, our group has suggested that CRNs receive inputs from the locus coeruleus (LC), a noradrenergic nucleus which participates in attention and alertness. Here, we map the efferent projection patterns of LC neurons and confirm the existence of the LC-CRN projection using both anterograde and retrograde tract tracers. Our results show that each LC projects to the CRNs of both sides with a clear ipsilateral predominance. The LC axons terminate as small endings distributed preferentially on the cell body and primary dendrites of CRNs. Using light and confocal microscopy, we show a strong immunoreactivity for tyrosine hydroxylase and dopamine ß-hydroxylase in these terminals, indicating noradrenaline release. We further studied the noradrenergic system using gene expression analysis (RT-qPCR) and immunohistochemistry to detect specific noradrenergic receptor subunits in the cochlear nerve root. Our results indicate that CRNs contain a noradrenergic receptor profile sufficient to modulate the ASR, and also show important gender-specific differences in their gene expression. 3D reconstruction analysis confirms the presence of sexual dimorphism in the density and distribution of LC neurons. Our study describes a coerulean noradrenergic projection to the CRNs that might contribute to neural processes underlying sensory gating of the ASR, and also provides an explanation for the gender differences observed in the behavioral paradigm.


Asunto(s)
Vías Auditivas/ultraestructura , Núcleo Coclear/fisiología , Neuronas/fisiología , Fibras Adrenérgicas/fisiología , Animales , Catecolaminas/metabolismo , Núcleo Coclear/citología , Dendritas/fisiología , Femenino , Expresión Génica , Locus Coeruleus/fisiología , Masculino , Vías Nerviosas/fisiología , Neuronas/citología , Neuronas/metabolismo , Ratas , Ratas Wistar , Receptores Adrenérgicos/metabolismo , Factores Sexuales
9.
J Neurosci ; 33(9): 4011-23, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23447610

RESUMEN

This study addresses the relationship between cochlear oxidative damage and auditory cortical injury in a rat model of repeated noise exposure. To test the effect of increased antioxidant defenses, a water-soluble coenzyme Q10 analog (Qter) was used. We analyzed auditory function, cochlear oxidative stress, morphological alterations in auditory cortices and cochlear structures, and levels of coenzymes Q9 and Q10 (CoQ9 and CoQ10, respectively) as indicators of endogenous antioxidant capability. We report three main results. First, hearing loss and damage in hair cells and spiral ganglion was determined by noise-induced oxidative stress. Second, the acoustic trauma altered dendritic morphology and decreased spine number of II-III and V-VI layer pyramidal neurons of auditory cortices. Third, the systemic administration of the water-soluble CoQ10 analog reduced oxidative-induced cochlear damage, hearing loss, and cortical dendritic injury. Furthermore, cochlear levels of CoQ9 and CoQ10 content increased. These findings indicate that antioxidant treatment restores auditory cortical neuronal morphology and hearing function by reducing the noise-induced redox imbalance in the cochlea and the deafferentation effects upstream the acoustic pathway.


Asunto(s)
Cóclea/patología , Pérdida Auditiva Provocada por Ruido , Estrés Oxidativo/fisiología , Ubiquinona/uso terapéutico , Corteza Visual/patología , Fascículo Atrioventricular Accesorio , Estimulación Acústica , Aldehídos/metabolismo , Análisis de Varianza , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Vías Auditivas/efectos de los fármacos , Vías Auditivas/patología , Vías Auditivas/ultraestructura , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Cóclea/fisiopatología , Modelos Animales de Enfermedad , Etidio/análogos & derivados , Etidio/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Células Ciliadas Auditivas/patología , Células Ciliadas Auditivas/ultraestructura , Pérdida Auditiva Provocada por Ruido/complicaciones , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Tinción con Nitrato de Plata , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/farmacología , Corteza Visual/efectos de los fármacos
10.
J Comp Neurol ; 521(12): 2772-97, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23408290

RESUMEN

We investigated the frequency-related topography of connections of the primary auditory cortical field (AI) in the Mongolian gerbil with subcortical structures of the auditory system by means of the axonal transport of two bidirectional tracers, which were simultaneously injected into regions of AI with different best frequencies (BFs). We found topographic, most likely frequency-matched (tonotopic) connections as well as non-topographic (non-tonotopic) connections. AI projects in a tonotopic way to the ipsilateral ventral (MGv) and dorsal divisions (MGd) of the medial geniculate body (MGB), the reticular thalamic nucleus and dorsal nucleus of the lateral lemniscus, and the ipsi- and contralateral dorsal cortex of the inferior colliculus (IC) and central nucleus of the IC. AI receives tonotopic inputs from MGv and MGd. Projections from different BF regions of AI terminate in a non-tonotopic way in the ipsilateral medial division of the MGB (MGm), the suprageniculate thalamic nucleus (SG) and brachium of the IC (bic), and the ipsi- and contralateral external cortex and pericollicular areas of the IC. The anterograde labeling in the intermediate and ventral nucleus of the lateral lemniscus, parts of the superior olivary complex, and divisions of the cochlear nucleus was generally sparse; thus a clear topographic arrangement of the labeled axons could not be ruled out. AI receives non-tonotopic inputs from the ipsilateral MGm, SG, and bic. In conclusion, the tonotopic and non-tonotopic corticofugal connections of AI can potentially serve for both conservation and integration of frequency-specific information in the respective target structures.


Asunto(s)
Corteza Auditiva/fisiología , Vías Auditivas/anatomía & histología , Mapeo Encefálico , Gerbillinae/anatomía & histología , Potenciales de Acción , Animales , Corteza Auditiva/anatomía & histología , Vías Auditivas/fisiología , Vías Auditivas/ultraestructura , Dextranos/metabolismo , Estimulación Eléctrica , Lateralidad Funcional , Cuerpos Geniculados/fisiología , Colículos Inferiores/fisiología , Masculino , Rodaminas/metabolismo , Tinción con Nitrato de Plata , Núcleos Talámicos/fisiología , Factores de Tiempo
11.
Neuroscience ; 228: 215-34, 2013 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-23069754

RESUMEN

The medial nucleus of the trapezoid body (MNTB) is a vital structure of sound localization circuits in the auditory brainstem. Each principal cell of MNTB is contacted by a very large presynaptic glutamatergic terminal, the calyx of Held. The MNTB principal cells themselves are surrounded by extracellular matrix components forming prominent perineuronal nets (PNs). Throughout the CNS, PNs, which form lattice-like structures around the somata and proximal dendrites, are associated with distinct types of neurons. PNs are highly enriched in hyaluronan and chondroitin sulfate proteoglycans therefore providing a charged surface structure surrounding the cell body and proximal neurites of these neurons. The localization and composition of PNs have lead investigators to a number of hypotheses about their functions including: creating a specific extracellular ionic milieu around these neurons, stabilizing synapses, and influencing the outgrowth of axons. However, presently the precise functions of PNs are still quite unclear primarily due to the lack of an ideal experimental model system that is highly enriched in PNs and in which the synaptic transmission properties can be precisely measured. The MNTB principal cells could offer such a model, since they have been extensively characterized electrophysiologically. However, extracellular matrix (ECM) in these neurons has not yet been precisely detailed. The present study gives a detailed examination of the ECM organization and structural differences in PNs of the mouse MNTB. The different PN components and their distribution pattern are scrutinized throughout the MNTB. The data are complemented by electron microscopic investigations of the unique ultrastructural localization of PN-components and their interrelation with distinct pre- and postsynaptic MNTB cell structures. Therefore, we believe this work identifies the MNTB as an ideal system for studying PN function.


Asunto(s)
Vías Auditivas/fisiología , Tronco Encefálico/fisiología , Matriz Extracelular/fisiología , Animales , Vías Auditivas/ultraestructura , Tronco Encefálico/ultraestructura , Matriz Extracelular/ultraestructura , Ratones , Ratones Endogámicos C57BL
12.
J Comp Neurol ; 520(10): 2202-17, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22237661

RESUMEN

The medial superior olive (MSO) is a key auditory brainstem structure that receives binaural inputs and is implicated in processing interaural time disparities used for sound localization. The deaf white cat, a proven model of congenital deafness, was used to examine how deafness and cochlear implantation affected the synaptic organization at this binaural center in the ascending auditory pathway. The patterns of axosomatic and axodendritic organization were determined for principal neurons from the MSO of hearing, deaf, and deaf cats with cochlear implants. The nature of the synapses was evaluated through electron microscopy, ultrastructure analysis of the synaptic vesicles, and immunohistochemistry. The results show that the proportion of inhibitory axosomatic terminals was significantly smaller in deaf animals when compared with hearing animals. However, after a period of electrical stimulation via cochlear implants the proportion of inhibitory inputs resembled that of hearing animals. Additionally, the excitatory axodendritic boutons of hearing cats were found to be significantly larger than those of deaf cats. Boutons of stimulated cats were significantly larger than the boutons in deaf cats, although not as large as in the hearing cats, indicating a partial recovery of excitatory inputs to MSO dendrites after stimulation. These results exemplify dynamic plasticity in the auditory brainstem and reveal that electrical stimulation through cochlear implants has a restorative effect on synaptic organization in the MSO.


Asunto(s)
Implantación Coclear/métodos , Sordera/patología , Sordera/terapia , Plasticidad Neuronal/fisiología , Núcleo Olivar/patología , Animales , Vías Auditivas/patología , Vías Auditivas/ultraestructura , Gatos , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Tomografía con Microscopio Electrónico , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Núcleo Olivar/fisiopatología , Sinapsis/metabolismo , Sinapsis/patología , Sinapsis/ultraestructura , Vesículas Sinápticas/ultraestructura , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
13.
Neurosci Lett ; 504(3): 195-8, 2011 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-21945541

RESUMEN

The outer hair cells of organ of Corti are innervated by the efferent neurons of medial olivocochlear neurons (MOC) of the brainstem which modify the cochlear auditory processing and sensitivity. Most of the MOC neurons are excited by a dominant ear and only a small portion of them is excited by both ears resulting in a binaural facilitation. The functional role of the feedback system between the organ of Corti and the cochlear efferent neurons is the protection of the ear from acoustic injury. The rapid impulse propagation in the bilateral olivocochlear system is suggestive of an electrotonic interaction between the bilateral olivocochlear neurons. The morphological background of the MOC pathway is not yet completely characterized. Therefore, we have labeled the bilateral cochlear nerves with different neuronal tracers in guinea pigs. In the anesthetized animals the cochlear nerves were exposed in the basal part of the modiolus and labeled simultaneously with different retrograde fluorescent tracers. By using confocal laser scanning microscope we could detect close appositions between the dendrites of the neurons of bilateral MOC. The distance between the neighboring profiles suggested close membrane appositions without interposing glial elements. These connections might serve as one of the underlying mechanisms of the binaural facilitation mediated by the olivocochlear system.


Asunto(s)
Vías Auditivas/ultraestructura , Dendritas/ultraestructura , Neuronas Eferentes/ultraestructura , Núcleo Olivar/citología , Órgano Espiral/citología , Animales , Percepción Auditiva , Transporte Axonal , Biotina/análogos & derivados , Biotina/farmacocinética , Dextranos/farmacocinética , Dominancia Cerebral , Femenino , Fluoresceínas/farmacocinética , Colorantes Fluorescentes/farmacocinética , Cobayas , Células Ciliadas Auditivas Externas/ultraestructura , Masculino , Ganglio Espiral de la Cóclea/citología
14.
J Neurochem ; 116(5): 756-63, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21214575

RESUMEN

Cell-surface glycoconjugates, such as proteoglycans, glycoproteins, and glycosphingolipids have been suggested to serve important functions in hearing because of their variety and their specific expression patterns during the development and maturation of cochlea. However, there has been no definitive proof regarding their involvement in auditory functions. In this study, we provide an overview of the expression of glycoconjugates in auditory systems and consider their possible involvement in hearing functions. We include our recent findings regarding deafness in ganglioside (sialic acid containing glycosphingolipids)-deficient mice, and address the importance of functional glycobiology in auditory systems.


Asunto(s)
Vías Auditivas/metabolismo , Cóclea/metabolismo , Glicoconjugados/metabolismo , Animales , Vías Auditivas/ultraestructura , Cóclea/ultraestructura , Conducta Excretoria Animal , Pérdida Auditiva/metabolismo , Humanos , Mamíferos , Microdominios de Membrana/fisiología , Modelos Biológicos , Polisacáridos/metabolismo
15.
Brain Res ; 1344: 43-53, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20470764

RESUMEN

One of the most common complaints among aging individuals is difficulty in understanding speech in a compromised listening environment, such as when background noise is present. Age-related hearing loss (presbycusis) is associated with both peripheral and central neural processing deficits, as it occurs even in those with only a mild peripheral hearing impairment. The current study was designed to investigate potential causative mechanisms of this impairment by using a rat model in which presbycusis is inducible by administration of D-galactose (D-gal). One group of these rats was injected subcutaneously with 150 mg D-gal daily for 8 weeks, while control animals received vehicle only. These groups were compared to naturally aged rats (24 months) that had received no other treatment. Central auditory function of the three groups was evaluated by measuring the auditory brainstem response (ABR) and middle latency response (MLR). A TaqMan real time PCR assay was used to quantify a 4834-bp deletion in the mitochondrial DNA (mtDNA) of the auditory cortex (AC), inferior colliculus (IC) and cochlear nucleus (CN). We assessed changes in lipid peroxidation levels and apoptosis rates, and examined pathological changes corresponding to D-gal-induced aging and natural aging. Both groups of aged rats exhibited delayed ABR latencies (III, IV, V), MLR Pa latency, and I-IV interpeak latency. Moreover, increased mtDNA 4834 bp deletion rates, lipid peroxidation levels, rates of neuronal apoptosis and neurodegenerative changes in the AC, IC and CN were similar among the D-gal induced and NA rats. However, the threshold of ABR in the D-gal group showed no significant change from the control group. These observations suggest that age-related central auditory dysfunction and its corresponding pathological changes are present in both naturally aging rats and the D-gal mimetic aging model. Oxidative stress, large-scale mtDNA 4834 bp deletion, and apoptosis are likely to be involved in the progressive weakening of the central auditory system associated with the aging process.


Asunto(s)
Envejecimiento/efectos de los fármacos , Vías Auditivas/fisiopatología , Galactosa/toxicidad , Presbiacusia , Factores de Edad , Envejecimiento/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Vías Auditivas/efectos de los fármacos , Vías Auditivas/ultraestructura , Secuencia de Bases/efectos de los fármacos , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/metabolismo , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Microscopía Electrónica de Transmisión/métodos , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/ultraestructura , Presbiacusia/inducido químicamente , Presbiacusia/patología , Presbiacusia/fisiopatología , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Eliminación de Secuencia/efectos de los fármacos
16.
J Am Acad Audiol ; 21(3): 204-18, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20211125

RESUMEN

BACKGROUND: Neurons rely exclusively on mitochondrial oxidative phosphorylation to meet cellular energy demands, and disruption of mitochondrial function often precipitates neuronal cell death. Auditory neurons in the chick brain stem (n. magnocellularis [NM]) receive glutamatergic innervation exclusively from ipsilateral eighth nerve afferents. Cochlea removal permanently disrupts afferent support and ultimately triggers apoptotic cell death in 30-50% of ipsilateral, deafferented neurons. Here, we evaluated whether disruption of mitochondrial function occurs during deafferentation-induced neuronal cell death. PURPOSE: To determine whether mitochondrial dysfunction occurs preferentially within dying NM neurons. RESEARCH DESIGN: An experimental study. All birds underwent unilateral cochlea removal. Normally innervated neurons contralateral to surgery served as within-animal controls. STUDY SAMPLE: Hatchling broiler chickens between 8 and 12 days of age served as subjects. A total of 62 birds were included in the study. INTERVENTION: Cochlea removal was performed to deafferent ipsilateral NM neurons and trigger neuronal cell death. DATA COLLECTION AND ANALYSIS: Following unilateral cochlea removal, birds were sacrificed 12, 24, 48, or 168 hours later, and brain tissue was harvested. Brainstems were sectioned through NM and evaluated histochemically for oxidative enzyme reaction product accumulation or reacted for Mitotracker Red, an indicator of mitochondrial membrane potential (m) and cytoplasmic TdT-mediated dUTP Nick-End Labeling (TUNEL), an indicator of cell death. Histochemical staining intensities for three mitochondrial enzymes, succinate dehydrogenase (SDH), cytochrome c oxidase (CO), and ATP synthase (ATPase) were measured in individual neurons and compared in ipsilateral and contralateral NM. Comparisons were made using unpaired t-tests (CO) or Kruskal Wallis one way ANOVA followed by Dunn's post hoc pairwise comparisons (ATPase, SDH). Mitotracker Red tissue was examined qualitatively for the presence of and extent of colocalization between Mitotracker Red and TUNEL label in NM. RESULTS: RESULTS showed global upregulation of all three oxidative enzymes within deafferented NM neurons compared to contralateral, unperturbed NM neurons. In addition, differential SDH and ATPase staining intensities were detected across neurons within the ipsilateral nucleus, suggesting functional differences in mitochondrial metabolism across deafferented NM. Quantitative analyses revealed that deafferented neurons with preferentially elevated SDH and ATPase activities represent the subpopulation destined to die following cochlea removal. In addition, Mitotracker Red accumulated intensely within the subset of deafferented NM neurons that also exhibited cytoplasmic TdT-mediated dUTP Nick-End Labeling (TUNEL) and subsequently died. CONCLUSIONS: Taken together, our results demonstrate that a subset of deafferented NM neurons, presumably those that die, preferentially upregulates SDH, perhaps via the tricarboxylic acid (TCA) cycle. These same neurons undergo ATPase uncoupling and an eventual loss of Deltapsi(m).


Asunto(s)
Apoptosis/fisiología , Vías Auditivas/patología , Tronco Encefálico/patología , Cóclea/cirugía , Mitocondrias/fisiología , Células Receptoras Sensoriales/patología , Adenosina Trifosfatasas/metabolismo , Animales , Animales Recién Nacidos , Vías Auditivas/ultraestructura , Tronco Encefálico/enzimología , Tronco Encefálico/ultraestructura , Pollos , Complejo IV de Transporte de Electrones/metabolismo , Etiquetado Corte-Fin in Situ , Potencial de la Membrana Mitocondrial/fisiología , Células Receptoras Sensoriales/enzimología , Células Receptoras Sensoriales/ultraestructura , Succinato Deshidrogenasa/metabolismo
17.
Zoology (Jena) ; 112(4): 305-15, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19394805

RESUMEN

Cicadas (Homoptera: Auchenorrhyncha: Cicadidae) use acoustic signalling for mate attraction and perceive auditory signals by a tympanal organ in the second abdominal segment. The main structural features of the ear are the tympanum, the sensory organ consisting of numerous scolopidial cells, and the cuticular link between sensory neurones and tympanum (tympanal ridge and apodeme). Here, a first investigation of the postembryonic development of the auditory system is presented. In insects, sensory neurones usually differentiate during embryogenesis, and sound-perceiving structures form during postembryogenesis. Cicadas have an elongated and subterranian postembryogenesis which can take several years until the final moult. The neuroanatomy and functional morphology of the auditory system of the cicada Okanagana rimosa (Say) are documented for the adult and the three last larval stages. The sensory organ and the projection of sensory afferents to the CNS are present in the earliest stages investigated. The cuticular structures of the tympanum, the tympanal frame holding the tympanum, and the tympanal ridge differentiate in the later stages of postembryogenesis. Thus, despite the different life styles of larvae and adults, the neuronal components of the cicada auditory system develop already during embryogenesis or early postembryogenesis, and sound-perceiving structures like tympana are elaborated later in postembryogenesis. The life cycle allows comparison of cicada development to other hemimetabolous insects with respect to the influence of specially adapted life cycle stages on auditory maturation. The neuronal development of the auditory system conforms to the timing in other hemimetabolous insects.


Asunto(s)
Hemípteros/ultraestructura , Animales , Vías Auditivas/crecimiento & desarrollo , Vías Auditivas/ultraestructura , Oído/crecimiento & desarrollo , Oído/inervación , Femenino , Hemípteros/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/ultraestructura , Mecanorreceptores/fisiología , Mecanorreceptores/ultraestructura
18.
J Comp Neurol ; 514(6): 624-40, 2009 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-19365819

RESUMEN

Calcium signaling plays a role in synaptic regulation of dendritic structure, usually on the time scale of hours or days. Here we use immunocytochemistry to examine changes in expression of plasma membrane calcium ATPase type 2 (PMCA2), a high-affinity calcium efflux protein, in the chick nucleus laminaris (NL) following manipulations of synaptic inputs. Dendrites of NL neurons segregate into dorsal and ventral domains, receiving excitatory input from the ipsilateral and contralateral ears, respectively, via nucleus magnocellularis (NM). Deprivation of the contralateral projection from NM to NL leads to rapid retraction of ventral, but not the dorsal, dendrites of NL neurons. Immunocytochemistry revealed symmetric distribution of PMCA2 in two neuropil regions of normally innervated NL. Electron microscopy confirmed that PMCA2 localizes in both NM terminals and NL dendrites. As early as 30 minutes after transection of the contralateral projection from NM to NL or unilateral cochlea removal, significant decreases in PMCA2 immunoreactivity were seen in the deprived neuropil of NL compared with the other neuropil that continued to receive normal input. The rapid decrease correlated with reductions in the immunoreactivity for microtubule-associated protein 2, which affects cytoskeleton stabilization. These results suggest that PMCA2 is regulated independently in ventral and dorsal NL dendrites and/or their inputs from NM in a way that is correlated with presynaptic activity. This provides a potential mechanism by which deprivation can change calcium transport that, in turn, may be important for rapid, compartment-specific dendritic remodeling.


Asunto(s)
Vías Auditivas/enzimología , Tronco Encefálico/enzimología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Animales , Vías Auditivas/ultraestructura , Western Blotting , Tronco Encefálico/ultraestructura , Pollos , Cóclea/fisiología , Inmunohistoquímica , Ratones , Ratones Endogámicos BALB C , Ratones Mutantes , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/enzimología , Neuronas/fisiología , Neuronas/ultraestructura , Neurópilo/enzimología , Fotomicrografía , Proteína 25 Asociada a Sinaptosomas/metabolismo
19.
J Neurosci ; 28(27): 6960-73, 2008 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-18596170

RESUMEN

Computational models predict that experience-driven clustering of coactive synapses is a mechanism for information storage. This prediction has remained untested, because it is difficult to approach through time-lapse analysis. Here, we exploit a unique feature of the barn owl auditory localization pathway that permits retrospective analysis of prelearned and postlearned circuitry: owls reared wearing prismatic spectacles develop an adaptive microcircuit that coexists with the native one but can be analyzed independently based on topographic location. To visualize the clustering of axodendritic contacts (potential synapses) within these zones, coactive axons were labeled by focal injection of fluorescent tracer and their target dendrites labeled with an antibody directed against CaMKII (calcium/calmodulin-dependent protein kinase type II, alpha subunit). Using high-resolution confocal imaging, we measured the distance from each contact to its nearest neighbor on the same branch of dendrite. We found that the distribution of intercontact distances for the adaptive zone was shifted dramatically toward smaller values compared with distributions for either the maladaptive zone of the same animals or the adaptive zone of normal juveniles, which indicates that a dynamic clustering of contacts had occurred. Moreover, clustering in the normal zone was greater in normal juveniles than in prism-adapted owls, indicative of declustering. These data demonstrate that clustering is bidirectionally adjustable and tuned by behaviorally relevant experience. The microanatomical configurations in all zones of both experimental groups matched the functional circuit strengths that were assessed by in vivo electrophysiological mapping. Thus, the observed changes in clustering are appropriately positioned to contribute to the adaptive strengthening and weakening of auditory-driven responses.


Asunto(s)
Vías Auditivas/crecimiento & desarrollo , Colículos Inferiores/crecimiento & desarrollo , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Estrigiformes/crecimiento & desarrollo , Sinapsis/fisiología , Adaptación Fisiológica/fisiología , Envejecimiento/fisiología , Animales , Vías Auditivas/ultraestructura , Mapeo Encefálico/métodos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Dendritas/fisiología , Dendritas/ultraestructura , Anteojos , Colorantes Fluorescentes , Colículos Inferiores/ultraestructura , Microscopía Confocal , Pruebas Neuropsicológicas , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Localización de Sonidos/fisiología , Estrigiformes/anatomía & histología , Sinapsis/ultraestructura , Factores de Tiempo
20.
J Neurosci ; 28(25): 6342-53, 2008 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-18562604

RESUMEN

The sensory bundle of vertebrate cochlear hair cells consists of actin-containing stereocilia that are thought to bend at their ankle during mechanical stimulation. Stereocilia have dense rootlets that extend through the ankle region to anchor them into the cuticular plate. Because this region may be important in bundle stiffness and durability during prolonged stimulation at high frequencies, we investigated the structure and dimensions of rootlets relative to the stereocilia in apical (low-frequency) and basal (high-frequency) regions of rodent cochleae using light and electron microscopy. Their composition was investigated using postembedding immunogold labeling of tropomyosin, spectrin, beta-actin, gamma-actin, espin, and prestin. The rootlets have a thick central core that widens at the ankle, and are embedded in a filamentous meshwork in the cuticular plate. Within a particular frequency region, rootlet length correlates with stereociliary height but between regions it changes disproportionately; apical stereocilia are, thus, approximately twice the height of basal stereocilia in equivalent rows, but rootlet lengths increase much less. Some rootlets contact the tight junctions that underlie the ends of the bundle. Rootlets contain spectrin, tropomyosin, and beta- and gamma-actin, but espin was not detected; spectrin is also evident near the apical and junctional membranes, whereas prestin is confined to the basolateral membrane below the junctions. These data suggest that rootlets strengthen the ankle region to provide durability and may contact with the lateral wall either to give additional anchoring of the stereocilia or to provide a route for interactions between the bundle and the lateral wall.


Asunto(s)
Membrana Basilar/fisiología , Membrana Basilar/ultraestructura , Células Ciliadas Auditivas/fisiología , Células Ciliadas Auditivas/ultraestructura , Animales , Vías Auditivas/fisiología , Vías Auditivas/ultraestructura , Cilios/fisiología , Cilios/ultraestructura , Cóclea/fisiología , Cóclea/ultraestructura , Cobayas , Ratones , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...