Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.292
Filtrar
1.
Nanotechnology ; 35(39)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38917779

RESUMEN

Safe and effective vaccine candidates are needed to address the limitations of existing vaccines against Brucellosis, a disease responsible for substantial economic losses in livestock. The present study aimed to encapsulate recombinant Omp25 and EipB proteins, knowledged antigen properties, into PLGA nanoparticles, characterize synthesized nanoparticles with different methods, and assessed theirin vitro/in vivoimmunostimulatory activities to develop new vaccine candidates. The recombinant Omp25 and EipB proteins produced with recombinant DNA technology were encapsulated into PLGA nanoparticles by double emulsion solvent evaporation technique. The nanoparticles were characterized using FE-SEM, Zeta-sizer, and FT-IR instruments to determine size, morphology, zeta potentials, and polydispersity index values, as well as to analyze functional groups chemically. Additionally, the release profiles and encapsulation efficiencies were assessed using UV-Vis spectroscopy. After loading with recombinant proteins, O-NPs reached sizes of 221.2 ± 5.21 nm, while E-NPs reached sizes of 274.4 ± 9.51 nm. The cumulative release rates of the antigens, monitored until the end of day 14, were determined to be 90.39% for O-NPs and 56.1% for E-NPs. Following the assessment of thein vitrocytotoxicity and immunostimulatory effects of both proteins and nanoparticles on the J774 murine macrophage cells,in vivoimmunization experiments were conducted using concentrations of 16µg ml-1for each protein. Both free antigens and antigen-containing nanoparticles excessively induced humoral immunity by increasing producedBrucella-specific IgG antibody levels for 3 times in contrast to control. Furthermore, it was also demonstrated that vaccine candidates stimulated Th1-mediated cellular immunity as well since they significantly raised IFN-gamma and IL-12 cytokine levels in murine splenocytes rather than IL-4 following to immunization. Additionally, the vaccine candidates conferred higher than 90% protection from the infection according to challenge results. Our findings reveal that PLGA nanoparticles constructed with the encapsulation of recombinant Omp25 or EipB proteins possess great potential to triggerBrucella-specific humoral and cellular immune response.


Asunto(s)
Brucelosis , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Proteínas Recombinantes , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Brucelosis/prevención & control , Brucelosis/inmunología , Ratones , Nanopartículas/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/química , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/química , Ratones Endogámicos BALB C , Femenino , Vacuna contra la Brucelosis/inmunología , Vacuna contra la Brucelosis/genética , Vacuna contra la Brucelosis/administración & dosificación , Brucella abortus/inmunología , Brucella abortus/genética , Portadores de Fármacos/química , Nanovacunas
2.
Vaccine ; 42(17): 3710-3720, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38755066

RESUMEN

One of the main causes of human brucellosis is Brucella melitensis infecting small ruminants. To date, Rev1 is the only vaccine successfully used to control ovine and caprine brucellosis. However, it is pathogenic for pregnant animals, resulting in abortions and vaginal and milk shedding, as well as being infectious for humans. Therefore, there is an urgent need to develop an effective vaccine that is safer than Rev1. In efforts to further attenuate Rev1, we recently used wzm inactivation to generate a rough mutant (Rev1Δwzm) that retains a complete antigenic O-polysaccharide in the bacterial cytoplasm. The aim of the present study was to evaluate the placental pathogenicity of Rev1Δwzm in trophoblastic cells, throughout pregnancy in mice, and in ewes inoculated in different trimesters of pregnancy. This mutant was evaluated in comparison with the homologous 16MΔwzm derived from a virulent strain of B. melitensis and the naturally rough sheep pathogen B. ovis. Our results show that both wzm mutants triggered reduced cytotoxic, pro-apoptotic, and pro-inflammatory signaling in Bewo trophoblasts, as well as reduced relative expression of apoptosis genes. In mice, both wzm mutants produced infection but were rapidly cleared from the placenta, in which only Rev1Δwzm induced a low relative expression of pro-apoptotic and pro-inflammatory genes. In the 66 inoculated ewes, Rev1Δwzm was safe and immunogenic, displaying a transient serological interference in standard RBT but not CFT S-LPS tests; this serological response was minimized by conjunctival administration. In conclusion, these results support that B. melitensis Rev1Δwzm is a promising vaccine candidate for use in pregnant ewes and its efficacy against B. melitensis and B. ovis infections in sheep warrants further study.


Asunto(s)
Brucella melitensis , Brucelosis , Placenta , Animales , Brucella melitensis/patogenicidad , Brucella melitensis/inmunología , Brucella melitensis/genética , Femenino , Ovinos , Brucelosis/prevención & control , Brucelosis/inmunología , Brucelosis/veterinaria , Embarazo , Placenta/microbiología , Ratones , Enfermedades de las Ovejas/prevención & control , Enfermedades de las Ovejas/inmunología , Enfermedades de las Ovejas/microbiología , Trofoblastos/inmunología , Trofoblastos/microbiología , Vacuna contra la Brucelosis/inmunología , Vacuna contra la Brucelosis/administración & dosificación , Vacuna contra la Brucelosis/genética , Humanos , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/administración & dosificación
3.
Int Immunopharmacol ; 134: 112204, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703567

RESUMEN

Brucella infections typically occur in mucosal membranes, emphasizing the need for mucosal vaccinations. This study evaluated the effectiveness of orally administering Lactococcus lactis (L. lactis) for producing the Brucella abortus multi-epitope OMPs peptide. A multi-epitope plasmid was generated through a reverse vaccinology method, and mice were administered the genetically modified L. lactis orally as a vaccine. The plasmid underwent digestion, synthesizing a 39 kDa-sized protein known as OMPs by the target group. The sera of mice that were administered the pNZ8124-OMPs-L. lactis vaccine exhibited a notable presence of IgG1 antibodies specific to outer membrane proteins (OMPs), heightened levels of interferon (IFN-λ) and tumor necrosis factor alpha (TNF-α), and enhanced transcription rates of interleukin 4 (IL-4) and interleukin 10 (IL-10). The spleen sections from the pNZ8124-OMPs-L. lactis and IRIBA group had less morphological damage associated with inflammation, infiltration of lymphocytes, and lesions to the spleen. The findings present a novel approach to utilizing the food-grade, non-pathogenic L. lactis as a protein cell factory to synthesize innovative immunological candidate OMPs. This approach offers a distinctive way to evaluate experimental medicinal items' practicality, safety, affordability, and long-term sustainability.


Asunto(s)
Vacuna contra la Brucelosis , Brucella abortus , Brucelosis , Lactococcus lactis , Ratones Endogámicos BALB C , Animales , Brucella abortus/inmunología , Brucelosis/prevención & control , Brucelosis/inmunología , Lactococcus lactis/genética , Lactococcus lactis/inmunología , Vacuna contra la Brucelosis/inmunología , Vacuna contra la Brucelosis/administración & dosificación , Vacuna contra la Brucelosis/genética , Ratones , Femenino , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Epítopos/inmunología , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Bazo/inmunología , Vectores Genéticos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Citocinas/metabolismo
4.
J Mol Evol ; 92(3): 338-357, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38809331

RESUMEN

Brucellosis is a notifiable disease induced by a facultative intracellular Brucella pathogen. In this study, eight Brucella abortus and eighteen Brucella melitensis strains from Egypt were annotated and compared with RB51 and REV1 vaccines respectively. RAST toolkit in the BV-BRC server was used for annotation, revealing genome length of 3,250,377 bp and 3,285,803 bp, 3289 and 3323 CDS, 48 and 49 tRNA genes, the same number of rRNA (3) genes, 583 and 586 hypothetical proteins, 2697 and 2726 functional proteins for B. abortus and B. melitensis respectively. B. abortus strains exhibit a similar number of candidate genes, while B. melitensis strains showed some differences, especially in the SRR19520422 Faiyum strain. Also, B. melitensis clarified differences in antimicrobial resistance genes (KatG, FabL, MtrA, MtrB, OxyR, and VanO-type) in SRR19520319 Faiyum and (Erm C and Tet K) in SRR19520422 Faiyum strain. Additionally, the whole genome phylogeny analysis proved that all B. abortus strains were related to vaccinated animals and all B. melitensis strains of Menoufia clustered together and closely related to Gharbia, Dameitta, and Kafr Elshiek. The Bowtie2 tool identified 338 (eight B. abortus) and 4271 (eighteen B. melitensis) single nucleotide polymorphisms (SNPs) along the genomes. These variants had been annotated according to type and impact. Moreover, thirty candidate genes were predicted and submitted at GenBank (24 in B. abortus) and (6 in B. melitensis). This study contributes significant insights into genetic variation, virulence factors, and vaccine-related associations of Brucella pathogens, enhancing our knowledge of brucellosis epidemiology and evolution in Egypt.


Asunto(s)
Brucella abortus , Brucella melitensis , Genoma Bacteriano , Genómica , Filogenia , Brucella melitensis/genética , Brucella abortus/genética , Egipto , Genómica/métodos , Animales , Brucelosis/microbiología , Vacuna contra la Brucelosis/genética , Vacunas Bacterianas
5.
Open Vet J ; 14(1): 19-24, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633148

RESUMEN

Background: Brucellosis is a highly contagious zoonotic disease caused by an intracellular facultative microorganism termed Brucella spp. Control of brucellosis depends on test and slaughter policy as well as vaccination programs. Aim: Estimation of the cell-mediated immunity (CMI) [total leukocytic count (TLC), phagocytic activity, phagocytic index, interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α)] in camels after vaccination with RB51 using real-time polymerase chain reaction (PCR). Methods: A total of eight camels were grouped into two groups as follows: group (A): vaccinated with RB51 vaccine [1 dose/2 ml S/C (3 × 1010 CFU)] and group (B): control group. IL-6 and TNF-α were used for estimation of the CMI using real-time PCR on serum samples that were collected at 0, 7, 14, 21, 28, and 60 days after vaccination from each group. In addition, TLC, phagocytic activity, and phagocytic index were evaluated on heparinized blood samples at 0 and 60 days post-vaccination. Results: RB51 vaccine provides a protective immune response which progressively increases from the first week to 60 days after vaccination. Moreover, the levels of TNF-α and IL-6 differed between camels in the vaccinated group. Conclusion: Vaccination of camels with RB51 vaccine (with dose 3 × 1010 CFU) could induce good protective immune responses and this immunological response will be a good indication for a safe field vaccine that can be used for the control of camel brucellosis.


Asunto(s)
Vacuna contra la Brucelosis , Brucelosis , Animales , Brucella abortus , Camelus , Interleucina-6 , Factor de Necrosis Tumoral alfa , Egipto , Brucelosis/veterinaria , Vacunación/veterinaria
6.
Int Immunopharmacol ; 133: 112121, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652965

RESUMEN

One effective antigen carrier proposed for use in immunization and vaccination is gold nanoparticles. Prior work has shown that gold nanoparticles themselves have adjuvant properties. Currently, gold nanoparticles are used to design new diagnostic tests and vaccines against viral, bacterial, and parasitic infections. We investigated the use of gold nanoparticles as immunomodulators in immunization and vaccination with an antigen isolated from Brucella abortus. Gold nanoparticles with a diameter of 15 nm were synthesized for immunization of animals and were then conjugated to the isolated antigen. The conjugates were used to immunize white BALB/c mice. As a result, high-titer (1:10240) antibodies were produced. The respiratory and proliferative activities of immune cells were increased, as were the serum interleukin concentrations. The minimum antigen amount detected with the produced antibodies was âˆ¼ 0.5 pg. The mice immunized with gold nanoparticles complexed with the B. abortus antigen were more resistant to B. abortus strain 82 than were the mice immunized through other schemes. This fact indicates that animal immunization with this conjugate enhances the effectiveness of the immune response. The results of this study are expected to be used in further work to examine the protective effect of gold nanoparticles complexed with the B. abortus antigen on immunized animals and to develop test systems for diagnosing brucellosis in the laboratory and in the field.


Asunto(s)
Adyuvantes Inmunológicos , Antígenos Bacterianos , Brucella abortus , Brucelosis , Oro , Nanopartículas del Metal , Ratones Endogámicos BALB C , Animales , Brucella abortus/inmunología , Oro/química , Nanopartículas del Metal/química , Brucelosis/prevención & control , Brucelosis/inmunología , Antígenos Bacterianos/inmunología , Ratones , Femenino , Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Vacuna contra la Brucelosis/inmunología , Vacuna contra la Brucelosis/administración & dosificación , Vacunación , Inmunización
8.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 879-891, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38419498

RESUMEN

Brucellosis is a global zoonotic infection caused by Brucella bacteria, which poses a significant burden on society. While transmission prevention is currently the most effective method, the absence of a licenced vaccine for humans necessitates the urgent development of a safe and effective vaccine. Recombinant protein-based subunit vaccines are considered promising options, and in this study, the Brucella BP26 protein is expressed using prokaryotic expression systems. The immune responses are evaluated using the well-established adjuvant CpG-ODN. The results demonstrate that rBP26 supplemented with a CpG adjuvant induces M1 macrophage polarization and stimulates cellular immune responses mediated by Th1 cells and CD8 + T cells. Additionally, it generates high levels of rBP26-specific antibodies in immunized mice. Furthermore, rBP26 immunization activates, proliferates, and produces cytokines in T lymphocytes while also maintaining immune memory for an extended period of time. These findings shed light on the potential biological function of rBP26, which is crucial for understanding brucellosis pathogenesis. Moreover, rBP26 holds promise as an effective subunit vaccine candidate for use in endemic areas.


Asunto(s)
Activación de Macrófagos , Ratones Endogámicos BALB C , Células TH1 , Vacunas de Subunidad , Animales , Células TH1/inmunología , Vacunas de Subunidad/inmunología , Ratones , Activación de Macrófagos/inmunología , Activación de Macrófagos/efectos de los fármacos , Femenino , Brucelosis/prevención & control , Brucelosis/inmunología , Vacuna contra la Brucelosis/inmunología , Brucella/inmunología , Macrófagos/inmunología , Linfocitos T CD8-positivos/inmunología , Adyuvantes Inmunológicos/farmacología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Oligodesoxirribonucleótidos/inmunología , Citocinas/metabolismo , Citocinas/inmunología , Proteínas de la Membrana
9.
mSphere ; 9(3): e0075023, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38349167

RESUMEN

Brucellosis, caused by the bacterium Brucella, poses a significant global threat to both animal and human health. Although commercial live Brucella vaccines including S19, RB51, and Rev1 are available for animals, their unsuitability for human use and incomplete efficacy in animals necessitate the further study of vaccine-mediated immunity to Brucella. In this study, we employed in vivo B-cell depletion, as well as immunodeficient and transgenic mouse models, to comprehensively investigate the roles of B cells, antigen uptake and presentation, antibody production, and class switching in the context of S19-mediated immunity against brucellosis. We found that antibody production, and in particular secretory IgM plays a protective role in S19-mediated immunity against virulent Brucella melitensis early after the challenge in a manner associated with complement activation. While T follicular helper cell deficiency dampened IgG production and vaccine efficacy at later stages of the challenge, this effect appeared to be independent of antibody production and rather was associated with altered T-cell function. By contrast, B-cell MHCII expression negatively impacted vaccine efficacy at later timepoints after the challenge. In addition, B-cell depletion after vaccination, but before the challenge, enhanced S19-mediated protection against brucellosis, suggesting a deleterious role of B cells during the challenge phase. Collectively, our findings indicate antibody production is protective, while B-cell MHCII expression is deleterious, to live vaccine-mediated immunity against brucellosis. IMPORTANCE: Brucella is a neglected zoonotic pathogen with a worldwide distribution. Our study delves into B-cell effector functions in live vaccine-mediated immunity against brucellosis. Notably, we found antibody production, particularly secretory IgM, confers protection against virulent Brucella melitensis in vaccinated mice, which was associated with complement activation. By contrast, B-cell MHCII expression negatively impacted vaccine efficacy. In addition, B-cell depletion after vaccination, but before the B. melitensis challenge, enhanced protection against infection, suggesting a detrimental B-cell role during the challenge phase. Interestingly, deficiency of T follicular helper cells, which are crucial for aiding germinal center B cells, dampened vaccine efficacy at later stages of challenge independent of antibody production. This study underscores contrasting and phase-dependent roles of B-cell effector functions in vaccine-mediated immunity against Brucella.


Asunto(s)
Vacuna contra la Brucelosis , Brucella melitensis , Brucelosis , Ratones , Animales , Humanos , Brucella abortus , Brucelosis/prevención & control , Linfocitos B , Vacunas Atenuadas , Ratones Transgénicos
10.
PLoS Negl Trop Dis ; 18(1): e0011889, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190394

RESUMEN

BACKGROUND: Currently, vaccination of livestock with attenuated strains of Brucella remains an essential measure for controlling brucellosis, although these vaccines may be dangerous to humans. The aim of this study was to review the risk posed to humans by occupational exposure to vaccine strains and the measures that should be implemented to minimize this risk. METHODS: This article reviewed the scientific literature indexed in PubMed up to September 30, 2023, following "the PRISMA guidelines". Special emphasis was placed on the vaccine strain used and the route of exposure. Non-occupational exposure to vaccine strains, intentional human inoculation, publications on exposure to wild strains, and secondary scientific sources were excluded from the study. RESULTS: Nineteen primary reports were found and classified in three subgroups: safety accidents in vaccine factories that led to an outbreak (n = 2), survellaince studies on vaccine manufacturing workers with a serologic diagnosis of Brucella infection (n = 3), and publications of infection by vaccine strains during their administration, including case reports, records of occupational accidents and investigations of outbreaks in vaccination campaigns (n = 14). Although accidental exposure during vaccine manufacturing were uncommon, they could provoke large outbreaks through airborne spread with risk of spread to the neighboring population. Besides, despite strict protection measures, a percentage of vaccine manufacturing workers developed positive Brucella serology without clinical infection. The most frequent type of exposure with symptomatic infection was needle injury during vaccine administration. Prolonged contact with the pathogen, lack of information and a low adherence to personal protective equipment (PPE) use in the work environment were commonly associated with infection. CONCLUSIONS: Brucella vaccines pose occupational risk of contagion to humans from their production to their administration to livestock, although morbidity is low and deaths were not reported. Recommended protective measures and active surveillance of exposed workers appeared to reduce this risk. It would be advisable to carry out observational studies and/or systematic registries using solid diagnostic criteria.


Asunto(s)
Vacuna contra la Brucelosis , Brucella , Brucelosis , Exposición Profesional , Animales , Humanos , Brucelosis/epidemiología , Brucelosis/prevención & control , Vacunación , Ganado , Vacunas Atenuadas
11.
Int Immunopharmacol ; 127: 111351, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38113688

RESUMEN

Brucellosis, a zoonosis caused by Brucella, is highly detrimental to both humans and animals. Most existing vaccines are live attenuated vaccines with safety flaws for people and animals. Therefore, it is advantageous to design a multi-epitope subunit vaccine (MEV) to prevent Brucella infection. To this end, we applied a reverse vaccinology approach. Six cytotoxic T cell (CTL) epitopes, seven T helper cell (HTL) epitopes, and four linear B cell epitopes from CU/ZN-SOD, Omp31, and BP26 were obtained. We linked the CTL, HTL, B-cell epitopes, the appropriate CTB molecular adjuvant, and the universal T helper lymphocyte epitope, PADRE, with linkers AAY, GPPGG, and KK, respectively. This yielded a 412-amino acid MEV construct, which we named MEVcob. The immunogenicity, stability, safety, and feasibility of the construct were evaluated by bioinformatics tools (including the AlphaFold2 prediction tool, the AlphaFold2 tool, NetMHC-I pan 4.0 server, IEDB MHC-I server, ABCpred service, and C-ImmSim server); the physicochemical properties, secondary and tertiary structures, and binding ability of MEVocb to toll-like receptor 4 (TLR4) was analyzed. Then, codon adaptation and computer cloning studies were performed. MEVocb is highly immunogenic in immunostimulation experiments, The proteins translated by these sequences were relatively stable, exhibiting a high antigenic index. Furthermore, mouse experiments confirmed that the MEVocb construct could raise IFN-γ, IgG, IgG2a, IgG1, IL-2, TNF-α levels in mice, indicating that induced a specific humoral and cellular immune response in BALB/c mice. This vaccine induced a statistically significant level of protection in BALB/c mice when challenged with Brucella melitensis 043 in Xinjiang. Briefly, we utilized immunoinformatic tools to design a novel multi-epitope subunit candidate vaccine against Brucella. This vaccine aims to induce host immune responses and confer specific protective effects. The study results offer a theoretical foundation for the development of a novel Brucella subunit vaccine.


Asunto(s)
Vacuna contra la Brucelosis , Brucella melitensis , Brucelosis , Humanos , Animales , Ratones , Ratones Endogámicos BALB C , Proteínas de la Membrana Bacteriana Externa , Brucelosis/prevención & control , Epítopos de Linfocito B , Vacunas de Subunidad , Superóxido Dismutasa , Epítopos de Linfocito T , Biología Computacional/métodos , Simulación del Acoplamiento Molecular
12.
Virulence ; 14(1): 2280377, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37981707

RESUMEN

Brucellosis, caused by Brucella, is a severe zoonosis, and the current Brucella live attenuated vaccine cannot be used in humans due to major safety risks. Although polysaccharide antigens can be used to prepare the Brucella vaccine, their lower immunogenicity limits them from producing efficient and broad protection. In this study, we produced a high-performance bioconjugate nanovaccine against different species of Brucella by introducing a self-assembly nanoparticle platform and an O-linked glycosylation system into Yersinia enterocolitica serotype O:9, which has an O-polysaccharide composed of the same unit as Brucella. After successfully preparing the vaccine and confirming its stability, we subsequently demonstrated the safety of the vaccine in mice by high-dose immunization. Then, by a series of mouse experiments, we found that the nanovaccine greatly promoted antibody responses. In particular, the increase of IgG2a was more obvious than that of IgG1. Most importantly, this nanovaccine could provide cross-protection against B. abortus, B. melitensis, and B. suis strains by lethal dose challenged models, and could improve the clearance of B. melitensis, the most common pathogenic species in human brucellosis, by non-lethal dose infection. Overall, for the first time, we biocoupled polysaccharide antigens with nano carriers to prepare a Brucella vaccine, which showed pronounced and extensive protective effects in mice. Thus, we provided a potential candidate vaccine and a new direction for Brucella vaccine design.


Asunto(s)
Vacuna contra la Brucelosis , Brucella , Brucelosis , Yersinia enterocolitica , Humanos , Animales , Ratones , Brucelosis/prevención & control , Protección Cruzada , Inmunoglobulina G , Polisacáridos
13.
Microb Pathog ; 185: 106417, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866552

RESUMEN

The gram-negative intracellular bacterium Brucella abortus causes bovine brucellosis, a zoonotic disease that costs a lot of money. This work developed a vector vaccine against brucellosis utilizing recombinant L. lactis expressing Brucella outer membrane protein BAB1-0278. Gene sequences were obtained from GenBank. The proteins' immunogenicity was tested with Vaxijen. The target vector was converted into L. lactis after enzymatic digestion and PCR validated the BAB1-0278 gene cloning in the pNZ8148 vector. The target protein was extracted using a Ni-NTA column and confirmed using SDS-PAGE and western blot. After vaccination with the target vaccine, the expression of IgG subclasses was evaluated by the ELISA method. Cytokine production was also measured by the qPCR method in the small intestine and spleen. Lymphocyte proliferation and innate immune response (NLR, CRP, and PLR) were also assessed. Finally, after the challenge test, the spleen tissue was examined by H&E staining. BAB1-0278 was chosen because of its antigenicity score of 0.5614. A 237-bp gene fragment was discovered using enzymatic digestion and PCR. The presence of a 13 kDa protein band was confirmed by SDS-PAGE and western blot. In comparison to the PBS group, mice given the L. lactis-pNZ8148-BAB1-0278-Usp45 vaccine 14 days after priming had substantially greater levels of total IgG, IgG1, and IgG2a (P < 0.001). Also, the production of cytokines (IFN-γ, TNFα, IL-4, and IL-10) indicating cellular immunity increased compared to the control group (P < 0.001). The target group had a lower inflammatory response, morphological impairment, alveolar edema, and lymphocyte infiltration. An efficient probiotic-based oral brucellosis vaccination was created. These studies have proven that the recommended immunization gives the best protection, which supports its promotion.


Asunto(s)
Vacuna contra la Brucelosis , Brucelosis , Lactococcus lactis , Bovinos , Ratones , Animales , Lactococcus lactis/genética , Ratones Endogámicos BALB C , Vacuna contra la Brucelosis/genética , Brucelosis/prevención & control , Vacunación/métodos , Inmunización/métodos , Brucella abortus/genética , Proteínas Recombinantes/genética , Inmunoglobulina G , Anticuerpos Antibacterianos
14.
BMC Vet Res ; 19(1): 211, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853407

RESUMEN

Cattle brucellosis is a severe zoonosis of worldwide distribution caused by Brucella abortus and B. melitensis. In some countries with appropriate infrastructure, animal tagging and movement control, eradication was possible through efficient diagnosis and vaccination with B. abortus S19, usually combined with test-and-slaughter (T/S). Although S19 elicits anti-smooth lipopolysaccharide antibodies that may interfere in the differentiation of infected and vaccinated animals (DIVA), this issue is minimized using appropriate S19 vaccination protocols and irrelevant when high-prevalence makes mass vaccination necessary or when eradication requisites are not met. However, S19 has been broadly replaced by vaccine RB51 (a rifampin-resistant rough mutant) as it is widely accepted that is DIVA, safe and as protective as S19. These RB51 properties are critically reviewed here using the evidence accumulated in the last 35 years. Controlled experiments and field evidence shows that RB51 interferes in immunosorbent assays (iELISA, cELISA and others) and in complement fixation, issues accentuated by revaccinating animals previously immunized with RB51 or S19. Moreover, contacts with virulent brucellae elicit anti-smooth lipopolysaccharide antibodies in RB51 vaccinated animals. Thus, accepting that RB51 is truly DIVA results in extended diagnostic confusions and, when combined with T/S, unnecessary over-culling. Studies supporting the safety of RB51 are flawed and, on the contrary, there is solid evidence that RB51 is excreted in milk and abortifacient in pregnant animals, thus being released in abortions and vaginal fluids. These problems are accentuated by the RB51 virulence in humans, lack diagnostic serological tests detecting these infections and RB51 rifampicin resistance. In controlled experiments, protection by RB51 compares unfavorably with S19 and lasts less than four years with no evidence that RB51-revaccination bolsters immunity, and field studies reporting its usefulness are flawed. There is no evidence that RB51 protects cattle against B. melitensis, infection common when raised together with small ruminants. Finally, data acumulated during cattle brucellosis eradication in Spain shows that S19-T/S is far more efficacious than RB51-T/S, which does not differ from T/S alone. We conclude that the assumption that RB51 is DIVA, safe, and efficaceous results from the uncritical repetition of imperfectly examined evidence, and advise against its use.


Asunto(s)
Vacuna contra la Brucelosis , Brucelosis , Enfermedades de los Bovinos , Embarazo , Femenino , Humanos , Bovinos , Animales , Brucella abortus , Brucelosis/veterinaria , Lipopolisacáridos , Aborto Veterinario , Vacunación/veterinaria , Anticuerpos Antibacterianos
15.
Vet Med Sci ; 9(4): 1908-1922, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37276346

RESUMEN

BACKGROUND: Most Brucella infections take place on mucosal membranes. Therefore, creating vaccinations delivered through the mucosa may be crucial for managing brucellosis. Consequently, we assessed the efficacy of a recombinant oral antigen delivery system based on Lactococcus lactis for Brucella abortus omp25 antigen. METHOD: Oral vaccinations with L. lactis transformed with pNZ8148 variants encoding for omp25 (pNZ8148:omp25) and free-pNZ8148 were administered to mice. On day 30, following immunization in animal groups, anti-omp25-specific IgG1 antibodies were assessed by the ELISA test. Additionally, nasal and bronchoalveolar lavages containing omp25-specific secretory IgA (sIgA) were analysed by ELISA. ELISA test and real-time PCR were also used to analyse cytokine responses up to 28 days following the last boost. In addition, the protective potential of L. lactis pNZ8148:omp25 vaccines was assessed in BALB/c mice by exposing them to the B. abortus strain. RESULTS: Based on the initial screening results, the omp25 protein was identified for immunogenicity because it had the maximum solubility and flexibility and antigenic values of 0.75. The produced plasmid was digested using KpnI and XbaI. By electrophoretic isolation of the digestion fragments at 786 bp, the omp25 gene, the successful production of the recombinant plasmid, was confirmed. Antigen expression at the protein level revealed that the target group generated the 25 kDa-sized omp25 protein, but there was no protein expression in the control group. Fourteen days after priming, there was a considerable amount of omp25-specific IgG1 in the sera of mice vaccinated with pNZ8148-Usp45-omp25-L. lactis (p < 0.001 in target groups compared to the phosphate-buffered saline control group). IFN-γ and TNF-α levels were more significant in samples from mice that had been given the pNZ8148-Usp45-omp25-L. lactis and IRBA vaccinations, in samples taken on days 14 and 28, respectively (p < 0.001). The pNZ8148-Usp45-omp25-L. lactis and IRBA immunization groups had significantly greater IL-4 and IL-10 transcription levels than the other groups. The spleen portions from the pNZ8148-Usp45-omp25-L. lactis and IRIBA vac group had less extensive spleen injuries, alveolar oedema, lymphocyte infiltration and morphological damage due to the inflammatory process. CONCLUSION: Our study offers a novel method for using the food-grade, non-pathogenic and noncommercial bacterium L. lactis as a protein cell factory to produce the novel immunogenic fusion candidate romp25. This method offers an appealing new approach to assessing the cost-effective, safe, sustainable, simple pilot development of pharmaceutical products.


Asunto(s)
Vacuna contra la Brucelosis , Brucelosis , Lactococcus lactis , Animales , Ratones , Antígenos Bacterianos , Vacunas Bacterianas , Brucella abortus , Vacuna contra la Brucelosis/genética , Brucelosis/microbiología , Brucelosis/veterinaria , Inmunoglobulina G/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Ratones Endogámicos BALB C
16.
Vaccine ; 41(23): 3534-3543, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37149444

RESUMEN

Brucellosis remains one of the most worldwide distributed zoonosis inflicting serious economical and human health problems in many areas of the world. The disease is caused by different species of the genus Brucella that have different tropisms towards different mammals being the most relevant for human health Brucella abortus, Brucella melitensis and Brucella suis that infect cows, goats/sheep, and swine respectively. For B. melitensis, considered the species with more zoonotic potential and highly aggressive for animals, only one vaccine is available to date in the market: Rev 1. This attenuated strain has the disadvantage that is has a very high residual virulence for animals and humans and, for this reason, it is applied by ocular instillation which is technically challenging in many productive settings. For this reason, the search for new vaccines for caprine and ovine brucellosis is an active topic of research. We describe here the construction of a novel highly attenuated vaccine strain (Bm Delta-pgm) that confers excellent levels of protection against B. melitensis in the mouse model of infection. This strain is a clean deletion of the phosphoglucomutase (pgm) gene that codes for a protein that catalyzes the conversion of glucose-6-P to glucose-1-P, which is used as a precursor for the biosynthesis of many polysaccharides, including the O-antigen of the lipopolysaccharide and cyclic beta glucans. Our results indicate that vaccination with Bm Delta-pgm induces a robust memory cellular immune response but no antibody production against the O-antigen. Cross protection experiments show that this new vaccine protects against B. abortus and B. suis raising the possibility that Bm Delta-pgm could be used as a universal vaccine for the most important Brucella species.


Asunto(s)
Vacuna contra la Brucelosis , Brucella melitensis , Brucelosis , Femenino , Ratones , Animales , Ovinos , Bovinos , Humanos , Porcinos , Brucella melitensis/genética , Fosfoglucomutasa/genética , Cabras , Antígenos O , Brucelosis/prevención & control , Brucella abortus
17.
J Immunol ; 210(10): 1576-1588, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036290

RESUMEN

The Brucella abortus double-mutant (ΔznuA ΔnorD Brucella abortus-lacZ [znBAZ]) was assessed for its protective efficacy after vaccination with a single nasal dose. Superior protection was achieved in znBAZ-vaccinated mice against pulmonary, wild-type B. abortus 2308 challenge when compared with conventional livestock Brucella abortus vaccines, the smooth S19 (smooth B. abortus strain 19 vaccine) and rough RB51 (rough mutant vaccine strain of B. abortus) strains. Nasal znBAZ vaccination reduced splenic and lung colonization by wild-type brucellae by >3-4 logs. In contrast, S19 reduced lung colonization by only 32-fold, and RB51 failed to reduce colonization. One profound attribute of znBAZ vaccination was the >3-fold increase in pulmonary CD8+ T cells when compared with other vaccinated groups. S19 vaccination increased only CD4+ T cells. All vaccines induced IFN-γ and TNF-α production by CD4+ T cells, but only znBAZ vaccination enhanced the recruitment of polyfunctional CD8+ T cells, by >100-fold. IL-17 by both CD4+ and CD8+ T cells was also induced by subsequent znBAZ vaccination. These results demonstrate that, in addition to achieving protective immunity by CD4+ T cells, CD8+ T cells, specifically resident memory T cells, also confer protection against brucellosis. The protection obtained by znBAZ vaccination was attributed to IFN-γ-producing CD8+ T cells, because depletion of CD8+ T cells throughout vaccination and challenge phases abrogated protection. The stimulation of only CD4+ T cells by RB51- and S19-vaccinated mice proved insufficient in protecting against pulmonary B. abortus 2308 challenge. Thus, nasal znBAZ vaccination offers an alternative means to elicit protection against brucellosis.


Asunto(s)
Vacuna contra la Brucelosis , Brucelosis , Neumonía , Animales , Ratones , Brucella abortus , Vacunación , Ratones Endogámicos BALB C
18.
Res Vet Sci ; 158: 124-133, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37003120

RESUMEN

Brucella abortus S19 vaccine is a stable attenuated smooth strain, globally used as calfhood vaccine for the prevention of bovine brucellosis. Various agencies demonstrated different doses for vaccinating cattle and buffalo calves leading to ambiguity in selecting a suitable immune vaccine dose. The current study aimed at evaluating four graded doses of S19 vaccine to arrive at the dose which could produce comparable effectiveness as that of full dose prescribed by Indian Pharmacopeia among the Indian calves. Four vaccine doses of which the first dose consisted of full dose (40 × 109 CFU/dose) and the other three were 1/10th, 1/20th, 1/100th reduced doses along with control were tested. Each vaccine dose was administered to 13 cattle calves of 4-5 months of age maintained in separate groups. The blood samples were collected on 0 to 240 days post-vaccination (DPV) at the intervals of 0, 14, 28, 45, 60, 90, 150, 180 and 240 for assessment of vaccine-induced innate, humoral and cell-mediated immune responses. The sero-conversion of all vaccinated animals on DPV 45 and persistence of antibody till DPV 240 were noticed. No significant differences were observed in antibody response between animal groups that received full and 1/10th reduced doses. Innate and cell-mediated response by IL-6, TNF-α¸ IFN-γ, CD4+ and CD8+ cell counts showed dose-dependent responses with no significant difference between full dose and 1/10th reduced doses. The results suggest a possible one log reduction of full dose without compromising immune responses to aid larger vaccination coverage for creating herd immunity.


Asunto(s)
Vacuna contra la Brucelosis , Brucella abortus , Bovinos , Animales , Vacunación/veterinaria , Inmunidad Celular , Linfocitos T CD8-positivos , Anticuerpos Antibacterianos
19.
J Biomol Struct Dyn ; 41(24): 15460-15484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36927475

RESUMEN

Brucellosis is a zoonotic caused by the Brucella which is a well-known infectious disease agent in domestic animals and if transmitted, it can cause infection in humans. Because brucellosis is contagious, its control depends on the eradication of the animal disease in farms. There are two vaccines based on the killed and/or weakened bacteria against B. melitensis and B. abortus, but no recombinant vaccine is available for preventing the disease. The present study was designed to develop a multi-epitope vaccine against of B. melitensis and B. abortus using virB10, Omp31 and Omp16 antigens by the prediction of T lymphocytes, T cell cytotoxicity and IFN-γ epitopes. 50S L7/L12 Ribosomal protein from Mycobacterium tuberculosis was used as a bovine TLR4 and TLR9 agonist. GPGPG, AAY and KK linkers were used as a linker. Brucella construct was well-integrated in the pET-32a Shuttle vector with BamHI and HindIII restriction enzymes. The final construct contained 769 amino acids, that it was soluble protein of about ∼82 kDa after expression in the Escherichia coli SHuffle host. Modeled protein analysis based on the tertiary structure validation, molecular docking studies, molecular dynamics simulations results like RMSD, Gyration and RMSF as well as MM/PBSA analysis showed that this protein has a stable construct and is capable being in interaction with bovine TLR4 and TLR9. Analysis of the data obtained suggests that the proposed vaccine can induce the immune response by stimulating T- and B-cells, and may be used for prevention and remedial purposes, against B. melitensis and B. abortus.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Vacuna contra la Brucelosis , Brucelosis Bovina , Brucelosis , Humanos , Animales , Bovinos , Epítopos , Inmunoinformática , Simulación del Acoplamiento Molecular , Brucelosis Bovina/prevención & control , Receptor Toll-Like 4 , Receptor Toll-Like 9 , Brucelosis/microbiología , Brucelosis/prevención & control
20.
Vet Res ; 54(1): 20, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918910

RESUMEN

Ovine brucellosis is a global zoonotic disease of sheep caused by Brucella melitensis, which inflicts a significant burden on human and animal health. Brucella suis strain S2 (B. suis S2) is a smooth live attenuated vaccine for the prevention of ovine brucellosis in China. However, no previous studies have assessed the immunogenicity of B. suis S2 vaccine after oral immunization in sheep. Here, we attempted to evaluate the ovine immune response over the course of B. suis S2 immunization and to identify in vivo predictors for vaccine development. Body temperature, serum Brucella antibodies, serum cytokines (IL-12p70 and interferon [IFN]-γ), and bacterial load in the mandibular lymph nodes (LN), superficial cervical LN, superficial inguinal LN, and spleen were investigated to determine the safety and efficacy of the vaccine. The abnormal body temperature of sheep occurred within 8 days post-infection (dpi). Brucella suis S2 persisted for a short time (< 21 dpi) in the mandibular LN. The highest level of IL-12p70 was observed at 9 dpi, whereas serum IFN-γ levels peaked at 12 dpi. Transcriptome analysis and quantitative reverse transcription PCR were performed to determine gene expression profiles in the mandibular LN of sheep. Antigen processing and presentation pathway was the dominant pathway related to the dataset. Our studies suggest that the immune response in ovine LN resembled type 1 immunity with the secretion of IL-12p70 and IFN-γ after B.suis S2 immunization and the vaccine may eliminate Brucella via stimulation of M1 macrophages through the course of Th cells.


Asunto(s)
Vacuna contra la Brucelosis , Brucella melitensis , Brucella suis , Brucelosis , Enfermedades de las Ovejas , Animales , Brucelosis/prevención & control , Brucelosis/veterinaria , Ganglios Linfáticos , Activación de Macrófagos , Macrófagos , Ovinos , Enfermedades de las Ovejas/prevención & control , Vacunas Atenuadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...