Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.400
Filtrar
1.
PLoS One ; 19(5): e0303508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768133

RESUMEN

PURPOSE: The resurgence of pertussis has occurred around the world. However, the epidemiological profiles of pertussis cannot be well understood by current diseases surveillance. This study was designed to understand the seroepidemiological characteristics of pertussis infection in the general population of Huzhou City, evaluate the prevalence infection of pertussis in the population, and offer insights to inform adjustments in pertussis prevention and control strategies. METHODS: From September to October 2023, a cross-sectional serosurvey was conducted in Huzhou City, involving 1015 permanent residents. Serum samples were collected from the study subjects, and pertussis toxin IgG antibodies (Anti-PT-IgG) were quantitatively measured using enzyme-linked immunosorbent assay (ELISA). The analysis included the geometric mean concentration (GMC) of Anti-PT-IgG, rates of GMC≥40IU/mL, ≥100IU/mL, and <5IU/mL. Stratified comparisons were made based on age, vaccination history, and human categories. RESULTS: Among the 1015 surveyed individuals, the geometric mean concentration (GMC) of Anti-PT-IgG was 10.52 (95% CI: 9.96-11.11) IU/mL, with a recent infection rate of 1.58%, a serum positivity rate of 11.43%, and a proportion with <5IU/mL of 40.49%. Among 357 children with clear vaccination history, susceptibility decreased with an increasing number of vaccine doses (Z = -6.793, P < 0.001). The concentration of Anti-PT-IgG exhibited a significant post-vaccination decline over time (Z = -5.143, P < 0.001). In women of childbearing age, the GMC of Anti-PT-IgG was 7.71 (95% CI: 6.90-8.62) IU/mL, with no significant difference in susceptibility among different age groups (χ2 = 0.545, P = 0.909). The annual pertussis infection rate in individuals aged ≥3 years was 9321 (95%CI: 3336-16039) per 100,000, with peak infection rates in the 20-29, 40-49, and 5-9 age groups at 34363 (95%CI: 6327-66918) per 100,000, 22307.72 (95%CI: 1380-47442) per 100,000, and 18020(95%CI: 1093-37266) per 100,000, respectively. CONCLUSIONS: In 2023, the actual pertussis infection rate in the population of Huzhou City was relatively high. Vaccine-induced antibodies exhibit a rapid decay, and the estimated serum infection rate increases rapidly from post-school age, peaking in the 20-29 age group. It is recommended to enhance pertussis monitoring in adolescents and adults and refine vaccine immunization strategies.


Asunto(s)
Anticuerpos Antibacterianos , Inmunoglobulina G , Tos Ferina , Humanos , Tos Ferina/epidemiología , Tos Ferina/sangre , Tos Ferina/inmunología , Tos Ferina/prevención & control , Femenino , Estudios Transversales , Adulto , Masculino , China/epidemiología , Estudios Seroepidemiológicos , Niño , Persona de Mediana Edad , Adolescente , Preescolar , Adulto Joven , Lactante , Inmunoglobulina G/sangre , Anticuerpos Antibacterianos/sangre , Anciano , Toxina del Pertussis/inmunología , Prevalencia , Vacuna contra la Tos Ferina/inmunología , Vacunación , Bordetella pertussis/inmunología
2.
Hum Vaccin Immunother ; 20(1): 2341454, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38695296

RESUMEN

Pertussis is a vaccine-preventable infectious disease; however, data on pertussis antibody levels in a nationwide population are still limited in China. We aimed to pool the seropositivity rates of IgG antibodies against pertussis toxin (PT-IgG) across the country. We systematically searched PubMed, Web of Science, Embase, and the China National Knowledge Infrastructure Database for studies published between January 1, 2010, and June 30, 2023. Studies reporting the seroprevalence of PT-IgG among a healthy Chinese population were included. Pooled estimates were obtained using random-effects meta-analyzes. The meta-analysis included 39 studies (47,778 participants) reporting anti-PT IgG seropositivity rates. The pooled rate for all ages was 7.06% (95% CI, 5.50%-9.07%). Subgroup analyzes showed rates ranging from 6.36% to 12.50% across different age groups. This meta-analysis indicated a low anti-PT IgG seropositivity rate in the Chinese population, particularly among school-aged children and young adults. This finding underscores the urgent need to refine immunization strategies.


Asunto(s)
Anticuerpos Antibacterianos , Inmunoglobulina G , Toxina del Pertussis , Tos Ferina , Humanos , Estudios Seroepidemiológicos , Toxina del Pertussis/inmunología , Inmunoglobulina G/sangre , Tos Ferina/epidemiología , Tos Ferina/inmunología , Tos Ferina/prevención & control , China/epidemiología , Anticuerpos Antibacterianos/sangre , Niño , Adulto , Adulto Joven , Adolescente , Preescolar , Persona de Mediana Edad , Vacuna contra la Tos Ferina/inmunología , Vacuna contra la Tos Ferina/administración & dosificación , Pueblos del Este de Asia
3.
Nat Med ; 30(5): 1384-1394, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38740997

RESUMEN

How human genetic variation contributes to vaccine effectiveness in infants is unclear, and data are limited on these relationships in populations with African ancestries. We undertook genetic analyses of vaccine antibody responses in infants from Uganda (n = 1391), Burkina Faso (n = 353) and South Africa (n = 755), identifying associations between human leukocyte antigen (HLA) and antibody response for five of eight tested antigens spanning pertussis, diphtheria and hepatitis B vaccines. In addition, through HLA typing 1,702 individuals from 11 populations of African ancestry derived predominantly from the 1000 Genomes Project, we constructed an imputation resource, fine-mapping class II HLA-DR and DQ associations explaining up to 10% of antibody response variance in our infant cohorts. We observed differences in the genetic architecture of pertussis antibody response between the cohorts with African ancestries and an independent cohort with European ancestry, but found no in silico evidence of differences in HLA peptide binding affinity or breadth. Using immune cell expression quantitative trait loci datasets derived from African-ancestry samples from the 1000 Genomes Project, we found evidence of differential HLA-DRB1 expression correlating with inferred protection from pertussis following vaccination. This work suggests that HLA-DRB1 expression may play a role in vaccine response and should be considered alongside peptide selection to improve vaccine design.


Asunto(s)
Cadenas HLA-DRB1 , Humanos , Cadenas HLA-DRB1/genética , Cadenas HLA-DRB1/inmunología , Lactante , Población Negra/genética , Vacunas contra Hepatitis B/inmunología , Sitios de Carácter Cuantitativo , Masculino , Femenino , Uganda , Formación de Anticuerpos/genética , Formación de Anticuerpos/inmunología , Vacuna contra la Tos Ferina/inmunología , Vacuna contra la Tos Ferina/genética , Vacunación , Tos Ferina/prevención & control , Tos Ferina/inmunología , Tos Ferina/genética
4.
Front Immunol ; 15: 1387534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650936

RESUMEN

For several years, we have been committed to exploring the potential of Bordetella pertussis-derived outer membrane vesicles (OMVBp) as a promising third-generation vaccine against the reemerging pertussis disease. The results of our preclinical trials not only confirm its protective capacity against B. pertussis infection but also set the stage for forthcoming human clinical trials. This study delves into the examination of OMVBp as an adjuvant. To accomplish this objective, we implemented a two-dose murine schedule to evaluate the specific immune response induced by formulations containing OMVBp combined with 3 heterologous immunogens: Tetanus toxoid (T), Diphtheria toxoid (D), and the SARS-CoV-2 Spike protein (S). The specific levels of IgG, IgG1, and IgG2a triggered by the different tested formulations were evaluated using ELISA in dose-response assays for OMVBp and the immunogens at varying levels. These assays demonstrated that OMVBp exhibits adjuvant properties even at the low concentration employed (1.5 µg of protein per dose). As this effect was notably enhanced at medium (3 µg) and high concentrations (6 µg), we chose the medium concentration to determine the minimum immunogen dose at which the OMV adjuvant properties are significantly evident. These assays demonstrated that OMVBp exhibits adjuvant properties even at the lowest concentration tested for each immunogen. In the presence of OMVBp, specific IgG levels detected for the lowest amount of antigen tested increased by 2.5 to 10 fold compared to those found in animals immunized with formulations containing adjuvant-free antigens (p<0.0001). When assessing the adjuvant properties of OMVBp compared to the widely recognized adjuvant alum, we detected similar levels of specific IgG against D, T and S for both adjuvants. Experiments with OMVs derived from E. coli (OMVE.coli) reaffirmed that the adjuvant properties of OMVs extend across different bacterial species. Nonetheless, it's crucial to highlight that OMVBp notably skewed the immune response towards a Th1 profile (p<0.05). These collective findings emphasize the dual role of OMVBp as both an adjuvant and modulator of the immune response, positioning it favorably for incorporation into combined vaccine formulations.


Asunto(s)
Adyuvantes Inmunológicos , Bordetella pertussis , Inmunoglobulina G , Células TH1 , Tos Ferina , Bordetella pertussis/inmunología , Animales , Adyuvantes Inmunológicos/administración & dosificación , Ratones , Células TH1/inmunología , Tos Ferina/inmunología , Tos Ferina/prevención & control , Femenino , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Vacuna contra la Tos Ferina/inmunología , Vacuna contra la Tos Ferina/administración & dosificación , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/sangre , Glicoproteína de la Espiga del Coronavirus/inmunología , Ratones Endogámicos BALB C , SARS-CoV-2/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Humanos , COVID-19/inmunología , COVID-19/prevención & control , Toxoide Tetánico/inmunología
5.
Clin Microbiol Infect ; 30(5): 683.e1-683.e3, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38310999

RESUMEN

OBJECTIVES: In Finland, whole cell pertussis vaccine (wP) was introduced in 1952 and was replaced by acellular pertussis vaccine (aP) without fimbrial (FIM) antigen in 2005. We aimed to analyse the changes in serotypes of circulating Bordetella pertussis before and after acellular vaccination and to explore the relationship between biofilm formation and serotype diversity after the introduction of aP vaccine. METHODS: Serotyping of 1399 B. pertussis isolates collected at the Finnish National Reference Laboratory for Pertussis and Diphtheria in Turku, Finland, from 1974 to 2023 was performed by slide agglutination or indirect ELISA. Of 278 isolates collected after 2005, 53 were selected, genotyped for fim3 and fim2 alleles, and tested for biofilm formation. The selection criteria included maintaining a relatively equal distribution of isolates per time interval, ensuring approximately a 50:50 ratio of FIM2 (N = 26) and FIM3 (N = 27) serotypes. The reference strain Tohama I was used as a control. RESULTS: During the wP era, the majority of circulating B. pertussis exhibited the FIM2 serotype. However, FIM3 strains have appeared since 1999 and become prevalent. After the implementation of aP vaccines, the distribution of serotypes has exhibited substantial variability. FIM3 isolates displayed an enhanced biofilm formation compared to FIM2 isolates (Geometric mean value (95% CI): 0.90 (0.79-1.03) vs. 0.75 (0.65-0.85); p < 0.05). Of the 27 FIM3 isolates, 8 harboured fim3-1 and 19 fim3-2 alleles. FIM3 isolates with fim3-2 allele were significantly associated with increased biofilm formation when compared to those with fim3-1 (1.07 (0.96-1.19) vs. 0.61 (0.52-0.72); p < 0.0001). CONCLUSION: Following the implementation of aP vaccines, the distribution of serotypes in Finland has exhibited substantial variability. FIM3 isolates with the fim3-2 allele displayed an enhanced biofilm formation capability compared to FIM2 isolates.


Asunto(s)
Antígenos Bacterianos , Biopelículas , Bordetella pertussis , Serogrupo , Factores de Virulencia de Bordetella , Tos Ferina , Biopelículas/crecimiento & desarrollo , Finlandia/epidemiología , Bordetella pertussis/genética , Bordetella pertussis/clasificación , Bordetella pertussis/inmunología , Bordetella pertussis/aislamiento & purificación , Humanos , Tos Ferina/microbiología , Tos Ferina/epidemiología , Tos Ferina/prevención & control , Vacuna contra la Tos Ferina/inmunología , Vacuna contra la Tos Ferina/administración & dosificación , Vacunas Acelulares/inmunología , Proteínas Fimbrias/genética , Proteínas Fimbrias/inmunología , Serotipificación , Genotipo , Preescolar , Niño , Lactante , Vacunación
6.
J Mol Biol ; 435(24): 168344, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37926426

RESUMEN

Neither immunization nor recovery from natural infection provides life-long protection against Bordetella pertussis. Replacement of a whole-cell pertussis (wP) vaccine with an acellular pertussis (aP) vaccine, mutations in B. pertussis strains, and better diagnostic techniques, contribute to resurgence of number of cases especially in young infants. Development of new immunization strategies relies on a comprehensive understanding of immune system responses to infection and immunization and how triggering these immune components would ensure protective immunity. In this review, we assess how B cells, and their secretory products, antibodies, respond to B. pertussis infection, current and novel vaccines and highlight similarities and differences in these responses. We first focus on antibody-mediated immunity. We discuss antibody (sub)classes, elaborate on antibody avidity, ability to neutralize pertussis toxin, and summarize different effector functions, i.e. ability to activate complement, promote phagocytosis and activate NK cells. We then discuss challenges and opportunities in studying B-cell immunity. We highlight shared and unique aspects of B-cell and plasma cell responses to infection and immunization, and discuss how responses to novel immunization strategies better resemble those triggered by a natural infection (i.e., by triggering responses in mucosa and production of IgA). With this comprehensive review, we aim to shed some new light on the role of B cells and antibodies in the pertussis immunity to guide new vaccine development.


Asunto(s)
Anticuerpos Antibacterianos , Bordetella pertussis , Vacuna contra la Tos Ferina , Tos Ferina , Humanos , Lactante , Anticuerpos Antibacterianos/inmunología , Bordetella pertussis/inmunología , Inmunidad , Inmunización , Vacuna contra la Tos Ferina/inmunología , Tos Ferina/inmunología , Desarrollo de Vacunas
7.
Front Immunol ; 13: 864674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677044

RESUMEN

Background: Immunogenicity of acellular pertussis (aP) vaccines is conventionally assessed by measuring antibody responses but antibody concentrations wane quickly after vaccination. Memory B cells, however, are critical in sustaining long-term protection and therefore may be an important factor when assessing pertussis immunity after vaccination. Aim: We studied pertussis specific memory B cell (re)activation induced by an aP booster vaccination in four different age groups within three countries. Materials and methods: From a phase IV longitudinal interventional study, 268 participants across Finland, the Netherlands and the United Kingdom were included and received a 3-component pertussis booster vaccine: children (7-10y, n=53), adolescents (11-15y, n=66), young adults (20-34y, n=74), and older adults (60-70y, n=75). Memory B cells at baseline, day 28, and 1 year post-vaccination were measured by a pertussis toxin (Ptx), filamentous haemagglutinin (FHA), and pertactin (Prn) specific ELISpot assay. Antibody results measured previously were available for comparison. Furthermore, study participants were distributed into groups based on their baseline memory B cell frequencies, vaccine responses were monitored between these groups. Results: Geometric mean (GM) memory B cell frequencies for pertussis antigens at baseline were low. At 28 days post-vaccination, these frequencies increased within each age group and were still elevated one year post-booster compared to baseline. Highest frequencies at day 28 were found within adolescents (GM: 5, 21, and 13, for Ptx, FHA and Prn, respectively) and lowest within older adults (GM: 2, 9, and 3, respectively). Moderate to strong correlations between memory B cell frequencies at day 28 and antibody concentrations at day 28 and 1 year were observed for Prn. Memory B cell frequencies > 1 per 100,000 PBMCs at baseline were associated with significantly higher memory responses after 28 days and 1 year. Conclusions: An aP booster vaccine (re)activated memory B cells in all age groups. Still elevated memory B cell frequencies after one year indicates enhanced immunological memory. However, antigen specific memory B cell activation seems weaker in older adults, which might reflect immunosenescence. Furthermore, the presence of circulating memory B cells at baseline positively affects memory B cell responses. This study was registered at www.clinicaltrialsregister.eu: No. 2016-003678-42.


Asunto(s)
Células B de Memoria , Vacuna contra la Tos Ferina , Adolescente , Adulto , Anciano , Niño , Humanos , Células B de Memoria/fisiología , Persona de Mediana Edad , Toxina del Pertussis , Vacuna contra la Tos Ferina/inmunología , Vacunación , Tos Ferina/prevención & control , Adulto Joven
8.
Mol Pharm ; 19(6): 1814-1824, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35302764

RESUMEN

Continuous outbreaks of pertussis around the world suggest inadequate immune protection in infants and weakened immune responses induced over time by the acellular pertussis vaccine. Vaccine adjuvants provide a means to improve vaccine immunogenicity and support long-term adaptive immunity against pertussis. An acellular pertussis vaccine was prepared with pertactin, pertussis toxin, and fimbriae 2/3 antigens combined with a triple-adjuvant system consisting of innate defense regulator peptide IDR 1002, a Toll-like receptor-3 agonist poly(I:C), and a polyphosphazene in a fixed combination. The vaccine was delivered intranasally in a cationic lipid nanoparticle formulation fabricated by simple admixture and two schema for addition of antigens (LT-A, antigens associated outside of L-TriAdj, and LAT, antigens associated inside of L-TriAdj) to optimize particle size and cationic surface charge. In the former, antigens were associated with the lipidic formulation of the triple adjuvant by electrostatic attraction. In the latter, the antigens resided in the interior of the lipid nanoparticle. Two dose levels of antigens were used with adjuvant comprised of the triple adjuvant with or without the lipid nanoparticle carrier. Formulation of vaccines with the triple adjuvant stimulated systemic and mucosal immune responses. The lipid nanoparticle vaccines favored a Th1 type of response with higher IgG2a and IgA serum antibody titers particularly for pertussis toxin and pertactin formulated at the 5 µg dose level in the admixed formulation. Additionally, the lipid nanoparticle vaccines resulted in high nasal SIgA antibodies and an early (4 weeks post vaccination) response after a single vaccination dose. The LT-A nanoparticles trended toward higher titers of serum antibodies compared to LAT. The cationic lipid-based vaccine nanoparticles formulated with a triple adjuvant showed encouraging results as a potential formulation for intranasally administered pertussis vaccines.


Asunto(s)
Adyuvantes Inmunológicos , Liposomas , Nanopartículas , Vacuna contra la Tos Ferina , Tos Ferina , Animales , Anticuerpos Antibacterianos , Bordetella pertussis , Cationes , Humanos , Liposomas/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Toxina del Pertussis/administración & dosificación , Toxina del Pertussis/inmunología , Vacuna contra la Tos Ferina/administración & dosificación , Vacuna contra la Tos Ferina/química , Vacuna contra la Tos Ferina/inmunología , Vacunación , Tos Ferina/prevención & control
9.
Front Immunol ; 13: 838504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211125

RESUMEN

Over two decades ago acellular pertussis vaccines (aP) replaced whole cell pertussis vaccines (wP) in several countries. Since then, a resurgence in pertussis has been observed, which is hypothesized to be linked, in part, to waning immunity. To better understand why waning immunity occurs, we developed a long-term outbred CD1 mouse model to conduct the longest murine pertussis vaccine studies to date, spanning out to 532 days post primary immunization. Vaccine-induced memory results from follicular responses and germinal center formation; therefore, cell populations and cytokines involved with memory were measured alongside protection from challenge. Both aP and wP immunization elicit protection from intranasal challenge by decreasing bacterial burden in both the upper and lower airways, and by generation of pertussis specific antibody responses in mice. Responses to wP vaccination were characterized by a significant increase in T follicular helper cells in the draining lymph nodes and CXCL13 levels in sera compared to aP mice. In addition, a population of B. pertussis+ memory B cells was found to be unique to wP vaccinated mice. This population peaked post-boost, and was measurable out to day 365 post-vaccination. Anti-B. pertussis and anti-pertussis toxoid antibody secreting cells increased one day after boost and remained high at day 532. The data suggest that follicular responses, and in particular CXCL13 levels in sera, could be monitored in pre-clinical and clinical studies for the development of the next-generation pertussis vaccines.


Asunto(s)
Bordetella pertussis/inmunología , Vacuna contra la Tos Ferina/inmunología , Células T Auxiliares Foliculares/inmunología , Tos Ferina/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Quimiocina CXCL13/sangre , Inmunización Secundaria , Memoria Inmunológica , Ratones , Factores de Tiempo , Vacunación , Tos Ferina/prevención & control
10.
J Biol Chem ; 298(3): 101715, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35151691

RESUMEN

Infection by the bacterium Bordetella pertussis continues to cause considerable morbidity and mortality worldwide. Many current acellular pertussis vaccines include the antigen pertactin, which has presumptive adhesive and immunomodulatory activities, but is rapidly lost from clinical isolates after the introduction of these vaccines. To better understand the contributions of pertactin antibodies to protection and pertactin's role in pathogenesis, we isolated and characterized recombinant antibodies binding four distinct epitopes on pertactin. We demonstrate that four of these antibodies bind epitopes that are conserved across all three classical Bordetella strains, and competition assays further showed that antibodies binding these epitopes are also elicited by B. pertussis infection of baboons. Surprisingly, we found that representative antibodies binding each epitope protected mice against experimental B. pertussis infection. A cocktail of antibodies from each epitope group protected mice against a subsequent lethal dose of B. pertussis and greatly reduced lung colonization levels after sublethal challenge. Each antibody reduced B. pertussis lung colonization levels up to 100-fold when administered individually, which was significantly reduced when antibody effector functions were impaired, with no antibody mediating antibody-dependent complement-induced lysis. These data suggest that antibodies binding multiple pertactin epitopes protect primarily by the same bactericidal mechanism, which overshadows contributions from blockade of other pertactin functions. These antibodies expand the available tools to further dissect pertactin's role in infection and understand the impact of antipertactin antibodies on bacterial fitness.


Asunto(s)
Anticuerpos , Proteínas de la Membrana Bacteriana Externa , Bordetella pertussis , Factores de Virulencia de Bordetella , Tos Ferina , Animales , Anticuerpos/inmunología , Anticuerpos Antibacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Epítopos , Ratones , Vacuna contra la Tos Ferina/inmunología , Factores de Virulencia de Bordetella/química , Factores de Virulencia de Bordetella/inmunología , Factores de Virulencia de Bordetella/metabolismo , Tos Ferina/prevención & control
11.
Pediatr Infect Dis J ; 41(3): 180-185, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34711785

RESUMEN

BACKGROUND: Population-level studies of severe pertussis extending beyond infancy are sparse, and none in the context of antenatal vaccination. We compared hospitalized pertussis cases from birth to 15 years of age before and after introduction of antenatal immunization. METHODS: Active surveillance of laboratory-confirmed pertussis hospitalizations in a national network of pediatric hospitals in Australia January 2012 to June 2019. Impact of maternal vaccination was assessed by vaccine effectiveness (VE) in cases and test-negative controls with <2 months of age and by before-after comparison of age distribution of cases. Among cases eligible for one or more vaccine doses, we examined proportions age-appropriately immunized and with comorbidities by age group. RESULTS: Among 419 eligible cases, the proportion <2 months of age significantly decreased from 33.1% in 2012 to 2014 compared with 19.6% in 2016 to 2019 when mothers of only 4 of 17 (23.5%) cases <2 months of age had received antenatal vaccination. VE was estimated to be 84.3% (95% CI, 26.1-96.7). Across all years (2012-2019), of 55 cases 4-11 months of age, 21 (38%) had ≥2 vaccine doses, whereas among 155 cases ≥12 months of age, 122 (85.2%) had ≥3 vaccine doses. Prevalence of comorbidities (primarily cardiorespiratory) increased from 5 (2.1%) <6 months of age to 36 (24.2%) ≥12 months of age (P < 0.001), with 6/16 (38%) cases ≥12 months of age who required intensive care having comorbidities. CONCLUSIONS: Below the age of 12 months, prevention of severe pertussis will be maximized by high maternal antenatal vaccine uptake and timeliness of infant vaccine doses. Despite full immunization, we found children ≥12 months of age accounted for 27% of hospitalizations <15 years, with 24% having comorbities, suggesting new vaccine strategies, such as additional doses or more immunogenic vaccines, require evaluation.


Asunto(s)
Vacuna contra la Tos Ferina/inmunología , Eficacia de las Vacunas , Tos Ferina/prevención & control , Adolescente , Australia , Niño , Preescolar , Femenino , Hospitalización , Humanos , Inmunización , Lactante , Recién Nacido , Masculino , Vacuna contra la Tos Ferina/administración & dosificación , Embarazo , Factores de Riesgo , Factores de Tiempo , Vacunación
12.
Iran Biomed J ; 25(6): 399-407, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34719226

RESUMEN

Background: Pertussis is a current contagious bacterial disease caused by Bordetella pertussis (Bp). Given the prevalence of pertussis, development of new vaccines is important. This study was attempted to evaluate the expression of main virulence factors (pertussis toxin [PTX], PRN [pertactin], and filamentous hemagglutinin [FHA]) from Bp predominant strains and also compare the expression of these factors in the outer membrane vesicles (OMVs) obtained from predominant circulating Bp isolate. Methods: The physicochemical features of the prepared OMVs were analyzed by electron microscopy and SDS-PAGE. The presence of the mentioned virulence factors was confirmed by Western blotting. BALB/c mice (n = 21) immunized with characterized OMVs were challenged intranasally with sublethal doses of Bp, to examine their protective capacity. Results: Electron microscopic examination of the OMVs indicated vesicles within the range of 40 to 200 nm. SDS-PAGE and Western blotting demonstrated the expression of all three main protective immunogens (PTX, PRN, and FHA), prevalent in the predominant, challenge, and vaccine strains, and OMVs of the predominant IR37 strain and BP134 vaccine strain. Significant differences were observed in lung bacterial counts between the immunized mice with OMV (30 CFU/lung) compared to the negative control group ((6 104 CFU/lung; p < 0.001). In mice immunized with OMVs (3 µg), the number of lungs recovered colonies after five days dropped at least five orders of magnitude compared to the control group. Conclusion: OMVs obtained from circulating isolates with the predominant profile may constitute a highly promising vaccine quality. They also can be proposed as a potential basic material for the development of new pertussis vaccine candidate.


Asunto(s)
Bordetella pertussis/inmunología , Vacuna contra la Tos Ferina/inmunología , Tos Ferina/prevención & control , Animales , Femenino , Ratones , Ratones Endogámicos BALB C
13.
Front Immunol ; 12: 730434, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603306

RESUMEN

Outer membrane vesicles (OMV) derived from Bordetella pertussis-the etiologic agent of the resurgent disease called pertussis-are safe and effective in preventing bacterial colonization in the lungs of immunized mice. Vaccine formulations containing those OMV are capable of inducing a mixed Th1/Th2/Th17 profile, but even more interestingly, they may induce a tissue-resident memory immune response. This immune response is recommended for the new generation of pertussis-vaccines that must be developed to overcome the weaknesses of current commercial acellular vaccines (second-generation of pertussis vaccine). The third-generation of pertussis vaccine should also deal with infections caused by bacteria that currently circulate in the population and are phenotypically and genotypically different [in particular those deficient in the expression of pertactin antigen, PRN(-)] from those that circulated in the past. Here we evaluated the protective capacity of OMV derived from bacteria grown in biofilm, since it was observed that, by difference with older culture collection vaccine strains, circulating clinical B. pertussis isolates possess higher capacity for this lifestyle. Therefore, we performed studies with a clinical isolate with good biofilm-forming capacity. Biofilm lifestyle was confirmed by both scanning electron microscopy and proteomics. While scanning electron microscopy revealed typical biofilm structures in these cultures, BipA, fimbria, and other adhesins described as typical of the biofilm lifestyle were overexpressed in the biofilm culture in comparison with planktonic culture. OMV derived from biofilm (OMVbiof) or planktonic lifestyle (OMVplank) were used to formulate vaccines to compare their immunogenicity and protective capacities against infection with PRN(+) or PRN(-) B. pertussis clinical isolates. Using the mouse protection model, we detected that OMVbiof-vaccine was more immunogenic than OMVplank-vaccine in terms of both specific antibody titers and quality, since OMVbiof-vaccine induced antibodies with higher avidity. Moreover, when OMV were administered at suboptimal quantity for protection, OMVbiof-vaccine exhibited a significantly adequate and higher protective capacity against PRN(+) or PRN(-) than OMVplank-vaccine. Our findings indicate that the vaccine based on B. pertussis biofilm-derived OMV induces high protection also against pertactin-deficient strains, with a robust immune response.


Asunto(s)
Membrana Externa Bacteriana/metabolismo , Biopelículas , Bordetella pertussis/metabolismo , Vesículas Extracelulares/metabolismo , Vacuna contra la Tos Ferina/administración & dosificación , Tos Ferina/prevención & control , Animales , Membrana Externa Bacteriana/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Biopelículas/crecimiento & desarrollo , Bordetella pertussis/genética , Bordetella pertussis/crecimiento & desarrollo , Bordetella pertussis/inmunología , Modelos Animales de Enfermedad , Vesículas Extracelulares/inmunología , Femenino , Inmunización , Inmunogenicidad Vacunal , Ratones Endogámicos BALB C , Vacuna contra la Tos Ferina/inmunología , Vacuna contra la Tos Ferina/metabolismo , Desarrollo de Vacunas , Factores de Virulencia de Bordetella/genética , Factores de Virulencia de Bordetella/metabolismo , Tos Ferina/inmunología , Tos Ferina/metabolismo , Tos Ferina/microbiología
14.
Front Immunol ; 12: 749264, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691063

RESUMEN

Background: COVID-19 is characterized by strikingly large, mostly unexplained, interindividual variation in symptom severity: while some individuals remain nearly asymptomatic, others suffer from severe respiratory failure. Previous vaccinations for other pathogens, in particular tetanus, may partly explain this variation, possibly by readying the immune system. Methods: We made use of data on COVID-19 testing from 103,049 participants of the UK Biobank (mean age 71.5 years, 54.2% female), coupled to immunization records of the last ten years. Using logistic regression, covarying for age, sex, respiratory disease diagnosis, and socioeconomic status, we tested whether individuals vaccinated for tetanus, diphtheria or pertussis, differed from individuals that had only received other vaccinations on 1) undergoing a COVID-19 test, 2) being diagnosed with COVID-19, and 3) whether they developed severe COVID-19 symptoms. Results: We found that individuals with registered diphtheria or tetanus vaccinations are less likely to develop severe COVID-19 than people who had only received other vaccinations (diphtheria odds ratio (OR)=0.47, p-value=5.3*10-5; tetanus OR=0.52, p-value=1.2*10-4). Discussion: These results indicate that a history of diphtheria or tetanus vaccinations is associated with less severe manifestations of COVID-19. These vaccinations may protect against severe COVID-19 symptoms by stimulating the immune system. We note the correlational nature of these results, yet the possibility that these vaccinations may influence the severity of COVID-19 warrants follow-up investigations.


Asunto(s)
COVID-19/inmunología , Vacuna contra la Tos Ferina/inmunología , SARS-CoV-2/inmunología , Toxoide Tetánico/inmunología , Vacunación , Anciano , COVID-19/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
15.
J Med Microbiol ; 70(10)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34668853

RESUMEN

Whooping cough (pertussis) is a highly contagious respiratory bacterial infection caused by Bordetella pertussis and is an important cause of morbidity and mortality worldwide, particularly in infants. Bordetella parapertussis can cause a similar, but usually less severe pertussis-like disease. Bordetella pertussis has a number of virulence factors including adhesins and toxins which allow the organism to bind to ciliated epithelial cells in the upper respiratory tract and interfere with host clearance mechanisms. Typical symptoms of pertussis include paroxysmal cough with characteristic whoop and vomiting. Severe complications and deaths occur mostly in infants. Laboratory confirmation can be performed by isolation, detection of genomic DNA or specific antibodies. Childhood vaccination is safe, effective and remains the best control method available. Many countries have replaced whole-cell pertussis vaccines (wP) with acellular pertussis vaccines (aP). Waning protection following immunisation with aP is considered to be more rapid than that from wP. Deployed by resource-rich countries to date, maternal immunisation programmes have also demonstrated high efficacy in preventing hospitalisation and death in infants by passive immunisation through transplacental transfer of maternal antibodies.


Asunto(s)
Bordetella parapertussis/inmunología , Bordetella pertussis/inmunología , Vacuna contra la Tos Ferina/inmunología , Factores de Virulencia/inmunología , Tos Ferina/prevención & control , Humanos , Lactante
16.
J Infect Dis ; 224(12 Suppl 2): S310-S320, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34590129

RESUMEN

Pertussis (whooping cough) is a respiratory infection caused by Bordetella pertussis. All ages are susceptible. In the prevaccine era, almost all children became infected. Pertussis is particularly dangerous in young infants, who account for practically all hospitalizations and deaths, but clinical disease is burdensome at any age. Widespread use of pertussis vaccines dramatically reduced cases, but concern over adverse reactions led to the replacement of standard whole-cell by acellular pertussis vaccines that contain only a few selected pertussis antigens and are far less reactogenic. Routine administration of acellular pertussis vaccines combined with diphtheria and tetanus toxoids is recommended in infancy with toddler and preschool boosters, at age 11, and during pregnancy. Boosting in the second half of every pregancy is critical to protection of the newborn. Waning of vaccine immunity over time has become an increasing concern, and several new pertussis vaccines are being evaluated to address this problem.


Asunto(s)
Inmunización Secundaria , Vacuna contra la Tos Ferina/administración & dosificación , Tos Ferina/prevención & control , Bordetella pertussis/inmunología , Niño , Preescolar , Vacuna contra Difteria, Tétanos y Tos Ferina , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular , Femenino , Humanos , Lactante , Masculino , Vacuna contra la Tos Ferina/inmunología , Enfermedades Prevenibles por Vacunación , Tos Ferina/epidemiología
17.
Toxins (Basel) ; 13(9)2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-34564627

RESUMEN

Besides the typical whooping cough syndrome, infection with Bordetella pertussis or immunization with whole-cell vaccines can result in a wide variety of physiological manifestations, including leukocytosis, hyper-insulinemia, and histamine sensitization, as well as protection against disease. Initially believed to be associated with different molecular entities, decades of research have provided the demonstration that these activities are all due to a single molecule today referred to as pertussis toxin. The three-dimensional structure and molecular mechanisms of pertussis toxin action, as well as its role in protective immunity have been uncovered in the last 50 years. In this article, we review the history of pertussis toxin, including the paradigm shift that occurred in the 1980s which established the pertussis toxin as a single molecule. We describe the role molecular biology played in the understanding of pertussis toxin action, its role as a molecular tool in cell biology and as a protective antigen in acellular pertussis vaccines and possibly new-generation vaccines, as well as potential therapeutical applications.


Asunto(s)
Toxina del Pertussis/historia , Vacuna contra la Tos Ferina/historia , Antígenos/inmunología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Inmunización , Toxina del Pertussis/inmunología , Vacuna contra la Tos Ferina/inmunología
18.
Toxins (Basel) ; 13(9)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34564636

RESUMEN

Whooping cough is a severe, highly contagious disease of the human respiratory tract, caused by Bordetellapertussis. The pathogenicity requires several virulence factors, including pertussis toxin (PTX), a key component of current available vaccines. Current vaccines do not induce mucosal immunity. Tissue-resident memory T cells (Trm) are among the first lines of defense against invading pathogens and are involved in long-term protection. However, the factors involved in Trm establishment remain unknown. Comparing two B.pertussis strains expressing PTX (WT) or not (ΔPTX), we show that the toxin is required to generate both lung CD4+ and CD8+ Trm. Co-administering purified PTX with ΔPTX is sufficient to generate these Trm subsets. Importantly, adoptive transfer of lung CD4+ or CD8+ Trm conferred protection against B. pertussis in naïve mice. Taken together, our data demonstrate for the first time a critical role for PTX in the induction of mucosal long-term protection against B. pertussis.


Asunto(s)
Bordetella pertussis/inmunología , Inmunidad Mucosa , Pulmón/inmunología , Células T de Memoria/inmunología , Toxina del Pertussis/inmunología , Vacuna contra la Tos Ferina/inmunología , Tos Ferina/prevención & control , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Tos Ferina/inmunología
19.
Pediatrics ; 148(3)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34446538

RESUMEN

BACKGROUND AND OBJECTIVES: Infant influenza and pertussis disease causes considerable morbidity and mortality worldwide. We examined the effectiveness of maternal influenza and pertussis vaccines in preventing these diseases in infants. METHODS: This inception cohort study comprised women whose pregnancies ended between September 1, 2015, and December 31, 2017, in Victoria, Australia. Maternal vaccination status was sourced from the Victorian Perinatal Data Collection and linked to 5 data sets to ascertain infant outcomes and vaccination. The primary outcome of interest was laboratory-confirmed influenza or pertussis disease in infants aged <2 months, 2 to <6 months, and <6 months combined. Secondary outcomes included infant hospitalization (emergency presentation or admission) and death. Risk ratios and 95% confidence intervals (CIs) were estimated by Poisson regression. Vaccine effectiveness (VE) was estimated as (1 minus the risk ratio) x 100%. RESULTS: Among 186 962 pregnant women, 85 830 (45.9%) and 128 060 (68.5%) were vaccinated against influenza and pertussis, respectively. There were 175 and 51 infants with laboratory-confirmed influenza and pertussis disease, respectively. Influenza VE was 56.1% (95% CI, 23.3% to 74.9%) for infants aged <2 months and 35.7% (2.2% to 57.7%) for infants aged 2 to <6 months. Pertussis VE was 80.1% (95% CI, 37.1% to 93.7%) for infants aged <2 months and 31.8% (95% CI, -39.1% to 66.6%) for infants aged 2 to <6 months. CONCLUSIONS: Our study provides evidence of the direct effectiveness of maternal influenza and pertussis vaccination in preventing these diseases in infants aged <2 months. The findings strengthen the importance of maternal vaccination to prevent these diseases in infants.


Asunto(s)
Gripe Humana/prevención & control , Vacuna contra la Tos Ferina/inmunología , Adulto , Estudios de Cohortes , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular , Femenino , Humanos , Lactante , Recién Nacido , Vacunas contra la Influenza , Parto , Embarazo , Complicaciones Infecciosas del Embarazo/prevención & control , Mujeres Embarazadas , Vacunación/estadística & datos numéricos , Victoria , Tos Ferina/prevención & control
20.
Med Microbiol Immunol ; 210(5-6): 251-262, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34338880

RESUMEN

The aim of this study was to compare the elimination of Bordetella pertussis clinical isolates, representing different genotypes in relation to alleles encoding virulence factors (MLST-multi-locus antigen sequence typing), MLVA type (multi-locus variable-number tandem repeat analysis) and PFGE group (pulsed-field gel electrophoresis) from the lungs of naive mice or mice were immunised with the commercial whole-cell pertussis vaccine, the acellular pertussis vaccine and the experimental whole-cell pertussis vaccine. Molecular data indicate that the resurgence of pertussis in populations with high vaccine coverage is associated with genomic adaptation of B. pertussis, to vaccine selection pressure. Pertactin-negative B. pertussis isolates were suspected to contribute to the reduced vaccine effectiveness. It was shown that one of the isolates used is PRN deficient. The mice were intranasally challenged with bacterial suspension containing approximately 5 × 10 7 CFU/ml B. pertussis. The immunogenicity of the tested vaccines against PT (pertussis toxin), PRN (pertactin), FHA (filamentous haemagglutinin) and FIM (fimbriae types 2 and 3) was examined. The commercial whole-cell and acellular pertussis vaccines induced an immunity effective at eliminating the genetically different B. pertussis isolates from the lungs. However, the elimination of the PRN-deficient isolate from the lungs of mice vaccinated with commercial vaccines was delayed as compared to the PRN ( +) isolate, suggesting phenotypic differences with the circulating isolates and vaccine strains. The most effective vaccine was the experimental vaccine with the composition identical to that of the strains used for infection.


Asunto(s)
Bordetella pertussis/inmunología , Vacuna contra la Tos Ferina/inmunología , Eficacia de las Vacunas , Tos Ferina/microbiología , Tos Ferina/prevención & control , Animales , Anticuerpos Antibacterianos/sangre , Carga Bacteriana , Bordetella pertussis/genética , Bordetella pertussis/crecimiento & desarrollo , Bordetella pertussis/aislamiento & purificación , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/inmunología , Femenino , Perfil Genético , Inmunogenicidad Vacunal , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Tipificación de Secuencias Multilocus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...