Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.587
Filtrar
1.
Nat Commun ; 15(1): 3924, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724518

RESUMEN

An effective HIV-1 vaccine must elicit broadly neutralizing antibodies (bnAbs) against highly diverse Envelope glycoproteins (Env). Since Env with the longest hypervariable (HV) loops is more resistant to the cognate bnAbs than Env with shorter HV loops, we redesigned hypervariable loops for updated Env consensus sequences of subtypes B and C and CRF01_AE. Using modeling with AlphaFold2, we reduced the length of V1, V2, and V5 HV loops while maintaining the integrity of the Env structure and glycan shield, and modified the V4 HV loop. Spacers are designed to limit strain-specific targeting. All updated Env are infectious as pseudoviruses. Preliminary structural characterization suggests that the modified HV loops have a limited impact on Env's conformation. Binding assays show improved binding to modified subtype B and CRF01_AE Env but not to subtype C Env. Neutralization assays show increases in sensitivity to bnAbs, although not always consistently across clades. Strikingly, the HV loop modification renders the resistant CRF01_AE Env sensitive to 10-1074 despite the absence of a glycan at N332.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , VIH-1 , Productos del Gen env del Virus de la Inmunodeficiencia Humana , VIH-1/inmunología , Humanos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Anticuerpos Anti-VIH/inmunología , Anticuerpos Neutralizantes/inmunología , Vacunas contra el SIDA/inmunología , Pruebas de Neutralización , Células HEK293 , Secuencia de Consenso , Infecciones por VIH/virología , Infecciones por VIH/inmunología , Unión Proteica , Epítopos/inmunología
2.
BMC Med Ethics ; 25(1): 54, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745276

RESUMEN

BACKGROUND: A morally sound framework for benefit-sharing is crucial to minimize research exploitation for research conducted in developing countries. However, in practice, it remains uncertain which stakeholders should be involved in the decision-making process regarding benefit-sharing and what the implications might be. Therefore the study aimed to empirically propose a framework for benefit-sharing negotiations in research by taking HIV vaccine trials as a case. METHODS: The study was conducted in Tanzania using a case study design and qualitative approaches. Data were collected using in-depth interviews (IDI) and focus group discussions (FGD). A total of 37 study participants were selected purposively comprising institutional review board (IRB) members, researchers, community advisory board (CAB) members, a policymaker, and HIV/AIDS advocates. Deductive and inductive thematic analysis approaches were deployed to analyze collected data with the aid of MAXQDA version 20.4.0 software. RESULTS: The findings indicate a triangular relationship between the research community, researched community and intermediaries. However, the relationship ought to take into consideration the timing of negotiations, the level of understanding between parties and the phase of the clinical trial. The proposed framework operationalize partnership interactions in community-based participatory research. CONCLUSION: In the context of this study, the suggested framework incorporates the research community, the community being researched, and intermediary parties. The framework would guarantee well-informed and inclusive decision-making regarding benefit-sharing in HIV vaccine trials and other health-related research conducted in resource-limited settings.


Asunto(s)
Vacunas contra el SIDA , Investigación Participativa Basada en la Comunidad , Infecciones por VIH , Negociación , Investigación Cualitativa , Humanos , Vacunas contra el SIDA/administración & dosificación , Infecciones por VIH/prevención & control , Tanzanía , Ensayos Clínicos como Asunto , Grupos Focales , Masculino , Femenino , Toma de Decisiones , Investigadores , Participación de los Interesados , Países en Desarrollo , Adulto
3.
Cell Host Microbe ; 32(5): 632-634, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723601

RESUMEN

Inducing HIV-1 broadly neutralizing antibodies (bnAbs) through vaccination poses exceptional challenges. In this issue of Cell Host & Microbe, Wiehe and colleagues report the elicitation of affinity-matured bnAbs in knock-in mice through boosting immunogen vaccination, which selects for key improbable mutations.


Asunto(s)
Vacunas contra el SIDA , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Infecciones por VIH , VIH-1 , Desarrollo de Vacunas , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/genética , VIH-1/inmunología , VIH-1/genética , Animales , Ratones , Anticuerpos Anti-VIH/inmunología , Anticuerpos Neutralizantes/inmunología , Infecciones por VIH/prevención & control , Infecciones por VIH/inmunología , Humanos , Técnicas de Sustitución del Gen , Inmunización Secundaria , Vacunación
5.
Lancet HIV ; 11(5): e285-e299, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692824

RESUMEN

BACKGROUND: An effective HIV vaccine will most likely need to have potent immunogenicity and broad cross-subtype coverage. The aim of the HIV Vaccine Trials Network (HVTN) 124 was to evaluate safety and immunogenicity of a unique polyvalent DNA-protein HIV vaccine with matching envelope (Env) immunogens. METHODS: HVTN 124 was a randomised, phase 1, placebo-controlled, double-blind study, including participants who were HIV seronegative and aged 18-50 years at low risk for infection. The DNA vaccine comprised five plasmids: four copies expressing Env gp120 (clades A, B, C, and AE) and one gag p55 (clade C). The protein vaccine included four DNA vaccine-matched GLA-SE-adjuvanted recombinant gp120 proteins. Participants were enrolled across six clinical sites in the USA and were randomly assigned to placebo or one of two vaccine groups (ie, prime-boost or coadministration) in a 5:1 ratio in part A and a 7:1 ratio in part B. Vaccines were delivered via intramuscular needle injection. The primary outcomes were safety and tolerability, assessed via frequency, severity, and attributability of local and systemic reactogenicity and adverse events, laboratory safety measures, and early discontinuations. Part A evaluated safety. Part B evaluated safety and immunogenicity of two regimens: DNA prime (administered at months 0, 1, and 3) with protein boost (months 6 and 8), and DNA-protein coadministration (months 0, 1, 3, 6, and 8). All randomly assigned participants who received at least one dose were included in the safety analysis. The study is registered with ClinicalTrials.gov (NCT03409276) and is closed to new participants. FINDINGS: Between April 19, 2018 and Feb 13, 2019, 60 participants (12 in part A [five men and seven women] and 48 in part B [21 men and 27 women]) were enrolled. All 60 participants received at least one dose, and 14 did not complete follow-up (six of 21 in the prime-boost group and eight of 21 in the coadminstration group). 11 clinical adverse events deemed by investigators as study-related occurred in seven of 48 participants in part B (eight of 21 in the prime-boost group and three of 21 in the coadministration group). Local reactogenicity in the vaccine groups was common, but the frequency and severity of reactogenicity signs or symptoms did not differ between the prime-boost and coadministration groups (eg, 20 [95%] of 21 in the prime-boost group vs 21 [100%] of 21 in the coadministration group had either local pain or tenderness of any severity [p=1·00], and seven [33%] vs nine [43%] had either erythema or induration [p=0·97]), nor did laboratory safety measures. There were no delayed-type hypersensitivity reactions or vasculitis or any severe clinical adverse events related to vaccination. The most frequently reported systemic reactogenicity symptoms in the active vaccine groups were malaise or fatigue (five [50%] of ten in part A and 17 [81%] of 21 in the prime-boost group vs 15 [71%] of 21 in the coadministration group in part B), headache (five [50%] and 18 [86%] vs 12 [57%]), and myalgia (four [40%] and 13 [62%] vs ten [48%]), mostly of mild or moderate severity. INTERPRETATION: Both vaccine regimens were safe, warranting evaluation in larger trials. FUNDING: US National Institutes of Health and US National Institute of Allergy and Infectious Diseases.


Asunto(s)
Vacunas contra el SIDA , Anticuerpos Anti-VIH , Infecciones por VIH , VIH-1 , Vacunas de ADN , Humanos , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/efectos adversos , Adulto , Masculino , Femenino , Método Doble Ciego , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunología , Vacunas de ADN/efectos adversos , Infecciones por VIH/prevención & control , Infecciones por VIH/inmunología , Persona de Mediana Edad , Adulto Joven , Anticuerpos Anti-VIH/sangre , Adolescente , VIH-1/inmunología , Estados Unidos , Inmunización Secundaria , Inmunogenicidad Vacunal , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp120 de Envoltorio del VIH/genética , Anticuerpos Neutralizantes/sangre
6.
Elife ; 132024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619110

RESUMEN

A productive HIV-1 infection in humans is often established by transmission and propagation of a single transmitted/founder (T/F) virus, which then evolves into a complex mixture of variants during the lifetime of infection. An effective HIV-1 vaccine should elicit broad immune responses in order to block the entry of diverse T/F viruses. Currently, no such vaccine exists. An in-depth study of escape variants emerging under host immune pressure during very early stages of infection might provide insights into such a HIV-1 vaccine design. Here, in a rare longitudinal study involving HIV-1 infected individuals just days after infection in the absence of antiretroviral therapy, we discovered a remarkable genetic shift that resulted in near complete disappearance of the original T/F virus and appearance of a variant with H173Y mutation in the variable V2 domain of the HIV-1 envelope protein. This coincided with the disappearance of the first wave of strictly H173-specific antibodies and emergence of a second wave of Y173-specific antibodies with increased breadth. Structural analyses indicated conformational dynamism of the envelope protein which likely allowed selection of escape variants with a conformational switch in the V2 domain from an α-helix (H173) to a ß-strand (Y173) and induction of broadly reactive antibody responses. This differential breadth due to a single mutational change was also recapitulated in a mouse model. Rationally designed combinatorial libraries containing 54 conformational variants of V2 domain around position 173 further demonstrated increased breadth of antibody responses elicited to diverse HIV-1 envelope proteins. These results offer new insights into designing broadly effective HIV-1 vaccines.


Asunto(s)
Vacunas contra el SIDA , Dermatitis , VIH-1 , Animales , Ratones , Humanos , VIH-1/genética , Formación de Anticuerpos , Estudios Longitudinales , Vacunas contra el SIDA/genética , Anticuerpos , Antígenos Virales
7.
J Med Internet Res ; 26: e53375, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568723

RESUMEN

BACKGROUND: The initiation of clinical trials for messenger RNA (mRNA) HIV vaccines in early 2022 revived public discussion on HIV vaccines after 3 decades of unsuccessful research. These trials followed the success of mRNA technology in COVID-19 vaccines but unfolded amid intense vaccine debates during the COVID-19 pandemic. It is crucial to gain insights into public discourse and reactions about potential new vaccines, and social media platforms such as X (formerly known as Twitter) provide important channels. OBJECTIVE: Drawing from infodemiology and infoveillance research, this study investigated the patterns of public discourse and message-level drivers of user reactions on X regarding HIV vaccines by analyzing posts using machine learning algorithms. We examined how users used different post types to contribute to topics and valence and how these topics and valence influenced like and repost counts. In addition, the study identified salient aspects of HIV vaccines related to COVID-19 and prominent anti-HIV vaccine conspiracy theories through manual coding. METHODS: We collected 36,424 English-language original posts about HIV vaccines on the X platform from January 1, 2022, to December 31, 2022. We used topic modeling and sentiment analysis to uncover latent topics and valence, which were subsequently analyzed across post types in cross-tabulation analyses and integrated into linear regression models to predict user reactions, specifically likes and reposts. Furthermore, we manually coded the 1000 most engaged posts about HIV and COVID-19 to uncover salient aspects of HIV vaccines related to COVID-19 and the 1000 most engaged negative posts to identify prominent anti-HIV vaccine conspiracy theories. RESULTS: Topic modeling revealed 3 topics: HIV and COVID-19, mRNA HIV vaccine trials, and HIV vaccine and immunity. HIV and COVID-19 underscored the connections between HIV vaccines and COVID-19 vaccines, as evidenced by subtopics about their reciprocal impact on development and various comparisons. The overall valence of the posts was marginally positive. Compared to self-composed posts initiating new conversations, there was a higher proportion of HIV and COVID-19-related and negative posts among quote posts and replies, which contribute to existing conversations. The topic of mRNA HIV vaccine trials, most evident in self-composed posts, increased repost counts. Positive valence increased like and repost counts. Prominent anti-HIV vaccine conspiracy theories often falsely linked HIV vaccines to concurrent COVID-19 and other HIV-related events. CONCLUSIONS: The results highlight COVID-19 as a significant context for public discourse and reactions regarding HIV vaccines from both positive and negative perspectives. The success of mRNA COVID-19 vaccines shed a positive light on HIV vaccines. However, COVID-19 also situated HIV vaccines in a negative context, as observed in some anti-HIV vaccine conspiracy theories misleadingly connecting HIV vaccines with COVID-19. These findings have implications for public health communication strategies concerning HIV vaccines.


Asunto(s)
Vacunas contra el SIDA , COVID-19 , Infecciones por VIH , Humanos , Vacunas contra la COVID-19 , Pandemias , Minería de Datos , COVID-19/epidemiología , COVID-19/prevención & control , ARN Mensajero , Infecciones por VIH/prevención & control
8.
Nat Commun ; 15(1): 3128, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605096

RESUMEN

One of the strategies towards an effective HIV-1 vaccine is to elicit broadly neutralizing antibody responses that target the high HIV-1 Env diversity. Here, we present an HIV-1 vaccine candidate that consists of cobalt porphyrin-phospholipid (CoPoP) liposomes decorated with repaired and stabilized clade C HIV-1 Env trimers in a prefusion conformation. These particles exhibit high HIV-1 Env trimer decoration, serum stability and bind broadly neutralizing antibodies. Three sequential immunizations of female rabbits with CoPoP liposomes displaying a different clade C HIV-1 gp140 trimer at each dosing generate high HIV-1 Env-specific antibody responses. Additionally, serum neutralization is detectable against 18 of 20 multiclade tier 2 HIV-1 strains. Furthermore, the peak antibody titers induced by CoPoP liposomes can be recalled by subsequent heterologous immunization with Ad26-encoded membrane-bound stabilized Env antigens. Hence, a CoPoP liposome-based HIV-1 vaccine that can generate cross-clade neutralizing antibody immunity could potentially be a component of an efficacious HIV-1 vaccine.


Asunto(s)
Vacunas contra el SIDA , VIH-1 , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Animales , Femenino , Conejos , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Infecciones por VIH , Inmunización , Liposomas , Fosfolípidos
9.
J Immunol Res ; 2024: 2147912, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628675

RESUMEN

Ever since its discovery, human immunodeficiency virus type 1 (HIV-1) infection has remained a significant public health concern. The number of HIV-1 seropositive individuals currently stands at 40.1 million, yet definitive treatment for the virus is still unavailable on the market. Vaccination has proven to be a potent tool in combating infectious diseases, as evidenced by its success against other pathogens. However, despite ongoing efforts and research, the unique viral characteristics have prevented the development of an effective anti-HIV-1 vaccine. In this review, we aim to provide an historical overview of the various approaches attempted to create an effective anti-HIV-1 vaccine. Our objective is to explore the reasons why specific methods have failed to induce a protective immune response and to analyze the different modalities of immunogen presentation. This trial is registered with NCT05414786, NCT05471076, NCT04224701, and NCT01937455.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Humanos , Vacunación , Ensayos Clínicos como Asunto
10.
Cell Host Microbe ; 32(5): 693-709.e7, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38670093

RESUMEN

A major goal of HIV-1 vaccine development is the induction of broadly neutralizing antibodies (bnAbs). Although success has been achieved in initiating bnAb B cell lineages, design of boosting immunogens that select for bnAb B cell receptors with improbable mutations required for bnAb affinity maturation remains difficult. Here, we demonstrate a process for designing boosting immunogens for a V3-glycan bnAb B cell lineage. The immunogens induced affinity-matured antibodies by selecting for functional improbable mutations in bnAb precursor knockin mice. Moreover, we show similar success in prime and boosting with nucleoside-modified mRNA-encoded HIV-1 envelope trimer immunogens, with improved selection by mRNA immunogens of improbable mutations required for bnAb binding to key envelope glycans. These results demonstrate the ability of both protein and mRNA prime-boost immunogens for selection of rare B cell lineage intermediates with neutralizing breadth after bnAb precursor expansion, a key proof of concept and milestone toward development of an HIV-1 vaccine.


Asunto(s)
Vacunas contra el SIDA , Anticuerpos Neutralizantes , Linfocitos B , Anticuerpos Anti-VIH , VIH-1 , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/genética , Animales , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , VIH-1/genética , Ratones , Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Humanos , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Anticuerpos ampliamente neutralizantes/inmunología , Mutación , Desarrollo de Vacunas , Inmunización Secundaria , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
11.
Viruses ; 16(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38543734

RESUMEN

The human immunodeficiency virus (HIV) continues to pose a significant global health challenge, with millions of people affected and new cases emerging each year. While various treatment and prevention methods exist, including antiretroviral therapy and non-vaccine approaches, developing an effective vaccine remains the most crucial and cost-effective solution to combating the HIV epidemic. Despite significant advancements in HIV research, the HIV vaccine field has faced numerous challenges, and only one clinical trial has demonstrated a modest level of efficacy. This review delves into the history of HIV vaccines and the current efforts in HIV prevention, emphasizing pre-clinical vaccine development using the non-human primate model (NHP) of HIV infection. NHP models offer valuable insights into potential preventive strategies for combating HIV, and they play a vital role in informing and guiding the development of novel vaccine candidates before they can proceed to human clinical trials.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Animales , Humanos , Primates , Desarrollo de Vacunas
12.
PLoS Med ; 21(3): e1004360, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38502656

RESUMEN

BACKGROUND: Adjuvants are widely used to enhance and/or direct vaccine-induced immune responses yet rarely evaluated head-to-head. Our trial directly compared immune responses elicited by MF59 versus alum adjuvants in the RV144-like HIV vaccine regimen modified for the Southern African region. The RV144 trial of a recombinant canarypox vaccine vector expressing HIV env subtype B (ALVAC-HIV) prime followed by ALVAC-HIV plus a bivalent gp120 protein vaccine boost adjuvanted with alum is the only trial to have shown modest HIV vaccine efficacy. Data generated after RV144 suggested that use of MF59 adjuvant might allow lower protein doses to be used while maintaining robust immune responses. We evaluated safety and immunogenicity of an HIV recombinant canarypox vaccine vector expressing HIV env subtype C (ALVAC-HIV) prime followed by ALVAC-HIV plus a bivalent gp120 protein vaccine boost (gp120) adjuvanted with alum (ALVAC-HIV+gp120/alum) or MF59 (ALVAC-HIV+gp120/MF59) or unadjuvanted (ALVAC-HIV+gp120/no-adjuvant) and a regimen where ALVAC-HIV+gp120 adjuvanted with MF59 was used for the prime and boost (ALVAC-HIV+gp120/MF59 coadministration). METHODS AND FINDINGS: Between June 19, 2017 and June 14, 2018, 132 healthy adults without HIV in South Africa, Zimbabwe, and Mozambique were randomized to receive intramuscularly: (1) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/MF59 (months 3, 6, and 12), n = 36; (2) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/alum (months 3, 6, and 12), n = 36; (3) 4 doses of ALVAC-HIV+gp120/MF59 coadministered (months 0, 1, 6, and 12), n = 36; or (4) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/no adjuvant (months 3, 6, and 12), n = 24. Primary outcomes were safety and occurrence and mean fluorescence intensity (MFI) of vaccine-induced gp120-specific IgG and IgA binding antibodies at month 6.5. All vaccinations were safe and well-tolerated; increased alanine aminotransferase was the most frequent related adverse event, occurring in 2 (1.5%) participants (1 severe, 1 mild). At month 6.5, vaccine-specific gp120 IgG binding antibodies were detected in 100% of vaccinees for all 4 vaccine groups. No significant differences were seen in the occurrence and net MFI of vaccine-specific IgA responses between the ALVAC-HIV+gp120/MF59-prime-boost and ALVAC-HIV+gp120/alum-prime-boost groups or between the ALVAC-HIV+gp120/MF59-prime-boost and ALVAC-HIV+gp120/MF59 coadministration groups. Limitations were the relatively small sample size per group and lack of evaluation of higher gp120 doses. CONCLUSIONS: Although MF59 was expected to enhance immune responses, alum induced similar responses to MF59, suggesting that the choice between these adjuvants may not be critical for the ALVAC+gp120 regimen. TRIAL REGISTRATION: HVTN 107 was registered with the South African National Clinical Trials Registry (DOH-27-0715-4894) and ClinicalTrials.gov (NCT03284710).


Asunto(s)
Vacunas contra el SIDA , Compuestos de Alumbre , Infecciones por VIH , VIH-1 , Polisorbatos , Escualeno , Adulto , Humanos , Adyuvantes Inmunológicos , Vacunas contra el SIDA/efectos adversos , Anticuerpos Anti-VIH , Infecciones por VIH/prevención & control , Inmunogenicidad Vacunal , Inmunoglobulina A , Inmunoglobulina G , Vacunas Combinadas , Vacunas Sintéticas
13.
BMC Med Ethics ; 25(1): 29, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481301

RESUMEN

BACKGROUND: Informed consent as stipulated in regulatory human research guidelines requires volunteers to be well-informed about what will happen to them in a trial. However, researchers may be faced with the challenge of how to ensure that a volunteer agreeing to take part in a clinical trial is truly informed. This study aimed to find out volunteers' comprehension of informed consent and voluntary participation in Human Immunodeficiency Virus (HIV) clinical trials during the registration cohort. METHODS: We conducted a qualitative study among volunteers who were enrolled in the registration cohort of HIV clinical trials in Dar es Salaam, Tanzania. A purposive sampling strategy was used to obtain twenty study participants. The data were collected between June and September 2020 using a semi-structured interview guide. In-depth interviews were used to collect the data to obtain deep insights of the individual study participants on the comprehension of informed consent and participation in the clinical trial. A thematic analysis approach was used to analyze the data. Themes and subthemes were supported by the quotes from the participants. RESULTS: Volunteers described comprehension of informed consent from different perspectives. They reported that various components of the informed consent such as study procedure, confidentiality, risk and benefits were grasped during engagement meetings. Furthermore, the volunteers' decision to participate in the registration cohort was voluntary. However, trial aspects such as health insurance, free condoms, and medical checkups could have indirectly influenced their reluctance to withdraw from the study. CONCLUSION: Engagement meetings may increase the comprehension of informed consent among potential participants for HIV clinical trials. However, trial incentives may influence participation, and thus future research should focus on the challenges of giving incentives in the study. This will ensure comprehension and voluntary participation in the context of HIV clinical trials.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Humanos , Vacunas contra el SIDA/uso terapéutico , Comprensión , Infecciones por VIH/prevención & control , Infecciones por VIH/tratamiento farmacológico , Consentimiento Informado , Tanzanía , Ensayos Clínicos Fase II como Asunto , Investigación Cualitativa
15.
Carbohydr Polym ; 332: 121844, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431385

RESUMEN

Anti-viral and anti-tumor vaccines aim to induce cytotoxic CD8+ T cells (CTL) and antibodies. Conserved protein antigens, such as p24 from human immunodeficiency virus, represent promising component for elicitation CTLs, nevertheless with suboptimal immunogenicity, if formulated as recombinant protein. To enhance immunogenicity and CTL response, recombinant proteins may be targeted to dendritic cells (DC) for cross presentation on MHCI, where mannose receptor and/or other lectin receptors could play an important role. Here, we constructed liposomal carrier-based vaccine composed of recombinant p24 antigen bound by metallochelating linkage onto surface of nanoliposomes with surface mannans coupled by aminooxy ligation. Generated mannosylated proteonanoliposomes were analyzed by dynamic light scattering, isothermal titration, and electron microscopy. Using murine DC line MutuDC and murine bone marrow derived DC (BMDC) we evaluated their immunogenicity and immunomodulatory activity. We show that p24 mannosylated proteonanoliposomes activate DC for enhanced MHCI, MHCII and CD40, CD80, and CD86 surface expression both on MutuDC and BMDC. p24 mannosylated liposomes were internalized by MutuDC with p24 intracellular localization within 1 to 3 h. The combination of metallochelating and aminooxy ligation could be used simultaneously to generate nanoliposomal adjuvanted recombinant protein-based vaccines versatile for combination of recombinant antigens relevant for antibody and CTL elicitation.


Asunto(s)
Vacunas contra el SIDA , VIH-1 , Animales , Humanos , Ratones , Antígenos , Células Dendríticas , Liposomas/metabolismo , Mananos/metabolismo , Proteínas Recombinantes/metabolismo , Vacunas contra el SIDA/inmunología
16.
Vaccine ; 42(9): 2347-2356, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38443277

RESUMEN

Human immunodeficiency virus (HIV) infects and depletes CD4+ T-cells, resulting in Acquired Immunodeficiency Syndrome (AIDS) and death. Despite numerous clinical trials, there is no licensed HIV vaccine. The HIV envelope glycoprotein (env) is a major target for vaccine development, especially for the development of antibody-mediated protection. In this study, we used J paramyxovirus (JPV) as a viral vector to express HIV-env. We replaced the JPV small hydrophobic (SH) gene with HIV-env (rJPV-env). Intranasal rJPV-env immunization induced anti-HIV-gp120 IgG antibodies in mice. Furthermore, we examined the immunogenicity of homologous and heterologous prime/boost regimens with rJPV-env, parainfluenza virus 5 (rPIV5)-vectored HIV-env, and HIV-Gag-Env virus-like particles (VLPs). The rJPV-env/rPIV5-env heterologous prime/boost regimen induced the strongest humoral and cellular responses. Introducing a third dose of immunization, mice that received a viral-vectored prime had high levels of HIV-env-specific cellular responses, with group rJPV-env/rPIV5-env/VLP having the highest. Together, this work indicates that a heterologous combination of viral-vectored HIV-env vaccines and a HIV-Gag-Env VLP induces high levels of humoral and cellular responses against HIV in mice.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Humanos , Animales , Ratones , Vectores Genéticos , Linfocitos T , Anticuerpos Anti-VIH , Infecciones por VIH/prevención & control
17.
Elife ; 122024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385642

RESUMEN

CD4 T follicular helper cells (Tfh) are essential for establishing serological memory and have distinct helper attributes that impact both the quantity and quality of the antibody response. Insights into Tfh subsets that promote antibody persistence and functional capacity can critically inform vaccine design. Based on the Tfh profiles evoked by the live attenuated measles virus vaccine, renowned for its ability to establish durable humoral immunity, we investigated the potential of a Tfh1/17 recall response during the boost phase to enhance persistence of HIV-1 Envelope (Env) antibodies in rhesus macaques. Using a DNA-prime encoding gp160 antigen and Tfh polarizing cytokines (interferon protein-10 (IP-10) and interleukin-6 (IL-6)), followed by a gp140 protein boost formulated in a cationic liposome-based adjuvant (CAF01), we successfully generated germinal center (GC) Tfh1/17 cells. In contrast, a similar DNA-prime (including IP-10) followed by gp140 formulated with monophosphoryl lipid A (MPLA) +QS-21 adjuvant predominantly induced GC Tfh1 cells. While the generation of GC Tfh1/17 cells with CAF01 and GC Tfh1 cells with MPLA +QS-21 induced comparable peak Env antibodies, the latter group demonstrated significantly greater antibody concentrations at week 8 after final immunization which persisted up to 30 weeks (gp140 IgG ng/ml- MPLA; 5500; CAF01, 2155; p<0.05). Notably, interferon γ+Env-specific Tfh responses were consistently higher with gp140 in MPLA +QS-21 and positively correlated with Env antibody persistence. These findings suggest that vaccine platforms maximizing GC Tfh1 induction promote persistent Env antibodies, important for protective immunity against HIV.


Asunto(s)
Vacunas contra el SIDA , VIH-1 , Animales , Macaca mulatta , Quimiocina CXCL10 , Anticuerpos Anti-VIH , ADN
18.
J Virol ; 98(3): e0172023, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38412036

RESUMEN

The rational design of HIV-1 immunogens to trigger the development of broadly neutralizing antibodies (bNAbs) requires understanding the viral evolutionary pathways influencing this process. An acute HIV-1-infected individual exhibiting >50% plasma neutralization breadth developed neutralizing antibody specificities against the CD4-binding site (CD4bs) and V1V2 regions of Env gp120. Comparison of pseudoviruses derived from early and late autologous env sequences demonstrated the development of >2 log resistance to VRC13 but not to other CD4bs-specific bNAbs. Mapping studies indicated that the V3 and CD4-binding loops of Env gp120 contributed significantly to developing resistance to the autologous neutralizing response and that the CD4-binding loop (CD4BL) specifically was responsible for the developing resistance to VRC13. Tracking viral evolution during the development of this cross-neutralizing CD4bs response identified amino acid substitutions arising at only 4 of 11 known VRC13 contact sites (K282, T283, K421, and V471). However, each of these mutations was external to the V3 and CD4BL regions conferring resistance to VRC13 and was transient in nature. Rather, complete resistance to VRC13 was achieved through the cooperative expression of a cluster of single amino acid changes within and immediately adjacent to the CD4BL, including a T359I substitution, exchange of a potential N-linked glycosylation (PNLG) site to residue S362 from N363, and a P369L substitution. Collectively, our data characterize complex HIV-1 env evolution in an individual developing resistance to a VRC13-like neutralizing antibody response and identify novel VRC13-associated escape mutations that may be important to inducing VRC13-like bNAbs for lineage-based immunogens.IMPORTANCEThe pursuit of eliciting broadly neutralizing antibodies (bNAbs) through vaccination and their use as therapeutics remains a significant focus in the effort to eradicate HIV-1. Key to our understanding of this approach is a more extensive understanding of bNAb contact sites and susceptible escape mutations in HIV-1 envelope (env). We identified a broad neutralizer exhibiting VRC13-like responses, a non-germline restricted class of CD4-binding site antibody distinct from the well-studied VRC01-class. Through longitudinal envelope sequencing and Env-pseudotyped neutralization assays, we characterized a complex escape pathway requiring the cooperative evolution of four amino acid changes to confer complete resistance to VRC13. This suggests that VRC13-class bNAbs may be refractory to rapid escape and attractive for therapeutic applications. Furthermore, the identification of longitudinal viral changes concomitant with the development of neutralization breadth may help identify the viral intermediates needed for the maturation of VRC13-like responses and the design of lineage-based immunogens.


Asunto(s)
Anticuerpos ampliamente neutralizantes , Infecciones por VIH , Humanos , Aminoácidos , Anticuerpos ampliamente neutralizantes/inmunología , Antígenos CD4/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Epítopos , Anticuerpos Anti-VIH , Antígenos VIH , Proteína gp120 de Envoltorio del VIH/genética , Seropositividad para VIH , VIH-1/genética , Vacunas contra el SIDA/inmunología
19.
Biotechnol Lett ; 46(3): 315-354, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403788

RESUMEN

The HIV-1 virus has been regarded as a catastrophe for human well-being. The global incidence of HIV-1-infected individuals is increasing. Hence, development of effective immunostimulatory molecules has recently attracted an increasing attention in the field of vaccine design against HIV-1 infection. In this study, we explored the impacts of CD40L and IFN-γ as immunostimulatory adjuvants for our candidate HIV-1 Nef vaccine in human and mouse using immunoinformatics analyses. Overall, 18 IFN-γ-based vaccine constructs (9 constructs in human and 9 constructs in mouse), and 18 CD40L-based vaccine constructs (9 constructs in human and 9 constructs in mouse) were designed. To find immunogenic epitopes, important characteristics of each component (e.g., MHC-I and MHC-II binding, and peptide-MHC-I/MHC-II molecular docking) were determined. Then, the selected epitopes were applied to create multiepitope constructs. Finally, the physicochemical properties, linear and discontinuous B cell epitopes, and molecular interaction between the 3D structure of each construct and CD40, IFN-γ receptor or toll-like receptors (TLRs) were predicted. Our data showed that the full-length CD40L and IFN-γ linked to the N-terminal region of Nef were capable of inducing more effective immune response than multiepitope vaccine constructs. Moreover, molecular docking of the non-allergenic full-length- and epitope-based CD40L and IFN-γ constructs to their cognate receptors, CD40 and IFN-γ receptors, and TLRs 4 and 5 in mouse were more potent than in human. Generally, these findings suggest that the full forms of these adjuvants could be more efficient for improvement of HIV-1 Nef vaccine candidate compared to the designed multiepitope-based constructs.


Asunto(s)
Vacunas contra el SIDA , VIH-1 , Interferón gamma , Vacunas de Subunidad , Productos del Gen nef del Virus de la Inmunodeficiencia Humana , VIH-1/inmunología , Animales , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/química , Ratones , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/química , Humanos , Interferón gamma/metabolismo , Interferón gamma/inmunología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/química , Adyuvantes Inmunológicos/farmacología , Simulación del Acoplamiento Molecular , Infecciones por VIH/prevención & control , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Ligando de CD40/inmunología , Ligando de CD40/química , Simulación por Computador , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/química , Epítopos/inmunología , Epítopos/química , Vacunas de Subunidades Proteicas
20.
EBioMedicine ; 100: 104987, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38306894

RESUMEN

BACKGROUND: Elicitation of broad immune responses is understood to be required for an efficacious preventative HIV vaccine. This Phase 1 randomized controlled trial evaluated whether administration of vaccine antigens separated at multiple injection sites vs combined, fractional delivery at multiple sites affected T-cell breadth compared to standard, single site vaccination. METHODS: We randomized 90 participants to receive recombinant adenovirus 5 (rAd5) vector with HIV inserts gag, pol and env via three different strategies. The Standard group received vaccine at a single anatomic site (n = 30) compared to two polytopic (multisite) vaccination groups: Separated (n = 30), where antigens were separately administered to four anatomical sites, and Fractioned (n = 30), where fractions of each vaccine component were combined and administered at four sites. All groups received the same total dose of vaccine. FINDINGS: CD8 T-cell response rates and magnitudes were significantly higher in the Fractioned group than Standard for several antigen pools tested. CD4 T-cell response magnitudes to Pol were higher in the Separated than Standard group. T-cell epitope mapping demonstrated greatest breadth in the Fractioned group (median 8.0 vs 2.5 for Standard, Wilcoxon p = 0.03; not significant after multiplicity adjustment for co-primary endpoints). IgG binding antibody response rates to Env were higher in the Standard and Fractioned groups vs Separated group. INTERPRETATION: This study shows that the number of anatomic sites for which a vaccine is delivered and distribution of its antigenic components influences immune responses in humans. FUNDING: National Institute of Allergy and Infectious Diseases, NIH.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Humanos , Epítopos , Linfocitos T CD4-Positivos , Vacunación , Inmunoglobulina G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...