Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Virology ; 566: 143-152, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34929590

RESUMEN

Annual repeat influenza vaccination raises concerns about protective efficacy against mismatched viruses. We investigated the impact of heterologous prime-boost vaccination on inducing cross protection by designing recombinant influenza viruses with chimeric hemagglutinin (HA) carrying M2 extracellular domains (M2e-HA). Heterologous prime-boost vaccination of C57BL/6 mice with M2e-HA chimeric virus more effectively induced M2e and HA stalk specific IgG antibodies correlating with cross protection than homologous prime-boost vaccination. Induction of M2e and HA stalk specific IgG antibodies was compromised in 1-year old mice, indicating significant aging effects on priming subdominant M2e and HA stalk IgG antibody responses. This study demonstrates that a heterologous prime-boost strategy with recombinant influenza virus expressing extra M2e epitopes provides more effective cross protection than homologous vaccination.


Asunto(s)
Envejecimiento/inmunología , Anticuerpos Antivirales/biosíntesis , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Inmunoglobulina G/biosíntesis , Vacunas contra la Influenza/genética , Gripe Humana/prevención & control , Infecciones por Orthomyxoviridae/prevención & control , Factores de Edad , Envejecimiento/genética , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Protección Cruzada , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunización Secundaria/métodos , Inmunogenicidad Vacunal , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/biosíntesis , Gripe Humana/inmunología , Gripe Humana/virología , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Vacunación/métodos , Vacunas Sintéticas , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología
2.
Virology ; 566: 89-97, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894525

RESUMEN

Virus-like particles (VLPs) modified through different molecular technologies are employed as delivery vehicles or platforms for heterologous antigen display. We have recently created a norovirus (NoV) VLP platform, where two influenza antigens, the extracellular domain of matrix protein M2 (M2e) or the stem domain of the major envelope glycoprotein hemagglutinin (HA2) are displayed on the surface of the NoV VLPs by SpyTag/SpyCatcher conjugation. To demonstrate the feasibility of the platform to deliver foreign antigens, this study examined potential interference of the conjugation with induction of antibodies against conjugated M2e peptide, HA2, and NoV VLP carrier. High antibody response was induced by HA2 but not M2e decorated VLPs. Furthermore, HA2-elicited antibodies did not neutralize the homologous influenza virus in vitro. Conjugated NoV VLPs retained intact receptor binding capacity and self-immunogenicity. The results demonstrate that NoV VLPs could be simultaneously used as a platform to deliver foreign antigens and a NoV vaccine.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Hemaglutininas Virales/genética , Inmunoglobulina G/biosíntesis , Vacunas contra la Influenza/genética , Gripe Humana/prevención & control , Infecciones por Orthomyxoviridae/prevención & control , Vacunas de Partículas Similares a Virus/genética , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Femenino , Hemaglutininas Virales/inmunología , Humanos , Inmunoconjugados/genética , Inmunoconjugados/inmunología , Inmunogenicidad Vacunal , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/biosíntesis , Gripe Humana/inmunología , Gripe Humana/virología , Ratones , Ratones Endogámicos BALB C , Norovirus/genética , Norovirus/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Vacunación/métodos , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/biosíntesis , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología
3.
Biochem Biophys Res Commun ; 545: 145-149, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33550095

RESUMEN

In March 2013 it was reported by the World Health Organization (WHO) the first cases of human infections with avian influenza virus A (H7N9). From 2013 to December 2019, 1568 cases have been reported with 616 deaths. H7N9 infection has been associated with high morbidity and mortality rates, and vaccination is currently the most effective way to prevent infections and consequently flu-related severe illness. Developing and producing vaccines against pandemic influenza viruses is the main strategy for a response to a possible pandemic. This study aims to present the production of three industrial lots under current Good Manufacturing Practices (cGMP) of the active antigen used to produce the pandemic influenza vaccine candidate against A(H7N9). These batches were characterized and evaluated for quality standards and tested for immunogenicity in mice. The average yield was 173.50 ± 7.88 µg/mL of hemagglutinin and all the preparations met all the required specifications. The formulated H7N9 vaccine is poorly immunogenic and needs to be adjuvanted with an oil in water emulsion adjuvant (IB160) to achieve a best immune response, in a prime and in a boost scheme. These data are important for initial production planning and preparedness in the case of a H7N9 pandemic.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/biosíntesis , Gripe Humana/prevención & control , Pandemias/prevención & control , Animales , Antígenos Virales/biosíntesis , Antígenos Virales/inmunología , Composición de Medicamentos/métodos , Composición de Medicamentos/estadística & datos numéricos , Industria Farmacéutica/normas , Femenino , Humanos , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/aislamiento & purificación , Gripe Humana/inmunología , Gripe Humana/virología , Ratones , Ratones Endogámicos BALB C , Vacunas de Productos Inactivados/biosíntesis , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/aislamiento & purificación
4.
PLoS Biol ; 18(12): e3001024, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33362243

RESUMEN

Zoonotic avian influenza viruses pose severe health threats to humans. Of several viral subtypes reported, the low pathogenic avian influenza H7N9 virus has since February 2013 caused more than 1,500 cases of human infection with an almost 40% case-fatality rate. Vaccination of poultry appears to reduce human infections. However, the emergence of highly pathogenic strains has increased concerns about H7N9 pandemics. To develop an efficacious H7N9 human vaccine, we designed vaccine viruses by changing the patterns of N-linked glycosylation (NLG) on the viral hemagglutinin (HA) protein based on evolutionary patterns of H7 HA NLG changes. Notably, a virus in which 2 NLG modifications were added to HA showed higher growth rates in cell culture and elicited more cross-reactive antibodies than did other vaccine viruses with no change in the viral antigenicity. Developed into an inactivated vaccine formulation, the vaccine virus with 2 HA NLG additions exhibited much better protective efficacy against lethal viral challenge in mice than did a vaccine candidate with wild-type (WT) HA by reducing viral replication in the lungs. In a ferret model, the 2 NLG-added vaccine viruses also induced hemagglutination-inhibiting antibodies and significantly suppressed viral replication in the upper and lower respiratory tracts compared with the WT HA vaccines. In a mode of action study, the HA NLG modification appeared to increase HA protein contents incorporated into viral particles, which would be successfully translated to improve vaccine efficacy. These results suggest the strong potential of HA NLG modifications in designing avian influenza vaccines.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/metabolismo , Vacunas contra la Influenza/biosíntesis , Células A549 , Animales , Anticuerpos Antivirales/inmunología , Embrión de Pollo , Chlorocebus aethiops , Protección Cruzada/inmunología , Reacciones Cruzadas , Hurones/inmunología , Hurones/metabolismo , Glicosilación , Cobayas , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Inmunogenicidad Vacunal/inmunología , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/farmacología , Gripe Humana/inmunología , Ratones , Vacunación/métodos , Células Vero
5.
PLoS One ; 15(12): e0239112, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33382708

RESUMEN

Influenza virus A is a significant agent involved in the outbreak of worldwide epidemics, causing millions of fatalities around the world by respiratory diseases and seasonal illness. Many projects had been conducting to investigate recovered infected patients for therapeutic vaccines that have broad-spectrum activity. With the aid of the computational approach in biology, the designation for a vaccine model is more accessible. We developed an in silico protocol called iBRAB to design a broad-reactive Fab on a wide range of influenza A virus. The Fab model was constructed based on sequences and structures of available broad-spectrum Abs or Fabs against a wide range of H1N1 influenza A virus. As a result, the proposed Fab model followed iBRAB has good binding affinity over 27 selected HA of different strains of H1 influenza A virus, including wild-type and mutated ones. The examination also took by computational tools to fasten the procedure. This protocol could be applied for a fast-designed therapeutic vaccine against different types of threats.


Asunto(s)
Anticuerpos Antivirales/química , Antígenos Virales/química , Diseño de Fármacos , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Fragmentos Fab de Inmunoglobulinas/química , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/prevención & control , Secuencia de Aminoácidos , Anticuerpos Antivirales/genética , Antígenos Virales/genética , Antígenos Virales/inmunología , Sitios de Unión , Simulación por Computador , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/genética , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/biosíntesis , Gripe Humana/inmunología , Gripe Humana/virología , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica
6.
Virology ; 550: 51-60, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32882637

RESUMEN

Influenza virus neuraminidase (NA) contains a universally conserved epitope (NAe, NA222-230). However, no studies have reported vaccines targeting this NA conserved epitope and inducing antibodies recognizing NAe. The extracellular domain of M2 (M2e) is considered as an attractive target for a universal influenza vaccine. We generated recombinant influenza H1N1 viruses expressing conserved epitopes in hemagglutinin (HA) molecules: NAe (NAe-HA) or M2e (M2e-HA) within the HA head domain. Inactivated recombinant NAe-HA and M2e-HA viruses were more effective in inducing IgG antibodies specific for an inserted conserved epitope than live recombinant virus. Recombinant inactivated M2e-HA virus vaccination induced cross protection against H3N2 virus with less weight loss compared to NAe-HA and was more effective in inducing humoral and cellular M2e immune responses. This study provides insight into developing recombinant influenza virus vaccines compatible with current platforms to induce antibody responses to conserved poorly immunogenic epitopes.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/biosíntesis , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Virus Reordenados/inmunología , Proteínas de la Matriz Viral/inmunología , Animales , Anticuerpos Antivirales/biosíntesis , Protección Cruzada , Epítopos/química , Epítopos/inmunología , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Inmunidad Celular/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Ratones , Ratones Endogámicos BALB C , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/efectos de los fármacos , Virus Reordenados/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Vacunación/métodos , Vacunas de Productos Inactivados , Proteínas de la Matriz Viral/genética
8.
Trends Biotechnol ; 38(9): 943-947, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32600777

RESUMEN

Vaccine solutions rarely reach the public until after an outbreak abates; an Ebola vaccine was approved 5 years after peak outbreak and SARS, MERS, and Zika vaccines are still in clinical development. Despite massive leaps forward in rapid science, other regulatory bottlenecks are hamstringing the global effort for pandemic vaccines.


Asunto(s)
Infecciones por Coronavirus/prevención & control , Aprobación de Drogas/organización & administración , Fiebre Hemorrágica Ebola/prevención & control , Gripe Humana/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , Vacunas Virales/biosíntesis , Betacoronavirus/efectos de los fármacos , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Vacunas contra el Virus del Ébola/administración & dosificación , Vacunas contra el Virus del Ébola/biosíntesis , Ebolavirus/efectos de los fármacos , Ebolavirus/inmunología , Ebolavirus/patogenicidad , Europa (Continente)/epidemiología , Salud Global/tendencias , Regulación Gubernamental , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/biosíntesis , Gripe Humana/epidemiología , Gripe Humana/inmunología , Gripe Humana/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , Neumonía Viral/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/epidemiología , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/prevención & control , Síndrome Respiratorio Agudo Grave/virología , Estados Unidos/epidemiología , Vacunas Virales/administración & dosificación , Virus Zika/efectos de los fármacos , Virus Zika/inmunología , Virus Zika/patogenicidad , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/prevención & control , Infección por el Virus Zika/virología
9.
Methods Mol Biol ; 2095: 141-168, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31858467

RESUMEN

The global demand for complex biopharmaceuticals like recombinant proteins, vaccines, or viral vectors is steadily rising. To further improve process productivity and to reduce production costs, process intensification can contribute significantly. The design and optimization of perfusion processes toward very high cell densities require careful selection of strategies for optimal perfusion rate control. In this chapter, various options are discussed to guarantee high cell-specific virus yields and to achieve virus concentrations up to 1010 virions/mL. This includes reactor volume exchange regimes and perfusion rate control based on process variables such as cell concentration and metabolite or by-product concentration. Strategies to achieve high cell densities by perfusion rate control and their experimental implementation are described in detail for pseudo-perfusion or small-scale perfusion bioreactor systems. Suspension cell lines such as MDCK, BHK-21, EB66®, and AGE1.CR.pIX® are used to exemplify production of influenza, yellow fever, Zika, and modified vaccinia Ankara virus.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/instrumentación , Técnicas de Cultivo Celular por Lotes/métodos , Reactores Biológicos , Perfusión/métodos , Vacunas/biosíntesis , Cultivo de Virus/métodos , Animales , Recuento de Células , Línea Celular , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Virus de la Influenza A/crecimiento & desarrollo , Vacunas contra la Influenza/biosíntesis , Vacunas/inmunología , Vacunas/aislamiento & purificación , Virosis , Replicación Viral , Virus de la Fiebre Amarilla/crecimiento & desarrollo , Virus Zika/crecimiento & desarrollo
10.
Influenza Other Respir Viruses ; 14(2): 237-243, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31837101

RESUMEN

BACKGROUND: This report summarizes the discussions and conclusions from the "Immunological Assays and Correlates of Protection for Next-Generation Influenza Vaccines" meeting which took place in Siena, Italy, from March 31, 2019, to April 2, 2019. CONCLUSIONS: Furthermore, we review current correlates of protection against influenza virus infection and disease and their usefulness for the development of next generation broadly protective and universal influenza virus vaccines.


Asunto(s)
Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Pruebas de Inhibición de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunidad Mucosa , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/biosíntesis , Gripe Humana/prevención & control , Modelos Animales , Neuraminidasa/sangre , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Pruebas Serológicas/métodos , Vacunación
11.
PLoS One ; 14(8): e0220803, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31404117

RESUMEN

Since 1997, the highly pathogenic influenza H5N1 virus has spread from Hong Kong. According to the WHO bulletin report, the H5N1 virus is a zoonotic disease threat that has infected more than 850 humans, causing over 450 deaths. In addition, an outbreak of another new and highly pathogenic influenza virus (H7N9) occurred in 2013 in China. These highly pathogenic influenza viruses could potentially cause a worldwide pandemic. it is crucial to develop a rapid production platform to meet this surge demand against any possible influenza pandemic. A potential solution for this problem is the use of cell-based bioreactors for rapid vaccine production. These novel bioreactors, used for cell-based vaccine production, possess various advantages. For example, they enable a short production time, allow for the handling highly pathogenic influenza in closed environments, and can be easily scaled up. In this study, two novel disposable cell-based bioreactors, BelloCell and TideCell, were used to produce H5N1 clade II and H7N9 candidate vaccine viruses (CVVs). Madin-Darby canine kidney (MDCK) cells were used for the production of these influenza CVVs. A novel bench-scale bioreactor named BelloCell bioreactor was used in the study. All culturing conditions were tested and scaled to 10 L industrial-scale bioreactor known as TideCell002. The performances of between BelloCell and TideCell were similar in cell growth, the average MDCK cell doubling time was slightly decreased to 25 hours. The systems yielded approximately 39.2 and 18.0 µg/ml of HA protein with the 10-liter TideCell002 from the H5N1 clade II and H7N9 CVVs, respectively. The results of this study not only highlight the overall effectiveness of these bioreactors but also illustrate the potential of maintaining the same outcome when scaled up to industrial production, which has many implications for faster vaccine production. Although additional studies are required for process optimization, the results of this study are promising and show that oscillating bioreactors may be a suitable platform for pandemic influenza virus production.


Asunto(s)
Reactores Biológicos , Equipos Desechables , Subtipo H5N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H7N9 del Virus de la Influenza A/crecimiento & desarrollo , Vacunas contra la Influenza/biosíntesis , Animales , Chlorocebus aethiops , Perros , Humanos , Gripe Humana/epidemiología , Gripe Humana/virología , Células de Riñón Canino Madin Darby/virología , Pandemias , Células Vero/virología
12.
Rev Med Virol ; 29(6): e2074, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31334909

RESUMEN

Despite tremendous efforts toward vaccination, influenza remains an ongoing global threat. The induction of strain-specific neutralizing antibody responses is a common phenomenon during vaccination with the current inactivated influenza vaccines, so the protective effect of these vaccines is mostly strain-specific. There is an essential need for the development of next-generation vaccines, with a broad range of immunogenicity against antigenically drifted or shifted influenza viruses. Here, we evaluate the potential of whole inactivated vaccines, based on chemical and physical methods, as well as new approaches to generate cross-protective immune responses. We also consider the mechanisms by which some of these vaccines may induce CD8+ T-cells cross-reactivity with different strains of influenza. In this review, we have focused on conventional and novel methods for production of whole inactivated influenza vaccine. As well as chemical modification, using formaldehyde or ß-propiolactone and physical manipulation by ultraviolet radiation or gamma-irradiation, novel approaches, including visible ultrashort pulsed laser, and low-energy electron irradiation are discussed. These two latter methods are considered to be attractive approaches to design more sophisticated vaccines, due to their ability to maintain most of the viral antigenic properties during inactivation and potential to produce cross-protective immunity. However, further studies are needed to validate them before they can replace traditional methods for vaccine manufacturing.


Asunto(s)
Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/biosíntesis , Vacunas contra la Influenza/inmunología , Vacunas de Productos Inactivados/biosíntesis , Vacunas de Productos Inactivados/inmunología , Vacunología/métodos , Animales , Humanos , Gripe Humana/prevención & control , Infecciones por Orthomyxoviridae/prevención & control
13.
PLoS Comput Biol ; 15(4): e1006944, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30973879

RESUMEN

The best measure to limit spread of contagious diseases caused by influenza A viruses (IAVs) is annual vaccination. The growing global demand for low-cost vaccines requires the establishment of high-yield production processes. One possible option to address this challenge is the engineering of novel vaccine producer cell lines by manipulating gene expression of host cell factors relevant for virus replication. To support detailed characterization of engineered cell lines, we fitted an ordinary differential equation (ODE)-based model of intracellular IAV replication previously established by our group to experimental data obtained from infection studies in human A549 cells. Model predictions indicate that steps of viral RNA synthesis, their regulation and particle assembly and virus budding are promising targets for cell line engineering. The importance of these steps was confirmed in four of five single gene overexpression cell lines (SGOs) that showed small, but reproducible changes in early dynamics of RNA synthesis and virus release. Model-based analysis suggests, however, that overexpression of the selected host cell factors negatively influences specific RNA synthesis rates. Still, virus yield was rescued by an increase in the virus release rate. Based on parameter estimations obtained for SGOs, we predicted that there is a potential benefit associated with overexpressing multiple host cell genes in one cell line, which was validated experimentally. Overall, this model-based study on IAV replication in engineered cell lines provides a step forward in the dynamic and quantitative characterization of IAV-host cell interactions. Furthermore, it suggests targets for gene editing and indicates that overexpression of multiple host cell factors may be beneficial for the design of novel producer cell lines.


Asunto(s)
Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Virus de la Influenza A/fisiología , Modelos Biológicos , Replicación Viral/fisiología , Células A549 , Transporte Activo de Núcleo Celular , Animales , Biología Computacional , Simulación por Computador , Perros , Ingeniería Genética , Genoma Viral , Humanos , Virus de la Influenza A/genética , Vacunas contra la Influenza/biosíntesis , Cinética , Células de Riñón Canino Madin Darby , Replicación Viral/genética
15.
Vaccine ; 37(12): 1614-1621, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30773402

RESUMEN

Influenza vaccine manufacturers lack tools, whatever the involved production bioprocess (egg or cell-based), to precisely and accurately evaluate vaccine antigen content from samples. Indeed, the gold standard single-radial immunodiffusion (SRID) assay, which remains the only validated assay for the evaluation of influenza vaccine potency, is criticized by the scientific community and regulatory agencies since a decade for its high variability, lack of flexibility and low sensitivity. We hereby report an imaging surface plasmon resonance (SPRi) assay for the quantification of both inactivated vaccine influenza antigens and viral particles derived from egg- and cell-based production samples, respectively. The assay, based on fetuin-hemagglutinin interactions, presents higher reproducibility (<3%) and a greater analytical range (0.03-20 µg/mL) than SRID for bulk monovalent and trivalent vaccine and its limit of detection was evaluated to be 100 times lower than the SRID's one. Finally, viral particles production through cell culture-based bioprocess was also successfully monitored using our SPRi-based assay and a clear correlation was found between the biosensor response and total virus particle content.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunoensayo/métodos , Vacunas contra la Influenza/biosíntesis , Vacunas contra la Influenza/inmunología , Resonancia por Plasmón de Superficie/métodos , Animales , Células Cultivadas , Glicoproteínas Hemaglutininas del Virus de la Influenza/biosíntesis , Humanos , Inmunogenicidad Vacunal , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/normas , Gripe Humana/prevención & control , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Potencia de la Vacuna
16.
Biochem Soc Trans ; 47(1): 251-264, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30647144

RESUMEN

Influenza-related pathologies affect millions of people each year and the impact of influenza on the global economy and in our everyday lives has been well documented. Influenza viruses not only infect humans but also are zoonotic pathogens that infect various avian and mammalian species, which serve as viral reservoirs. While there are several strains of influenza currently circulating in animal species, H2 influenza viruses have a unique history and are of particular concern. The 1957 'Asian Flu' pandemic was caused by H2N2 influenza viruses and circulated among humans from 1957 to 1968 before it was replaced by viruses of the H3N2 subtype. This review focuses on avian influenza viruses of the H2 subtype and the role these viruses play in human infections. H2 influenza viral infections in humans would present a unique challenge to medical and scientific researchers. Much of the world's population lacks any pre-existing immunity to the H2N2 viruses that circulated 50-60 years ago. If viruses of this subtype began circulating in the human population again, the majority of people alive today would have no immunity to H2 influenza viruses. Since H2N2 influenza viruses have effectively circulated in people in the past, there is a need for additional research to characterize currently circulating H2 influenza viruses. There is also a need to stockpile vaccines that are effective against both historical H2 laboratory isolates and H2 viruses currently circulating in birds to protect against a future pandemic.


Asunto(s)
Subtipo H2N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/biosíntesis , Gripe Aviar/epidemiología , Gripe Aviar/prevención & control , Pandemias/prevención & control , Animales , Sitios de Unión , Aves , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/transmisión , Ácido N-Acetilneuramínico/metabolismo , Porcinos
17.
Virology ; 526: 125-137, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30388628

RESUMEN

The development of a universal influenza vaccine has become a major effort to combat the high mutation rate of influenza. To explore the use of the highly conserved stem region of hemagglutinin (HA) as a universal vaccine, we produced HA-stem-based protein using yeast expression systems. The glycosylation effects on the immunogenicity and protection activities were investigated. The yield of the A/Brisbane/59/2007 HA stem produced from Pichia pastoris reached 100 mg/l. The immunogenicity of HA stem proteins in various glycoforms was further investigated and compared. All glycoforms of the HA stem protein can induce cross-reactive antibody responses, antibody-dependent cellular cytotoxicity (ADCC)-mediated protection as well as T-cell responses, with broad protection in mice. The monoglycosylated form of the A/Brisbane/59/2007 HA stem produced in yeast, together with the glycolipid C34 as the adjuvant, can elicit greater ADCC responses, better neutralizing activities against heterologous strains, and broader protection in mice.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Pichia/metabolismo , Adyuvantes Inmunológicos , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Técnicas de Cultivo Celular por Lotes , Reacciones Cruzadas , Modelos Animales de Enfermedad , Femenino , Glicosilación , Glicoproteínas Hemaglutininas del Virus de la Influenza/biosíntesis , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Vacunas contra la Influenza/biosíntesis , Vacunas contra la Influenza/metabolismo , Ratones , Ratones Endogámicos BALB C , Pichia/genética , Linfocitos T/metabolismo
18.
Curr Pharm Des ; 24(12): 1317-1324, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29521217

RESUMEN

BACKGROUND: Influenza is a widely distributed infection that almost annually causes seasonal epidemics. The current egg-based platforms for influenza vaccine production are facing a number of challenges and are failing to satisfy the global demand in the case of pandemics due to the long production time. Recombinant vaccines are an alternative that can be quickly produced in high quantities in standard expression systems. METHODS: Plants may become a promising biofactory for the large-scale production of recombinant proteins due to low cost, scalability, and safety. Plant-based expression systems have been used to produce recombinant vaccines against influenza based on two targets; the major surface antigen hemagglutinin and the transmembrane protein M2. RESULTS: Different forms of recombinant hemagglutinin were successfully expressed in plants, and some plantproduced vaccines based on hemagglutinin were successfully tested in clinical trials. However, these vaccines remain strain specific, while the highly conserved extracellular domain of the M2 protein (M2e) could be used for the development of a universal influenza vaccine. In this review, the state of the art in developing plant-produced influenza vaccines based on M2e is presented and placed in perspective. A number of strategies to produce M2e in an immunogenic form in plants have been reported, including its presentation on the surface of plant viruses or virus-like particles formed by capsid proteins, linkage to bacterial flagellin, and targeting to protein bodies. CONCLUSION: Some M2e-based vaccine candidates were produced at high levels (up to 1 mg/g of fresh plant tissue) and were shown to be capable of stimulating broad-range protective immunity.


Asunto(s)
Productos Biológicos/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Nicotiana/química , Animales , Productos Biológicos/metabolismo , Humanos , Vacunas contra la Influenza/biosíntesis , Vacunas Sintéticas/biosíntesis , Vacunas Sintéticas/inmunología
19.
Vaccine ; 36(22): 3112-3123, 2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28291648

RESUMEN

Safer and broadly protective vaccines are needed to cope with the continuous evolution of circulating influenza virus strains and promising approaches based on the expression of multiple hemagglutinins (HA) in a virus-like particle (VLP) have been proposed. However, expression of multiple genes in the same vector can lead to its instability due to tandem repetition of similar sequences. By combining stable with transient expression systems we can rationally distribute the number of genes to be expressed per platform and thus mitigate this risk. In this work, we developed a modular system comprising stable and baculovirus-mediated expression in insect cells for production of multi-HA influenza enveloped VLPs. First, a stable insect High Five cell population expressing two different HA proteins from subtype H3 was established. Infection of this cell population with a baculovirus vector encoding three other HA proteins from H3 subtype proved to be as competitive as traditional co-infection approaches in producing a pentavalent H3 VLP. Aiming at increasing HA expression, the stable insect cell population was infected at increasingly higher cell concentrations (CCI). However, cultures infected at CCI of 3×106cells/mL showed lower HA titers per cell in comparison to standard CCI of 2×106cells/mL, a phenomenon named "cell density effect". To lessen the negative impact of this phenomenon, a tailor-made refeed strategy was designed based on the exhaustion of key nutrients during cell growth. Noteworthy, cultures supplemented and infected at a CCI of 4×106cells/mL showed comparable HA titers per cell to those of CCI of 2×106cells/mL, thus leading to an increase of up to 4-fold in HA titers per mL. Scalability of the modular strategy herein proposed was successfully demonstrated in 2L stirred tank bioreactors with comparable HA protein levels observed between bioreactor and shake flasks cultures. Overall, this work demonstrates the suitability of combining stable with baculovirus-mediated expression in insect cells as an efficient platform for production of multi-HA influenza VLPs, surpassing the drawbacks of traditional co-infection strategies and/or the use of larger, unstable vectors.


Asunto(s)
Baculoviridae/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Vacunas contra la Influenza/biosíntesis , Vacunas de Partículas Similares a Virus/biosíntesis , Animales , Reactores Biológicos , Técnicas de Cultivo de Célula , Línea Celular , Vacunas contra la Influenza/inmunología , Insectos/citología , Vacunas de Partículas Similares a Virus/inmunología
20.
Arch Virol ; 163(4): 877-886, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29270718

RESUMEN

Vaccination is the most effective method for the prevention of influenza virus infection. Currently used influenza vaccines that target the highly polymorphic viral surface antigens can provide protection when well matched with circulating virus strains. Antigenic drift or cyclically occurring pandemics may hamper the efficacy of these vaccines, which are chosen prior to each flu season. Therefore, a universal vaccine, designed to induce broadly cross-protective immunity against the highly conserved internal antigens M1 and nucleoprotein could provide durable protection against various influenza virus subtypes, and it could also reduce the impact of pandemic influenza, which occurs less frequently. Here, we describe a new influenza vaccine candidate in which two highly conserved antigens, nucleoprotein (NP) and matrix (M1), are simultaneously expressed from a bicistronic vector termed pIRESM1/NP. Mice were immunized intradermally four times with the pIRESM1/NP construct. The protection efficacy of the gene-based vaccine was assessed by IFN-γ and Granzyme B ELISpot assays, follow-up observation of weight loss, and survival rates of the mice groups against lethal challenges with influenza A virus subtypes H1N1 and H5N1. The group that received pIRESM1/NP showed full protection against disease following lethal challenge with H1N1 and H5N1. This group also generated significantly higher host immune cellular responses than the other groups. These results demonstrate that a DNA vaccine strategy based on co-expression of the M1 and NP proteins could provide an effective way to control influenza virus infection.


Asunto(s)
Antígenos Virales/inmunología , Vacunas contra la Influenza/genética , Nucleoproteínas/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Proteínas de la Matriz Viral/inmunología , Animales , Antígenos Virales/genética , Línea Celular , Cricetulus , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/virología , Expresión Génica , Granzimas/genética , Granzimas/inmunología , Humanos , Inmunidad Celular/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/biosíntesis , Inyecciones Intradérmicas , Interferón gamma/genética , Interferón gamma/inmunología , Ratones , Ratones Endogámicos BALB C , Nucleoproteínas/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Vacunación , Vacunas de ADN , Proteínas de la Matriz Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...