Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.734
Filtrar
1.
Genome Med ; 16(1): 67, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711148

RESUMEN

BACKGROUND: Infections caused by multidrug-resistant gram-negative bacteria present a severe threat to global public health. The WHO defines drug-resistant Klebsiella pneumoniae as a priority pathogen for which alternative treatments are needed given the limited treatment options and the rapid acquisition of novel resistance mechanisms by this species. Longitudinal descriptions of genomic epidemiology of Klebsiella pneumoniae can inform management strategies but data from sub-Saharan Africa are lacking. METHODS: We present a longitudinal analysis of all invasive K. pneumoniae isolates from a single hospital in Blantyre, Malawi, southern Africa, from 1998 to 2020, combining clinical data with genome sequence analysis of the isolates. RESULTS: We show that after a dramatic increase in the number of infections from 2016 K. pneumoniae becomes hyperendemic, driven by an increase in neonatal infections. Genomic data show repeated waves of clonal expansion of different, often ward-restricted, lineages, suggestive of hospital-associated transmission. We describe temporal trends in resistance and surface antigens, of relevance for vaccine development. CONCLUSIONS: Our data highlight a clear need for new interventions to prevent rather than treat K. pneumoniae infections in our setting. Whilst one option may be a vaccine, the majority of cases could be avoided by an increased focus on and investment in infection prevention and control measures, which would reduce all healthcare-associated infections and not just one.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Humanos , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Estudios Longitudinales , Vacunas Bacterianas/inmunología , Adulto , Femenino , Hospitales , Niño , Masculino , Preescolar , Lactante , Persona de Mediana Edad , África del Sur del Sahara/epidemiología , Infección Hospitalaria/microbiología , Adolescente , Genoma Bacteriano , Farmacorresistencia Bacteriana Múltiple/genética , Recién Nacido , Malaui/epidemiología , Adulto Joven
2.
PLoS One ; 19(5): e0294998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38713688

RESUMEN

Tularemia is a zoonotic disease caused by the facultative intracellular gram-negative bacterium Francisella tularensis. F. tularensis has a very low infection dose by the aerosol route which can result in an acute, and potentially lethal, infection in humans. Consequently, it is classified as a Category A bioterrorism agent by the US Centers for Disease Control (CDC) and is a pathogen of concern for the International Biodefence community. There are currently no licenced tularemia vaccines. In this study we report on the continued assessment of a tularemia subunit vaccine utilising ß-glucan particles (GPs) as a vaccine delivery platform for immunogenic F. tularensis antigens. Using a Fischer 344 rat infection model, we demonstrate that a GP based vaccine comprising the F. tularensis lipopolysaccharide antigen together with the protein antigen FTT0814 provided partial protection of F344 rats against an aerosol challenge with a high virulence strain of F. tularensis, SCHU S4. Inclusion of imiquimod as an adjuvant failed to enhance protective efficacy. Moreover, the level of protection afforded was dependant on the challenge dose. Immunological characterisation of this vaccine demonstrated that it induced strong antibody immunoglobulin responses to both polysaccharide and protein antigens. Furthermore, we demonstrate that the FTT0814 component of the GP vaccine primed CD4+ and CD8+ T-cells from immunised F344 rats to express interferon-γ, and CD4+ cells to express interleukin-17, in an antigen specific manner. These data demonstrate the development potential of this tularemia subunit vaccine and builds on a body of work highlighting GPs as a promising vaccine platform for difficult to treat pathogens including those of concern to the bio-defence community.


Asunto(s)
Vacunas Bacterianas , Modelos Animales de Enfermedad , Francisella tularensis , Ratas Endogámicas F344 , Tularemia , Vacunas de Subunidad , Animales , Tularemia/prevención & control , Tularemia/inmunología , Ratas , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Francisella tularensis/inmunología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Glucanos/inmunología , Glucanos/farmacología , Linfocitos T/inmunología , Femenino , Antígenos Bacterianos/inmunología
3.
BMC Immunol ; 25(1): 27, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38706005

RESUMEN

BACKGROUND: Due to antibiotic resistance, the Klebsiella genus is linked to morbidity and death, necessitating the development of a universally protective vaccine against Klebsiella pathogens. METHODS: Core sequence analysis prioritized non-redundant host molecules and expected lipid bilayer peptides from fully sequenced Klebsiella genomes. These proteins were refined to identify epitopes, examining their immunogenicity, toxicity, solubility, and interaction with MHC alleles. Epitopes were linked to CPG ODN C274 via EAAAK, HEYGAEALERAG, and GGGS linkers to enhance immunological responses. The vaccine's tertiary structure was modelled and docked with MHC-I and MHC-II. RESULTS: Fifty-five proteins were recognized in the Vaxign collection as having remarkable features. Twenty-three proteins with potential pathogenicity were then identified. Eight options for vaccines emerged after the immunogenicity of proteins was examined. The best antigens were three proteins: MrkD, Iron-regulated lipid membrane polypeptides, and RmpA. These compounds were selected for their sensitivity. The structural protein sequences of K. pneumoniae were utilized to identify seven CTL epitopes, seven HTL epitopes, and seven LBL epitopes, respectively. The produced immunization displayed a stable contact with the receptors, based on molecular dynamic simulations lasting 250 nanoseconds. Intermolecular binding free energies also indicated the dominance of the van der Waals and electrostatic energies. CONCLUSION: In summary, the results of this study might help scientists develop a novel vaccine to prevent K. pneumoniae infections.


Asunto(s)
Vacunas Bacterianas , Infecciones por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/prevención & control , Animales , Epítopos de Linfocito T/inmunología , Ratones , Humanos , Simulación de Dinámica Molecular , Antígenos Bacterianos/inmunología , Oligodesoxirribonucleótidos/inmunología , Epítopos/inmunología , Simulación del Acoplamiento Molecular
4.
Vet Microbiol ; 293: 110093, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692193

RESUMEN

Mycoplasma gallisepticum causes chronic respiratory disease in poultry. A novel vaccine, Vaxsafe MG304 (the ts-304 strain), has greater protective efficacy in chickens than the Vaxsafe MG (strain ts-11) vaccine when delivered by eye drop at 3 weeks of age. Applying this vaccine in the hatchery to 1-day-old birds, using mass administration methods, would improve animal welfare and reduce labour costs associated with handling individual birds. This study assessed the protection provided by vaccination with Vaxsafe MG304 after administration to 1-day-old chicks. Chicks were administered a single dose of the vaccine to assess the efficacy of either a high dose (107.0 colour changing units, CCU) or a low dose (105.7 CCU) after eye drop or spray (in water or gel) administration against experimental challenge with virulent M. gallisepticum strain Ap3AS at 7 weeks of age. The vaccine was able to colonise the palatine cleft of chicks after vaccination by eye drop (at both doses) or by spray (in water or gel) (at the high dose). The high dose of vaccine, when delivered by eye drop or spray, was shown to be safe and induced a serological response and protective immunity (as measured by tracheal mucosal thickness and air sac lesion scores) against challenge. Vaccination of 1-day-old chicks with Vaxsafe MG304 by eye drop induced protective immunity equivalent to vaccination at 3 weeks of age. Vaxsafe MG304 was also protective when applied by both coarse- and gel spray methods at the higher dose and is therefore a suitable live attenuated vaccine for use in 1-day-old chicks.


Asunto(s)
Anticuerpos Antibacterianos , Vacunas Bacterianas , Pollos , Infecciones por Mycoplasma , Mycoplasma gallisepticum , Enfermedades de las Aves de Corral , Vacunación , Animales , Mycoplasma gallisepticum/inmunología , Pollos/inmunología , Pollos/microbiología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/microbiología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Infecciones por Mycoplasma/prevención & control , Infecciones por Mycoplasma/veterinaria , Infecciones por Mycoplasma/inmunología , Organismos Libres de Patógenos Específicos , Vacunación/veterinaria , Anticuerpos Antibacterianos/sangre
5.
ACS Biomater Sci Eng ; 10(5): 3387-3400, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38656158

RESUMEN

Given the worldwide problem posed by enteric pathogens, the discovery of safe and efficient intestinal adjuvants combined with novel antigen delivery techniques is essential to the design of mucosal vaccines. In this work, we designed poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) to codeliver all-trans retinoic acid (atRA), novel antigens, and CpG. To address the insolubility of the intestinal adjuvant atRA, we utilized PLGA to encapsulate atRA and form a "nanocapsid" with polydopamine. By leveraging polydopamine, we adsorbed the water-soluble antigens and the TLR9 agonist CpG onto the NPs' surface, resulting in the pathogen-mimicking PLPCa NPs. In this study, the novel fusion protein (HBf), consisting of the Mycobacterium avium subspecies paratuberculosis antigens HBHA, Ag85B, and Bfra, was coloaded onto the NPs. In vitro, PLPCa NPs were shown to promote the activation and maturation of bone marrow-derived dendritic cells. Additionally, we found that PLPCa NPs created an immune-rich microenvironment at the injection site following intramuscular administration. From the results, the PLPCa NPs induced strong IgA levels in the gut in addition to enhancing powerful systemic immune responses. Consequently, significant declines in the bacterial burden and inflammatory score were noted in PLPCa NPs-treated mice. In summary, PLPCa can serve as a novel and safe vaccine delivery platform against gut pathogens, such as paratuberculosis, capable of activating both systemic and intestinal immunity.


Asunto(s)
Nanopartículas , Paratuberculosis , Animales , Nanopartículas/química , Paratuberculosis/inmunología , Paratuberculosis/prevención & control , Ratones , Tretinoina/química , Tretinoina/farmacología , Mycobacterium avium subsp. paratuberculosis/inmunología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/química , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Intestinos/inmunología , Intestinos/microbiología , Ratones Endogámicos C57BL , Femenino , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/administración & dosificación , Vacunas Bacterianas/inmunología , Ratones Endogámicos BALB C
6.
Front Immunol ; 15: 1367253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646533

RESUMEN

Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry worldwide; it is caused by multiple bacterial or viral coinfections, of which Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the most notable pathogens. Although live vaccines have demonstrated better efficacy against BRD induced by both pathogens, there are no combined live and marker vaccines. Therefore, we developed an attenuated and marker M. bovis-BoHV-1 combined vaccine based on the M. bovis HB150 and BoHV-1 gG-/tk- strain previously constructed in our lab and evaluated in rabbits. This study aimed to further evaluate its safety and protective efficacy in cattle using different antigen ratios. After immunization, all vaccinated cattle had a normal rectal temperature and mental status without respiratory symptoms. CD4+, CD8+, and CD19+ cells significantly increased in immunized cattle and induced higher humoral and cellular immune responses, and the expression of key cytokines such as IL-4, IL-12, TNF-α, and IFN-γ can be promoted after vaccination. The 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- combined strain elicited the most antibodies while significantly increasing IgG and cellular immunity after challenge. In conclusion, the M. bovis HB150 and BoHV-1 gG-/tk- combined strain was clinically safe and protective in calves; the mix of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- strain was most promising due to its low amount of shedding and highest humoral and cellular immune responses compared with others. This study introduces an M. bovis-BoHV-1 combined vaccine for application in the cattle industry.


Asunto(s)
Herpesvirus Bovino 1 , Mycoplasma bovis , Vacunas Atenuadas , Vacunas Combinadas , Animales , Bovinos , Herpesvirus Bovino 1/inmunología , Vacunas Combinadas/inmunología , Vacunas Combinadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/administración & dosificación , Mycoplasma bovis/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversos , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/efectos adversos , Citocinas/metabolismo , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Infecciones por Mycoplasma/prevención & control , Infecciones por Mycoplasma/veterinaria , Infecciones por Mycoplasma/inmunología , Vacunas Marcadoras/inmunología , Vacunas Marcadoras/administración & dosificación , Vacunación/veterinaria , Eficacia de las Vacunas , Inmunidad Humoral , Complejo Respiratorio Bovino/prevención & control , Complejo Respiratorio Bovino/inmunología , Complejo Respiratorio Bovino/virología
7.
Front Immunol ; 15: 1373367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633244

RESUMEN

Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs) in the U.S. as well as more serious invasive diseases, including bacteremia, sepsis, endocarditis, surgical site infections, osteomyelitis, and pneumonia. These infections are exacerbated by the emergence of antibiotic-resistant clinical isolates such as methicillin-resistant S. aureus (MRSA), highlighting the need for alternatives to antibiotics to treat bacterial infections. We have previously developed a multi-component toxoid vaccine (IBT-V02) in a liquid formulation with efficacy against multiple strains of Staphylococcus aureus prevalent in the industrialized world. However, liquid vaccine formulations are not compatible with the paucity of cold chain storage infrastructure in many low-to-middle income countries (LMICs). Furthermore, whether our IBT-V02 vaccine formulations are protective against S. aureus isolates from LMICs is unknown. To overcome these limitations, we developed lyophilized and spray freeze-dried formulations of IBT-V02 vaccine and demonstrated that both formulations had comparable biophysical attributes as the liquid formulation, including similar levels of toxin neutralizing antibodies and protective efficacy against MRSA infections in murine and rabbit models. To enhance the relevancy of our findings, we then performed a multi-dimensional screen of 83 S. aureus clinical isolates from LMICs (e.g., Democratic Republic of Congo, Palestine, and Cambodia) to rationally down-select strains to test in our in vivo models based on broad expression of IBT-V02 targets (i.e., pore-forming toxins and superantigens). IBT-V02 polyclonal antisera effectively neutralized toxins produced by the S. aureus clinical isolates from LMICs. Notably, the lyophilized IBT-V02 formulation exhibited significant in vivo efficacy in various preclinical infection models against the S. aureus clinical isolates from LMICs, which was comparable to our liquid formulation. Collectively, our findings suggested that lyophilization is an effective alternative to liquid vaccine formulations of our IBT-V02 vaccine against S. aureus infections, which has important implications for protection from S. aureus isolates from LMICs.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Ratones , Conejos , Staphylococcus aureus , Países en Desarrollo , Antibacterianos , Vacunas Bacterianas , Toxoides
8.
Int J Biol Macromol ; 267(Pt 2): 131475, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608984

RESUMEN

Clostridium perfringens is ubiquitously distributed and capable of secreting toxins, posing a significant threat to animal health. Infections caused by Clostridium perfringens, such as Necrotic Enteritis (NE), result in substantial economic losses to the livestock industry annually. However, there is no effective commercial vaccine available. Hence, we set out to propose an effective approach for multi-epitope subunit vaccine construction utilizing biomolecules. We utilized immunoinformatics to design a novel multi-epitope antigen against C. perfringens (CPMEA). Furthermore, we innovated novel bacterium-like particles (BLPs) through thermal acid treatment of various Lactobacillus strains and selected BLP23017 among them. Then, we detailed the structure of CPMEA and BLPs and utilized them to prepare a multi-epitope vaccine. Here, we showed that our vaccine provided full protection against C. perfringens infection after a single dose in a mouse model. Additionally, BLP23017 notably augmented the secretion of secretory immunoglobulin A (sIgA) and enhanced antibody production. We conclude that our vaccine possess safety and high efficacy, making it an excellent candidate for preventing C. perfringens infection. Moreover, we demonstrate our approach to vaccine construction and the preparation of BLP23017 with distinct advantages may contribute to the prevention of a wider array of diseases and the novel vaccine development.


Asunto(s)
Adyuvantes Inmunológicos , Vacunas Bacterianas , Infecciones por Clostridium , Clostridium perfringens , Modelos Animales de Enfermedad , Epítopos , Lactobacillus , Animales , Clostridium perfringens/inmunología , Ratones , Lactobacillus/inmunología , Epítopos/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/inmunología , Biología Computacional , Antígenos Bacterianos/inmunología , Femenino , Ratones Endogámicos BALB C , Inmunoinformática
9.
Virulence ; 15(1): 2345019, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38656137

RESUMEN

Klebsiella pneumoniae is an important gram-negative bacterium that causes severe respiratory and healthcare-associated infections. Although antibiotic therapy is applied to treat severe infections caused by K. pneumoniae, drug-resistant isolates pose a huge challenge to clinical practices owing to adverse reactions and the mismanagement of antibiotics. Several studies have attempted to develop vaccines against K. pneumoniae, but there are no licensed vaccines available for the control of K. pneumoniae infection. In the current study, we constructed a novel DNA vaccine, pVAX1-YidR, which encodes a highly conserved virulence factor YidR and a recombinant expression plasmid pVAX1-IL-17 encoding Interleukin-17 (IL-17) as a molecular adjuvant. Adaptive immune responses were assessed in immunized mice to compare the immunogenicity of the different vaccine schemes. The results showed that the targeted antigen gene was expressed in HEK293T cells using an immunofluorescence assay. Mice immunized with pVAX1-YidR elicited a high level of antibodies, induced strong cellular immune responses, and protected mice from K. pneumoniae challenge. Notably, co-immunization with pVAX1-YidR and pVAX1-IL-17 significantly augmented host adaptive immune responses and provided better protection against K. pneumoniae infections in vaccinated mice. Our study demonstrates that combined DNA vaccines and molecular adjuvants is a promising strategy to develop efficacious antibacterial vaccines against K. pneumoniae infections.


Asunto(s)
Vacunas Bacterianas , Interleucina-17 , Infecciones por Klebsiella , Klebsiella pneumoniae , Vacunas de ADN , Animales , Femenino , Humanos , Ratones , Inmunidad Adaptativa , Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/genética , Vacunas Bacterianas/administración & dosificación , Modelos Animales de Enfermedad , Células HEK293 , Inmunidad Celular , Inmunización , Interleucina-17/inmunología , Interleucina-17/genética , Infecciones por Klebsiella/prevención & control , Infecciones por Klebsiella/inmunología , Klebsiella pneumoniae/inmunología , Klebsiella pneumoniae/genética , Ratones Endogámicos BALB C , Vacunas de ADN/inmunología , Vacunas de ADN/genética , Vacunas de ADN/administración & dosificación , Factores de Virulencia/inmunología , Factores de Virulencia/genética
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 441-446, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38645870

RESUMEN

Objective: To study the immunoadjuvant effects of chitosan oligosaccharide (COS), including the immune activation and the triggering of lysosomal escape, and to explore whether COS can be used as an adjuvant for attenuated live bacteria vector vaccines. Methods: 1) Mouse macrophages RAW264.7 cells were cultured with COS at 0 mg/mL (the control group) and 0.1-4 mg/mL for 24 h and the effect on cell viability was measured by CCK8 assay. Mouse macrophages RAW264.7 were treated with COS at 0 (the control group), 1, 2, and 4 mg/mL for 24 h. Then, the mRNA expression levels of the cytokines, including IFN-γ, IL-10, TGF-ß, and TLR4, were determined by RT-qPCR assay. 2) RAW264.7 cells were treated with 1 mL of PBS containing different components, including calcein at 50 µg/mL, COS at 2 mg/mL, and bafilomycin A1, an inhibitor, at 1 µmol/mL, for culturing. The cells were divided into the Calcein group, Calcein+COS group, and Calcein+COS+Bafilomycin A1 group accordingly. Laser scanning confocal microscopy was used to observe the phagocytosis and the intracellular fluorescence distribution of calcein, a fluorescent dye, in RAW264.7 cells in the presence or absence of COS intervention to determine whether COS was able to trigger lysosomal escape. 3) LM∆E6E7 and LI∆E6E7, the attenuated Listeria vector candidate therapeutic vaccines for cervical cancer, were encapsulated with COS at the mass concentrations of 0.5 mg/mL, 1 mg/mL, 2 mg/mL , 4 mg/mL, and 8 mg/mL. Then, the changes in zeta potential were measured to select the concentration of COS that successfully encapsulated the bacteria. Phagocytosis of the vaccine strains by RAW264.7 cells was measured before and after LM∆E6E7 and LI∆E6E7 were coated with COS at 2 mg/mL. Results: 1) CCK8 assays showed that, compared with the findings for the control group, the intervention of RAW264.7 cells with COS at different concentrations for 24 h was not toxic to the cells and promoted cell proliferation, with the difference being statistically significant (P<0.05). According to the RT-qPCR results, compared with those of the control group, the COS intervention up-regulated the mRNA levels of TLR4 and IFN-γ in RAW264.7 cells, while it inhibited the mRNA expression levels of TGF-ß and IL-10, with the most prominent effect being observed in the 4 mg/mL COS group (P<0.05). 2) Laser scanning confocal microscopy revealed that the amount of fluorescent dye released from lysosomes into the cells was greater in the Calcein+COS group than that in the Calcein group. In other words, a greater amount of fluorescent dye was released from lysosomes into the cells under COS intervention. Furthermore, this process could be blocked by bafilomycin A1. 3) The zeta potential results showed that COS could successfully encapsulate the surface of bacteria when its mass concentration reached 2 mg/mL. Before and after the vaccine strain was encapsulated by COS, the phagocytosis of LM∆E6E7 by RAW264.7 cells was 5.70% and 22.00%, respectively, showing statistically significant differences (P<0.05); the phagocytosis of LI∆E6E7 by RAW264.7 cells was 1.55% and 6.12%, respectively, showing statistically significant differences (P<0.05). Conclusion: COS has the effect of activating the immune response of macrophages and triggering lysosomal escape. The candidates strains of coated live attenuated bacterial vector vaccines can promote the phagocytosis of bacteria by macrophages. Further research is warranted to develop COS into an adjuvant for bacterial vector vaccine.


Asunto(s)
Adyuvantes Inmunológicos , Vacunas Bacterianas , Quitosano , Oligosacáridos , Animales , Ratones , Células RAW 264.7 , Oligosacáridos/farmacología , Adyuvantes Inmunológicos/farmacología , Vacunas Bacterianas/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Vacunas Atenuadas/inmunología , Citocinas/metabolismo , Supervivencia Celular/efectos de los fármacos
11.
Front Immunol ; 15: 1373411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646535

RESUMEN

Introduction: Veterinary vaccines against Clostridium perfringens type C need to be tested for absence of toxicity, as mandated by pharmacopoeias worldwide. This toxicity testing is required at multiple manufacturing steps and relies on outdated mouse tests that involve severe animal suffering. Clostridium perfringens type C produces several toxins of which the ß-toxin is the primary component responsible for causing disease. Here, we describe the successful development of a new cell-based in vitro assay that can address the specific toxicity of the ß-toxin. Methods: Development of the cell-based assay followed the principle of in vitro testing developed for Cl. septicum vaccines, which is based on Vero cells. We screened four cell lines and selected the THP-1 cell line, which was shown to be the most specific and sensitive for ß-toxin activity, in combination with a commercially available method to determine cell viability (MTS assay) as a readout. Results: The current animal test is estimated to detect 100 - 1000-fold dilutions of the Cl. perfringens type C non-inactivated antigen. When tested with an active Cl. perfringens type C antigen preparation, derived from a commercial vaccine manufacturing process, our THP-1 cell-based assay was able to detect toxin activity from undiluted to over 10000-fold dilution, showing a linear range between approximately 1000- and 10000-fold dilutions. Assay specificity for the ß-toxin was confirmed with neutralizing antibodies and lack of reaction to Cl. perfringens culture medium. In addition, assay parameters demonstrated good repeatability. Conclusions: Here, we have shown proof of concept for a THP-1 cell-based assay for toxicity testing of veterinary Cl. perfringens type C vaccines that is suitable for all vaccine production steps. This result represents a significant step towards the replacement of animal-based toxicity testing of this veterinary clostridial antigen. As a next step, assessment of the assay's sensitivity and repeatability and validation of the method will have to be performed in a commercial manufacturing context in order to formally implement the assay in vaccine quality control.


Asunto(s)
Toxinas Bacterianas , Clostridium perfringens , Animales , Clostridium perfringens/inmunología , Toxinas Bacterianas/inmunología , Toxinas Bacterianas/toxicidad , Humanos , Células Vero , Chlorocebus aethiops , Pruebas de Toxicidad/métodos , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/inmunología , Infecciones por Clostridium/diagnóstico , Células THP-1 , Ratones , Supervivencia Celular/efectos de los fármacos , Línea Celular , Vacunas Bacterianas/inmunología , Alternativas a las Pruebas en Animales/métodos
12.
Curr Microbiol ; 81(5): 125, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558085

RESUMEN

More than half of the world's population is infected with Helicobacter pylori (H. pylori), which may lead to chronic gastritis, peptic ulcers, and stomach cancer. LeoA, a conserved antigen of H. pylori, aids in preventing this infection by triggering specific CD3+ T-cell responses. In this study, recombinant plasmids containing the LeoA gene of H. pylori are created and conjugated with chitosan nanoparticle (CSNP) to immunize BALB/c mice against the H. pylori infection. We used the online Vaxign tool to analyze the genomes of five distinct strains of H. pylori, and we chose the outer membrane as a prospective vaccine candidate. Afterward, the proteins' immunogenicity was evaluated. The DNA vaccine was constructed and then encapsulated in CSNPs. The effectiveness of the vaccine's immunoprotective effects was evaluated in BALB/c mice. Purified activated splenic CD3+ T cells are used to test the anticancer effects in vitro. Nanovaccines had apparent spherical forms, were small (mean size, 150-250 nm), and positively charged (41.3 ± 3.11 mV). A consistently delayed release pattern and an entrapment efficiency (73.35 ± 3.48%) could be established. Compared to the non-encapsulated DNA vaccine, vaccinated BALB/c mice produced higher amounts of LeoA-specific IgG in plasma and TNF-α in splenocyte lysate. Moreover, BALB/c mice inoculated with nanovaccine demonstrated considerable immunity (87.5%) against the H. pylori challenge and reduced stomach injury and bacterial burdens in the stomach. The immunological state in individuals with GC with chronic infection with H. pylori is mimicked by the H. pylori DNA nanovaccines by inducing a shift from Th1 to Th2 in the response. In vitro human GC cell development is inhibited by activated CD3+ T lymphocytes. According to our findings, the H. pylori vaccine-activated CD3+ has potential immunotherapeutic benefits.


Asunto(s)
Quitosano , Infecciones por Helicobacter , Helicobacter pylori , Nanopartículas , Vacunas de ADN , Humanos , Animales , Ratones , Helicobacter pylori/genética , Vacunas de ADN/genética , ADN , Vacunación , Infecciones por Helicobacter/prevención & control , Infecciones por Helicobacter/microbiología , Vacunas Bacterianas/genética , Ratones Endogámicos BALB C , Anticuerpos Antibacterianos
13.
Vaccine ; 42(12): 3075-3083, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38584060

RESUMEN

As the major outer membrane protein (OMP) presents in the Pasteurella multocida envelope, OmpH was frequently expressed for laboratory assessments of its immunogenicity against P. multocida infections, but the results are not good. In this study, we modified OmpH with dendritic cell targeting peptide (Depeps) and/or Salmonella FliCd flagellin, and expressed three types of recombinant proteins with the MBP tag (rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, rFliC-OmpH-MBP). Assessments in mouse models revealed that vaccination with rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, or rFliC-OmpH-MBP induced significant higher level of antibodies as well as IFN-γ and IL-4 in murine sera than vaccination with rOmpH-MBP (P < 0.5). Vaccination with the three modified proteins also provided increased protection (rDepeps-FliC-OmpH-MBP, 70 %; rDepeps-OmpH-MBP, 50 %; rFliC-OmpH-MBP, 60 %) against P. multocida serotype D compared to vaccination with rOmpH-MBP (30 %). In mice vaccinated with different types of modified OmpHs, a significantly decreased bacterial strains were recovered from bloods, lungs, and spleens compared to rOmpH-MBP-vaccinated mice (P < 0.5). Notably, our assessments also demonstrated that vaccination with rDepeps-FliC-OmpH-MBP provided good protection against infections caused by a heterogeneous group of P. multocida serotypes (A, B, D). Our above findings indicate that modification with DCpep and Salmonella flagellin could be used as a promising strategy to improve vaccine effectiveness.


Asunto(s)
Infecciones por Pasteurella , Pasteurella multocida , Animales , Ratones , Serogrupo , Infecciones por Pasteurella/prevención & control , Flagelina/metabolismo , Proteínas de la Membrana Bacteriana Externa , Péptidos/metabolismo , Células Dendríticas , Vacunas Bacterianas
14.
Front Cell Infect Microbiol ; 14: 1282183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567021

RESUMEN

Obligate intracellular bacteria have remained those for which effective vaccines are unavailable, mostly because protection does not solely rely on an antibody response. Effective antibody-based vaccines, however, have been developed against extracellular bacteria pathogens or toxins. Additionally, obligate intracellular bacteria have evolved many mechanisms to subvert the immune response, making vaccine development complex. Much of what we know about protective immunity for these pathogens has been determined using infection-resolved cases and animal models that mimic disease. These studies have laid the groundwork for antigen discovery, which, combined with recent advances in vaccinology, should allow for the development of safe and efficacious vaccines. Successful vaccines against obligate intracellular bacteria should elicit potent T cell memory responses, in addition to humoral responses. Furthermore, they ought to be designed to specifically induce strong cytotoxic CD8+ T cell responses for protective immunity. This review will describe what we know about the potentially protective immune responses to this group of bacteria. Additionally, we will argue that the novel delivery platforms used during the Sars-CoV-2 pandemic should be excellent candidates to produce protective immunity once antigens are discovered. We will then look more specifically into the vaccine development for Rickettsiaceae, Coxiella burnetti, and Anaplasmataceae from infancy until today. We have not included Chlamydia trachomatis in this review because of the many vaccine related reviews that have been written in recent years.


Asunto(s)
Vacunas Bacterianas , Chlamydia trachomatis , Animales , Anticuerpos , Linfocitos T CD8-positivos , Formación de Anticuerpos
15.
Biomed Pharmacother ; 174: 116611, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643540

RESUMEN

BACKGROUND: The emergence of drug-resistant strains of Klebsiella pneumoniae (K. pneumoniae) has become a significant challenge in the field of infectious diseases, posing an urgent need for the development of highly protective vaccines against this pathogen. METHODS AND RESULTS: In this study, we identified three immunogenic extracellular loops based on the structure of five candidate antigens using sera from K. pneumoniae infected mice. The sequences of these loops were linked to the C-terminal of an alpha-hemolysin mutant (mHla) from Staphylococcus aureus to generate a heptamer, termed mHla-EpiVac. In vivo studies confirmed that fusion with mHla significantly augmented the immunogenicity of EpiVac, and it elicited both humoral and cellular immune responses in mice, which could be further enhanced by formulation with aluminum adjuvant. Furthermore, immunization with mHla-EpiVac demonstrated enhanced protective efficacy against K. pneumoniae channeling compared to EpiVac alone, resulting in reduced bacterial burden, secretion of inflammatory factors, histopathology and lung injury. Moreover, mHla fusion facilitated antigen uptake by mouse bone marrow-derived cells (BMDCs) and provided sustained activation of these cells. CONCLUSIONS: These findings suggest that mHla-EpiVac is a promising vaccine candidate against K. pneumoniae, and further validate the potential of mHla as a versatile carrier protein and adjuvant for antigen design.


Asunto(s)
Vacunas Bacterianas , Epítopos , Infecciones por Klebsiella , Klebsiella pneumoniae , Animales , Klebsiella pneumoniae/inmunología , Infecciones por Klebsiella/prevención & control , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/microbiología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Ratones , Femenino , Epítopos/inmunología , Ratones Endogámicos BALB C , Antígenos Bacterianos/inmunología , Pulmón/microbiología , Pulmón/inmunología , Pulmón/patología , Inmunidad Celular/efectos de los fármacos , Staphylococcus aureus/inmunología , Adyuvantes Inmunológicos/farmacología , Inmunidad Humoral/efectos de los fármacos
16.
Mem Inst Oswaldo Cruz ; 119: e230040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655925

RESUMEN

BACKGROUND: The availability of genes and protein sequences for parasites has provided valuable information for drug target identification and vaccine development. One such parasite is Bartonella quintana, a Gram-negative, intracellular pathogen that causes bartonellosis in mammalian hosts. OBJECTIVE: Despite progress in understanding its pathogenesis, limited knowledge exists about the virulence factors and regulatory mechanisms specific to B. quintana. METHODS AND FINDINGS: To explore these aspects, we have adopted a subtractive proteomics approach to analyse the proteome of B. quintana. By subtractive proteins between the host and parasite proteome, a set of proteins that are likely unique to the parasite but absent in the host were identified. This analysis revealed that out of the 1197 protein sequences of the parasite, 660 proteins are non-homologous to the human host. Further analysis using the Database of Essential Genes predicted 159 essential proteins, with 28 of these being unique to the pathogen and predicted as potential putative targets. Subcellular localisation of the predicted targets revealed 13 cytoplasmic, eight membranes, one periplasmic, and multiple location proteins. The three-dimensional structure and B cell epitopes of the six membrane antigenic protein were predicted. Four B cell epitopes in KdtA and mraY proteins, three in lpxB and BQ09550, whereas the ftsl and yidC proteins were located with eleven and six B cell epitopes, respectively. MAINS CONCLUSIONS: This insight prioritises such proteins as novel putative targets for further investigations on their potential as drug and vaccine candidates.


Asunto(s)
Vacunas Bacterianas , Bartonella quintana , Proteómica , Bartonella quintana/inmunología , Bartonella quintana/genética , Vacunas Bacterianas/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Humanos , Simulación por Computador , Factores de Virulencia/inmunología , Factores de Virulencia/genética , Proteoma
18.
PLoS One ; 19(4): e0302555, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683795

RESUMEN

Clostridial dermatitis (CD), caused by Clostridium septicum, is an emerging disease of increasing economic importance in turkeys. Currently, there are no effective vaccines for CD control. Here, two non-toxic domains of C. septicum alpha toxin, namely ntATX-D1 and ntATX-D2, were identified, cloned, and expressed in Escherichia coli as recombinant subunit proteins to investigate their use as potential vaccine candidates. Experimental groups consisted of a Negative control (NCx) that did not receive C. septicum challenge, while the adjuvant-only Positive control (PCx), ntATX-D1 immunization (D1) and ntATX-D2 immunization (D2) groups received C. septicum challenge. Turkeys were immunized subcutaneously with 100 µg of protein at 7, 8 and 9 weeks of age along with an oil-in-water nano-emulsion adjuvant, followed by C. septicum challenge at 11 weeks of age. Results showed that while 46.2% of birds in the PCx group died post-challenge, the rate of mortality in D1- or D2-immunization groups was 13.3%. The gross and histopathological lesions in the skin, muscle and spleen showed that the disease severity was highest in PCx group, while the D2-immunized birds had significantly lower lesion scores when compared to PCx. Gene expression analysis revealed that PCx birds had significantly higher expression of pro-inflammatory cytokine genes in the skin, muscle and spleen than the NCx group, while the D2 group had significantly lower expression of these genes compared to PCx. Peripheral blood cellular analysis showed increased frequencies of activated CD4+ and/or CD8+ cells in the D1 and D2-immunized groups. Additionally, the immunized turkeys developed antigen-specific serum IgY antibodies. Collectively, these findings indicate that ntATX proteins, specifically the ntATX-D2 can be a promising vaccine candidate for protecting turkeys against CD and that the protection mechanisms may include downregulation of C. septicum-induced inflammation and increased CD4+ and CD8+ cellular activation.


Asunto(s)
Toxinas Bacterianas , Infecciones por Clostridium , Clostridium septicum , Dermatitis , Enfermedades de las Aves de Corral , Proteínas Recombinantes , Pavos , Animales , Pavos/inmunología , Clostridium septicum/inmunología , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/inmunología , Infecciones por Clostridium/veterinaria , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/microbiología , Toxinas Bacterianas/inmunología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/administración & dosificación , Dermatitis/prevención & control , Dermatitis/inmunología , Dermatitis/veterinaria , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Inmunización
19.
Hum Vaccin Immunother ; 20(1): 2330768, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38517203

RESUMEN

Chlamydia trachomatis is an obligate intracellular pathogen responsible for the most prevalent bacterial sexually transmitted disease globally. The high prevalence of chlamydial infections underscores the urgent need for licensed and effective vaccines to prevent transmission in populations. Bacterial outer membrane vesicles (OMVs) have emerged as promising mucosal vaccine carriers due to their inherent adjuvant properties and the ability to display heterologous antigens. In this proof-of-concept study, we evaluated the immunogenicity of Salmonella OMVs decorated with C. trachomatis MOMP-derived CTH522 or HtrA antigens in mice. Following a prime-boost intranasal vaccination approach, two OMV-based C. trachomatis vaccines elicited significant humoral responses specific to the antigens in both systemic and vaginal compartments. Furthermore, we demonstrated strong antigen-specific IFN-γ and IL17a responses in splenocytes and cervical lymph node cells of vaccinated mice, indicating CD4+ Th1 and Th17 biased immune responses. Notably, the OMV-CTH522 vaccine also induced the production of spleen-derived CD8+ T cells expressing IFN-γ. In conclusion, these results highlight the potential of OMV-based C. trachomatis vaccines for successful use in future challenge studies and demonstrate the suitability of our modular OMV platform for intranasal vaccine applications.


Asunto(s)
Infecciones por Chlamydia , Vacunas , Femenino , Animales , Ratones , Chlamydia trachomatis , Linfocitos T CD8-positivos , Antígenos Bacterianos , Salmonella , Inmunidad , Vacunas Bacterianas , Infecciones por Chlamydia/prevención & control , Anticuerpos Antibacterianos , Proteínas de la Membrana Bacteriana Externa
20.
Microb Biotechnol ; 17(3): e14446, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38536702

RESUMEN

Developing protein-based vaccines against bacteria has proved much more challenging than producing similar immunisations against viruses. Currently, anti-bacterial vaccines are designed using methods based on reverse vaccinology. These identify broadly conserved, immunogenic proteins using a combination of genomic and high-throughput laboratory data. While this approach has successfully generated multiple rationally designed formulations that show promising immunogenicity in animal models, few have been licensed. The difficulty of inducing protective immunity in humans with such vaccines mirrors the ability of many bacteria to recolonise individuals despite recognition by natural polyvalent antibody repertoires. As bacteria express too many antigens to evade all adaptive immune responses through mutation, they must instead inhibit the efficacy of such host defences through expressing surface structures that interface with the immune system. Therefore, 'immune interface interference' (I3) vaccines that target these features should synergistically directly target bacteria and prevent them from inhibiting responses to other surface antigens. This approach may help us understand the efficacy of the two recently introduced immunisations against serotype B meningococci, which both target the Factor H-binding protein (fHbp) that inhibits complement deposition on the bacterial surface. Therefore, I3 vaccine designs may help overcome the current challenges of developing protein-based vaccines to prevent bacterial infections.


Asunto(s)
Vacunas Meningococicas , Neisseria meningitidis , Animales , Humanos , Vacunas Bacterianas/genética , Proteínas Bacterianas/genética , Antígenos Bacterianos/genética , Anticuerpos Antibacterianos , Neisseria meningitidis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...