Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Front Immunol ; 12: 729086, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512663

RESUMEN

A successful malaria transmission blocking vaccine (TBV) requires the induction of a high antibody titer that leads to abrogation of parasite traversal of the mosquito midgut following ingestion of an infectious bloodmeal, thereby blocking the cascade of secondary human infections. Previously, we developed an optimized construct UF6b that elicits an antigen-specific antibody response to a neutralizing epitope of Anopheline alanyl aminopeptidase N (AnAPN1), an evolutionarily conserved pan-malaria mosquito midgut-based TBV target, as well as established a size-controlled lymph node targeting biodegradable nanoparticle delivery system that leads to efficient and durable antigen-specific antibody responses using the model antigen ovalbumin. Herein, we demonstrate that co-delivery of UF6b with the adjuvant CpG oligodeoxynucleotide immunostimulatory sequence (ODN ISS) 1018 using this biodegradable nanoparticle vaccine delivery system generates an AnAPN1-specific immune response that blocks parasite transmission in a standard membrane feeding assay. Importantly, this platform allows for antigen dose-sparing, wherein lower antigen payloads elicit higher-quality antibodies, therefore less antigen-specific IgG is needed for potent transmission-reducing activity. By targeting lymph nodes directly, the resulting immunopotentiation of AnAPN1 suggests that the de facto assumption that high antibody titers are needed for a TBV to be successful needs to be re-examined. This nanovaccine formulation is stable at -20°C storage for at least 3 months, an important consideration for vaccine transport and distribution in regions with poor healthcare infrastructure. Together, these data support further development of this nanovaccine platform for malaria TBVs.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Anopheles/inmunología , Ganglios Linfáticos/efectos de los fármacos , Vacunas contra la Malaria/farmacología , Malaria/prevención & control , Nanopartículas , Oligodesoxirribonucleótidos/farmacología , Plasmodium/inmunología , Desarrollo de Vacunas , Animales , Anopheles/parasitología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antiprotozoarios/sangre , Antígenos CD13/antagonistas & inhibidores , Antígenos CD13/inmunología , Antígenos CD13/metabolismo , Composición de Medicamentos , Epítopos , Femenino , Interacciones Huésped-Parásitos , Inmunoglobulina G/sangre , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/parasitología , Malaria/inmunología , Malaria/parasitología , Malaria/transmisión , Vacunas contra la Malaria/inmunología , Ratones , Nanomedicina , Plasmodium/patogenicidad , Vacunación
2.
Front Immunol ; 12: 690348, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305923

RESUMEN

The hurdles to effective blood stage malaria vaccine design include immune evasion tactics used by the parasite such as redundant invasion pathways and antigen variation among circulating parasite strains. While blood stage malaria vaccine development primarily focuses on eliciting optimal humoral responses capable of blocking erythrocyte invasion, clinically-tested Plasmodium falciparum (Pf) vaccines have not elicited sterile protection, in part due to the dramatically high levels of antibody needed. Recent development efforts with non-redundant, conserved blood stage antigens suggest both high antibody titer and rapid antibody binding kinetics are important efficacy factors. Based on the central role of helper CD4 T cells in development of strong, protective immune responses, we systematically analyzed the class II epitope content in five leading Pf blood stage antigens (RH5, CyRPA, RIPR, AMA1 and EBA175) using in silico, in vitro, and ex vivo methodologies. We employed in silico T cell epitope analysis to enable identification of 67 HLA-restricted class II epitope clusters predicted to bind a panel of nine HLA-DRB1 alleles. We assessed a subset of these for HLA-DRB1 allele binding in vitro, to verify the in silico predictions. All clusters assessed (40 clusters represented by 46 peptides) bound at least two HLA-DR alleles in vitro. The overall epitope prediction to in vitro HLA-DRB1 allele binding accuracy was 71%. Utilizing the set of RH5 class II epitope clusters (10 clusters represented by 12 peptides), we assessed stimulation of T cells collected from HLA-matched RH5 vaccinees using an IFN-γ T cell recall assay. All clusters demonstrated positive recall responses, with the highest responses - by percentage of responders and response magnitude - associated with clusters located in the N-terminal region of RH5. Finally, a statistically significant correlation between in silico epitope predictions and ex vivo IFN-γ recall response was found when accounting for HLA-DR matches between the epitope predictions and donor HLA phenotypes. This is the first comprehensive analysis of class II epitope content in RH5, CyRPA, RIPR, AMA1 and EBA175 accompanied by in vitro HLA binding validation for all five proteins and ex vivo T cell response confirmation for RH5.


Asunto(s)
Antígenos de Protozoos/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Epítopos de Linfocito T/inmunología , Vacunas contra la Malaria/farmacología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/parasitología , Proteínas Portadoras/inmunología , Proteínas Portadoras/farmacología , Antígenos HLA-DR/inmunología , Interacciones Huésped-Parásitos , Humanos , Interferón gamma/metabolismo , Vacunas contra la Malaria/inmunología , Malaria Falciparum/sangre , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/farmacología
3.
Front Immunol ; 12: 689920, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34168657

RESUMEN

An effective malaria vaccine must prevent disease in a range of populations living in regions with vastly different transmission rates and protect against genetically-diverse Plasmodium falciparum (Pf) strains. The protective efficacy afforded by the currently licensed malaria vaccine, Mosquirix™, promotes strong humoral responses to Pf circumsporozoite protein (CSP) 3D7 but protection is limited in duration and by strain variation. Helper CD4 T cells are central to development of protective immune responses, playing roles in B cell activation and maturation processes, cytokine production, and stimulation of effector T cells. Therefore, we took advantage of recent in silico modeling advances to predict and analyze human leukocyte antigen (HLA)-restricted class II epitopes from PfCSP - across the entire PfCSP 3D7 sequence as well as in 539 PfCSP sequence variants - with the goal of improving PfCSP-based malaria vaccines. Specifically, we developed a systematic workflow to identify peptide sequences capable of binding HLA-DR in a context relevant to achieving broad human population coverage utilizing cognate T cell help and with limited T regulatory cell activation triggers. Through this workflow, we identified seven predicted class II epitope clusters in the N- and C-terminal regions of PfCSP 3D7 and an additional eight clusters through comparative analysis of 539 PfCSP sequence variants. A subset of these predicted class II epitope clusters was synthesized as peptides and assessed for HLA-DR binding in vitro. Further, we characterized the functional capacity of these peptides to prime and activate human peripheral blood mononuclear cells (PBMCs), by monitoring cytokine response profiles using MIMIC® technology (Modular IMmune In vitro Construct). Utilizing this decision framework, we found sufficient differential cellular activation and cytokine profiles among HLA-DR-matched PBMC donors to downselect class II epitope clusters for inclusion in a vaccine targeting PfCSP. Importantly, the downselected clusters are not highly conserved across PfCSP variants but rather, they overlap a hypervariable region (TH2R) in the C-terminus of the protein. We recommend assessing these class II epitope clusters within the context of a PfCSP vaccine, employing a test system capable of measuring immunogenicity across a broad set of HLA-DR alleles.


Asunto(s)
Antígenos de Protozoos/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Diseño de Fármacos , Epítopos de Linfocito T/inmunología , Vacunas contra la Malaria/farmacología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/farmacología , Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/parasitología , Células Cultivadas , Diseño Asistido por Computadora , Citocinas/metabolismo , Antígenos HLA-DR/inmunología , Ensayos Analíticos de Alto Rendimiento , Interacciones Huésped-Parásitos , Humanos , Activación de Linfocitos/efectos de los fármacos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/farmacología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología , Vacunología , Flujo de Trabajo
4.
Parasitol Int ; 84: 102411, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34166786

RESUMEN

An estimated 229 million cases of malaria occurred worldwide in 2019. Both, Plasmodium falciparum and P. vivax are responsible for most of the malaria disease burden in the world. Despite difficulties in obtaining an accurate number, the global estimates of cases in 2019 are approximately 229 million of which 2.8% are due to P. vivax, and the total number of malaria deaths are approximately 409 million. Regional elimination or global eradication of malaria will be a difficult task, particularly for P. vivax due to the particular biological features related to the hypnozoite, leading to relapse. Countries that have shown successful episodes of a decrease in P. falciparum malaria, are left with remaining P. vivax malaria cases. This is caused by the mechanism that the parasite has evolved to remain dormant in the liver forming hypnozoites. Furthermore, while clinical trials of vaccines against P. falciparum are making fast progress, a very different picture is seen with P. vivax, where only few candidates are currently active in clinical trials. We discuss the challenge that represent the hypnozoite for P. vivax vaccine development, the potential of Controlled Human Malaria Challenges (CHMI) and the leading vaccine candidates assessed in clinical trials.


Asunto(s)
Vacunas contra la Malaria , Malaria Vivax/prevención & control , Plasmodium vivax/inmunología , Animales , Humanos , Vacunas contra la Malaria/análisis , Vacunas contra la Malaria/farmacología , Vacunas contra la Malaria/uso terapéutico
5.
Comput Biol Chem ; 92: 107495, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33940529

RESUMEN

The development of the anti-malaria vaccine holds a promising future in malaria control. One of the anti-malaria vaccine strategies known as the transmission-blocking vaccine (TBV) is to inhibit the parasite transmission between humans and mosquitoes by targeting the parasite gametocyte. Previously, we found that P48/45 included in the 6-Cysteine protein family shared by Plasmodium sp. We also detected vaccine properties possessed by all human-infecting Plasmodium and could be used as a cross-species anti-malaria vaccine. In this study, we investigated the efficacy of P48/45 through the ancestral and consensus reconstruction approach. P48/45 phylogenetic and time tree analysis was done by RAXML and BEAST2. GRASP server and Ugene software were used to reconstruct ancestral and consensus sequences, respectively. The protein structural prediction was made by using a psipred and Rosetta program. Each protein characteristic of P48/45 was analyzed by assessing hydrophobicity and Post-Translational Modification sites. Meanwhile, the Epitope sequence for B-cell, T-cell, and HLA was determined using an immunoinformatics approach. Lastly, molecular docking simulation was done to determine native binding interactions of P48/45-P230. The result showed a distinct protein characteristic of ancestral and consensus sequences. The immunogenicity analysis revealed the number of epitopes in the ancestral sequence is greater than the consensus sequence. The study also found a conserved epitope located in the binding site and consists of specific Post-Translational Modification sites. Hence, our research provides detailed insight into ancestral and consensus P48/45 efficacy for the cross-species anti-malaria vaccine.


Asunto(s)
Antimaláricos/inmunología , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Antimaláricos/química , Antimaláricos/farmacología , Secuencia de Consenso , Humanos , Vacunas contra la Malaria/química , Vacunas contra la Malaria/farmacología , Filogenia , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/efectos de los fármacos , Proteínas Protozoarias/genética , Programas Informáticos
6.
Biochem Biophys Res Commun ; 534: 86-93, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33316544

RESUMEN

This work describes a methodology for developing a minimal, subunit-based, multi-epitope, multi-stage, chemically-synthesised, anti-Plasmodium falciparum malaria vaccine. Some modified high activity binding peptides (mHABPs) derived from functionally relevant P. falciparum MSP, RH5 and AMA-1 conserved amino acid regions (cHABPs) for parasite binding to and invasion of red blood cells (RBC) were selected. They were highly immunogenic as assessed by indirect immunofluorescence (IFA) and Western blot (WB) assays and protective immune response-inducers against malarial challenge in the Aotus monkey experimental model. NetMHCIIpan 4.0 was used for predicting peptide-Aotus/human major histocompatibility class II (MHCII) binding affinity in silico due to the similarity between Aotus and human immune system molecules; ∼50% of Aotus MHCII allele molecules have a counterpart in the human immune system, being Aotus-specific, whilst others enabled recognition of their human counterparts. Some peptides' 1H-NMR-assessed structural conformation was determined to explain residue modifications in mHABPs inducing secondary structure changes. These directly influenced immunological behaviour, thereby highlighting the relationship with MHCII antigen presentation. The data obtained in such functional, immunological, structural and predictive approach suggested that some of these peptides could be excellent components of a fully-protective antimalarial vaccine.


Asunto(s)
Eritrocitos/parasitología , Vacunas contra la Malaria/farmacología , Plasmodium falciparum/patogenicidad , Animales , Antígenos de Protozoos/química , Aotidae , Proteínas Portadoras/química , Epítopos , Eritrocitos/efectos de los fármacos , Antígenos de Histocompatibilidad Clase II/metabolismo , Interacciones Huésped-Parásitos/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/metabolismo , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Péptidos/inmunología , Péptidos/metabolismo , Proteínas Protozoarias/química , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/farmacología
7.
PLoS Med ; 17(11): e1003377, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33253211

RESUMEN

BACKGROUND: The RTS,S/AS01 vaccine against Plasmodium falciparum malaria infection completed phase III trials in 2014 and demonstrated efficacy against clinical malaria of approximately 36% over 4 years for a 4-dose schedule in children aged 5-17 months. Pilot vaccine implementation has recently begun in 3 African countries. If the pilots demonstrate both a positive health impact and resolve remaining safety concerns, wider roll-out could be recommended from 2021 onwards. Vaccine demand may, however, outstrip initial supply. We sought to identify where vaccine introduction should be prioritised to maximise public health impact under a range of supply constraints using mathematical modelling. METHODS AND FINDINGS: Using a mathematical model of P. falciparum malaria transmission and RTS,S vaccine impact, we estimated the clinical cases and deaths averted in children aged 0-5 years in sub-Saharan Africa under 2 scenarios for vaccine coverage (100% and realistic) and 2 scenarios for other interventions (current coverage and World Health Organization [WHO] Global Technical Strategy targets). We used a prioritisation algorithm to identify potential allocative efficiency gains from prioritising vaccine allocation among countries or administrative units to maximise cases or deaths averted. If malaria burden at introduction is similar to current levels-assuming realistic vaccine coverage and country-level prioritisation in areas with parasite prevalence >10%-we estimate that 4.3 million malaria cases (95% credible interval [CrI] 2.8-6.8 million) and 22,000 deaths (95% CrI 11,000-35,000) in children younger than 5 years could be averted annually at a dose constraint of 30 million. This decreases to 3.0 million cases (95% CrI 2.0-4.7 million) and 14,000 deaths (95% CrI 7,000-23,000) at a dose constraint of 20 million, and increases to 6.6 million cases (95% CrI 4.2-10.8 million) and 38,000 deaths (95% CrI 18,000-61,000) at a dose constraint of 60 million. At 100% vaccine coverage, these impact estimates increase to 5.2 million cases (95% CrI 3.5-8.2 million) and 27,000 deaths (95% CrI 14,000-43,000), 3.9 million cases (95% CrI 2.7-6.0 million) and 19,000 deaths (95% CrI 10,000-30,000), and 10.0 million cases (95% CrI 6.7-15.7 million) and 51,000 deaths (95% CrI 25,000-82,000), respectively. Under realistic vaccine coverage, if the vaccine is prioritised sub-nationally, 5.3 million cases (95% CrI 3.5-8.2 million) and 24,000 deaths (95% CrI 12,000-38,000) could be averted at a dose constraint of 30 million. Furthermore, sub-national prioritisation would allow introduction in almost double the number of countries compared to national prioritisation (21 versus 11). If vaccine introduction is prioritised in the 3 pilot countries (Ghana, Kenya, and Malawi), health impact would be reduced, but this effect becomes less substantial (change of <5%) if 50 million or more doses are available. We did not account for within-country variation in vaccine coverage, and the optimisation was based on a single outcome measure, therefore this study should be used to understand overall trends rather than guide country-specific allocation. CONCLUSIONS: These results suggest that the impact of constraints in vaccine supply on the public health impact of the RTS,S malaria vaccine could be reduced by introducing the vaccine at the sub-national level and prioritising countries with the highest malaria incidence.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum/prevención & control , Malaria/prevención & control , Modelos Teóricos , Niño , Preescolar , Femenino , Ghana , Humanos , Incidencia , Lactante , Recién Nacido , Kenia , Malaria/epidemiología , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/farmacología , Malaria Falciparum/epidemiología , Malaui , Masculino , Salud Pública/estadística & datos numéricos
8.
Malar J ; 19(1): 421, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33228666

RESUMEN

To maintain momentum towards improved malaria control and elimination, a vaccine would be a key addition to the intervention toolkit. Two approaches are recommended: (1) promote the development and short to medium term deployment of first generation vaccine candidates and (2) support innovation and discovery to identify and develop highly effective, long-lasting and affordable next generation malaria vaccines.


Asunto(s)
Investigación Biomédica , Descubrimiento de Drogas/estadística & datos numéricos , Vacunas contra la Malaria , Vacunas contra la Malaria/análisis , Vacunas contra la Malaria/química , Vacunas contra la Malaria/aislamiento & purificación , Vacunas contra la Malaria/farmacología
9.
Front Immunol ; 11: 1377, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733457

RESUMEN

The blockade of programmed cell death-1 (PD1) and its ligand PDL1 has been proven to be a successful immunotherapy against several cancers. Similar to cancer, PD1 contributes to the establishment of several chronic infectious diseases, including malaria. While monoclonal antibodies (mAbs) targeting checkpoint receptors are revolutionary in cancer treatment, the immune-related adverse events (irAEs) may prevent their utilization in prophylactic and therapeutic treatments of infectious diseases. The irAEs are, in part, due to the prolonged half-life of mAbs resulting in prolonged activation of the immune system. As an alternative modality to mAbs, peptides represent a viable option because they possess a shorter pharmacokinetic half-life and offer more formulation and delivery options. Here, we report on a 22-amino acid immunomodulatory peptide, LD01, derived from a Bacillus bacteria. When combined prophylactically with an adenovirus-based or irradiated sporozoite-based malaria vaccine, LD01 significantly enhanced antigen-specific CD8+ T cell expansion. Therapeutically, LD01 treatment of mice infected with a lethal malaria strain resulted in survival that was associated with lower numbers of FOXP3+Tbet+CD4+ regulatory T cells. Taken together, our results demonstrate that LD01 is a potent immunomodulator that acts upon the adaptive immune system to stimulate T cell responses both prophylactically and therapeutically.


Asunto(s)
Activación de Linfocitos/efectos de los fármacos , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/farmacología , Malaria/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Activación de Linfocitos/inmunología , Ratones , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/farmacología
10.
Commun Biol ; 3(1): 395, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709983

RESUMEN

Proteins Pfs230 and Pfs48/45 are Plasmodium falciparum transmission-blocking (TB) vaccine candidates that form a membrane-bound protein complex on gametes. The biological role of Pfs230 or the Pfs230-Pfs48/45 complex remains poorly understood. Here, we present the crystal structure of recombinant Pfs230 domain 1 (Pfs230D1M), a 6-cysteine domain, in complex with the Fab fragment of a TB monoclonal antibody (mAb) 4F12. We observed the arrangement of Pfs230 on the surface of macrogametes differed from that on microgametes, and that Pfs230, with no known membrane anchor, may exist on the membrane surface in the absence of Pfs48/45. 4F12 appears to sterically interfere with Pfs230 function. Combining mAbs against different epitopes of Pfs230D1 or of Pfs230D1 and Pfs48/45, significantly increased TB activity. These studies elucidate a mechanism of action of the Pfs230D1 vaccine, model the functional activity induced by a polyclonal antibody response and support the development of TB vaccines targeting Pfs230D1 and Pfs230D1-Pfs48/45.


Asunto(s)
Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/farmacología , Malaria Falciparum/prevención & control , Plasmodium falciparum/patogenicidad , Animales , Antígenos de Protozoos/genética , Humanos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/inmunología
11.
JCI Insight ; 5(13)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32484795

RESUMEN

Whole-sporozoite vaccines engender sterilizing immunity against malaria in animal models and importantly, in humans. Gene editing allows for the removal of specific parasite genes, enabling generation of genetically attenuated parasite (GAP) strains for vaccination. Using rodent malaria parasites, we have previously shown that late liver stage-arresting replication-competent (LARC) GAPs confer superior protection when compared with early liver stage-arresting replication-deficient GAPs and radiation-attenuated sporozoites. However, generating a LARC GAP in the human malaria parasite Plasmodium falciparum (P. falciparum) has been challenging. Here, we report the generation and characterization of a likely unprecedented P. falciparum LARC GAP generated by targeted gene deletion of the Mei2 gene: P. falciparum mei2-. Robust exoerythrocytic schizogony with extensive cell growth and DNA replication was observed for P. falciparum mei2- liver stages in human liver-chimeric mice. However, P. falciparum mei2- liver stages failed to complete development and did not form infectious exoerythrocytic merozoites, thereby preventing their transition to asexual blood stage infection. Therefore, P. falciparum mei2- is a replication-competent, attenuated human malaria parasite strain with potentially increased potency, useful for vaccination to protect against P. falciparum malaria infection.


Asunto(s)
Vacunas contra la Malaria/farmacología , Malaria Falciparum/prevención & control , Malaria/prevención & control , Parásitos/efectos de los fármacos , Esporozoítos/patogenicidad , Animales , Humanos , Hígado/inmunología , Malaria/parasitología , Malaria Falciparum/tratamiento farmacológico , Parásitos/inmunología , Parásitos/patogenicidad , Plasmodium falciparum/genética , Plasmodium yoelii/inmunología , Vacunación/métodos , Vacunas Atenuadas/inmunología
12.
Elife ; 92020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32342859

RESUMEN

Malaria-071, a controlled human malaria infection trial, demonstrated that administration of three doses of RTS,S/AS01 malaria vaccine given at one-month intervals was inferior to a delayed fractional dose (DFD) schedule (62.5% vs 86.7% protection, respectively). To investigate the underlying immunologic mechanism, we analyzed the B and T peripheral follicular helper cell (pTfh) responses. Here, we show that protection in both study arms was associated with early induction of functional IL-21-secreting circumsporozoite (CSP)-specific pTfh cells, together with induction of CSP-specific memory B cell responses after the second dose that persisted after the third dose. Data integration of key immunologic measures identified a subset of non-protected individuals in the standard (STD) vaccine arm who lost prior protective B cell responses after receiving the third vaccine dose. We conclude that the DFD regimen favors persistence of functional B cells after the third dose.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Linfocitos B/efectos de los fármacos , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/farmacología , Malaria/prevención & control , Linfocitos B/inmunología , Humanos , Interleucinas/inmunología , Interleucinas/metabolismo , Malaria/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/inmunología , Factores de Tiempo
13.
PLoS One ; 15(1): e0216260, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31967991

RESUMEN

The circumsporozoite protein (CSP) and thrombospondin-related adhesion protein (TRAP) are major targets for pre-erythrocytic malaria vaccine development. However, the CSP-based vaccine RTS,S provides only marginal protection, highlighting the need for innovative vaccine design and development. Here we design and characterize expression and folding of P. berghei (Pb) and P. falciparum (Pf) TRAP-CSP fusion proteins, and evaluate immunogenicity and sterilizing immunity in mice. TRAP N-terminal domains were fused to the CSP C-terminal αTSR domain with or without the CSP repeat region, expressed in mammalian cells, and evaluated with or without N-glycan shaving. Pb and Pf fusions were each expressed substantially better than the TRAP or CSP components alone; furthermore, the fusions but not the CSP component could be purified to homogeneity and were well folded and monomeric. As yields of TRAP and CSP fragments were insufficient, we immunized BALB/c mice with Pb TRAP-CSP fusions in AddaVax adjuvant and tested the effects of absence or presence of the CSP repeats and absence or presence of high mannose N-glycans on total antibody titer and protection from infection by mosquito bite both 2.5 months and 6 months after the last immunization. Fusions containing the repeats were completely protective against challenge and re-challenge, while those lacking repeats were significantly less effective. These results correlated with higher total antibody titers when repeats were present. Our results show that TRAP-CSP fusions increase protein antigen production, have the potential to yield effective vaccines, and also guide design of effective proteins that can be encoded by nucleic acid-based and virally vectored vaccines.


Asunto(s)
Vacunas contra la Malaria/farmacología , Malaria/tratamiento farmacológico , Proteínas Protozoarias/genética , Animales , Anticuerpos/genética , Anticuerpos/inmunología , Antígenos/genética , Antígenos/inmunología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/inmunología , Humanos , Inmunización , Malaria/inmunología , Malaria/parasitología , Vacunas contra la Malaria/inmunología , Ratones , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/inmunología , Plasmodium berghei/patogenicidad , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Polisacáridos/genética , Polisacáridos/inmunología , Pliegue de Proteína , Proteínas Protozoarias/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología
14.
Front Immunol ; 11: 606266, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505395

RESUMEN

The cysteine-rich Pfs48/45 protein, a Plasmodium falciparum sexual stage surface protein, has been advancing as a candidate antigen for a transmission-blocking vaccine (TBV) for malaria. However, Pfs48/45 contains multiple disulfide bonds, that are critical for proper folding and induction of transmission-blocking (TB) antibodies. We have previously shown that R0.6C, a fusion of the 6C domain of Pfs48/45 and a fragment of PfGLURP (R0), expressed in Lactococcus lactis, was properly folded and induced transmission-blocking antibodies. Here we describe the process development and technology transfer of a scalable and reproducible process suitable for R0.6C manufacturing under current Good Manufacturing Practices (cGMP). This process resulted in a final purified yield of 25 mg/L, sufficient for clinical evaluation. A panel of analytical assays for release and stability assessment of R0.6C were developed including HPLC, SDS-PAGE, and immunoblotting with the conformation-dependent TB mAb45.1. Intact mass analysis of R0.6C confirmed the identity of the product including the three disulfide bonds and the absence of post-translational modifications. Multi-Angle Light Scattering (MALS) coupled to size exclusion chromatography (SEC-MALS), further confirmed that R0.6C was monomeric (~70 kDa) in solution. Lastly, preclinical studies demonstrated that the R0.6C Drug Product (adsorbed to Alhydrogel®) elicited functional antibodies in small rodents and that adding Matrix-M™ adjuvant further increased the functional response. Here, building upon our past work, we filled the gap between laboratory and manufacturing to ready R0.6C for production under cGMP and eventual clinical evaluation as a malaria TB vaccine.


Asunto(s)
Biotecnología , Microbiología Industrial , Lactobacillus/metabolismo , Vacunas contra la Malaria/biosíntesis , Malaria Falciparum/prevención & control , Glicoproteínas de Membrana/biosíntesis , Proteínas Protozoarias/biosíntesis , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Antiprotozoarios/inmunología , Composición de Medicamentos , Inmunización , Inmunogenicidad Vacunal , Lactobacillus/genética , Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/farmacología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/farmacología , Ratones , Nanopartículas , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/farmacología , Saponinas/farmacología , Relación Estructura-Actividad , Vacunas Sintéticas/biosíntesis , Vacunas Sintéticas/farmacología
15.
J Biol Chem ; 295(2): 403-414, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31792057

RESUMEN

The Plasmodium falciparum circumsporozoite protein (PfCSP) is a sporozoite surface protein whose role in sporozoite motility and cell invasion has made it the leading candidate for a pre-erythrocytic malaria vaccine. However, production of high yields of soluble recombinant PfCSP, including its extensive NANP and NVDP repeats, has proven problematic. Here, we report on the development and characterization of a secreted, soluble, and stable full-length PfCSP (containing 4 NVDP and 38 NANP repeats) produced in the Lactococcus lactis expression system. The recombinant full-length PfCSP, denoted PfCSP4/38, was produced initially with a histidine tag and purified by a simple two-step procedure. Importantly, the recombinant PfCSP4/38 retained a conformational epitope for antibodies as confirmed by both in vivo and in vitro characterizations. We characterized this complex protein by HPLC, light scattering, MS analysis, differential scanning fluorimetry, CD, SDS-PAGE, and immunoblotting with conformation-dependent and -independent mAbs, which confirmed it to be both pure and soluble. Moreover, we found that the recombinant protein is stable at both frozen and elevated-temperature storage conditions. When we used L. lactis-derived PfCSP4/38 to immunize mice, it elicited high levels of functional antibodies that had the capacity to modify sporozoite motility in vitro We concluded that the reported yield, purity, results of biophysical analyses, and stability of PfCSP4/38 warrant further consideration of using the L. lactis system for the production of circumsporozoite proteins for preclinical and clinical applications in malaria vaccine development.


Asunto(s)
Lactococcus lactis/genética , Vacunas contra la Malaria/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , Animales , Línea Celular , Femenino , Expresión Génica , Humanos , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/farmacología , Malaria Falciparum/prevención & control , Ratones , Plasmodium falciparum/genética , Pliegue de Proteína , Estabilidad Proteica , Proteínas Protozoarias/genética , Proteínas Protozoarias/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Solubilidad
16.
Malar J ; 18(1): 394, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796032

RESUMEN

BACKGROUND: Despite the extensive endeavours, developing an effective malaria vaccine remains as a great challenge. Apical membrane antigen 1 (AMA-1) located on the merozoite surface of parasites belonging to the genus Plasmodium is involved in red blood cell invasion. METHODS: Influenza virus-like particle (VLP) vaccines containing codon-optimized or native (non-codon optimized) AMA-1 from Plasmodium berghei were generated. VLP-induced protective immunity was evaluated in a mouse model. RESULTS: Mice immunized with VLP vaccine containing the codon-optimized AMA-1 elicited higher levels of P. berghei-specific IgG and IgG2a antibody responses compared to VLPs containing non-codon optimized AMA-1 before and after challenge infection. Codon-optimized AMA-1 VLP vaccination induced higher levels of CD4+ T cells, CD8+ T cells, B cells, and germinal centre cell responses compared to non-codon optimized AMA-1 VLPs. Importantly, the codon-optimized AMA-1 VLP vaccination showed lower body weight loss, longer survival and a significant decrease in parasitaemia compared to non-codon optimized VLP vaccination. CONCLUSION: Overall, VLP vaccine expressing codon-optimized AMA-1 induced better protective efficacy than VLPs expressing the non-codon optimized AMA-1. Current findings highlight the importance of codon-optimization for vaccine use and its potential involvement in future malaria vaccine design strategies.


Asunto(s)
Antígenos de Protozoos/uso terapéutico , Vacunas contra la Malaria/farmacología , Malaria/prevención & control , Proteínas de la Membrana/uso terapéutico , Plasmodium berghei/inmunología , Proteínas Protozoarias/uso terapéutico , Vacunas de Partículas Similares a Virus/farmacología , Animales , Codón/inmunología , Femenino , Ratones , Ratones Endogámicos BALB C
17.
Sci Rep ; 9(1): 18300, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31797966

RESUMEN

Inhibiting transmission of Plasmodium is an essential strategy in malaria eradication, and the biological process of gamete fusion during fertilization is a proven target for this approach. Lack of knowledge of the mechanisms underlying fertilization have been a hindrance in the development of transmission-blocking interventions. Here we describe a protein disulphide isomerase essential for malarial transmission (PDI-Trans/PBANKA_0820300) to the mosquito. We show that PDI-Trans activity is male-specific, surface-expressed, essential for fertilization/transmission, and exhibits disulphide isomerase activity which is up-regulated post-gamete activation. We demonstrate that PDI-Trans is a viable anti-malarial drug and vaccine target blocking malarial transmission with the use of PDI inhibitor bacitracin (98.21%/92.48% reduction in intensity/prevalence), and anti-PDI-Trans antibodies (66.22%/33.16% reduction in intensity/prevalence). To our knowledge, these results provide the first evidence that PDI function is essential for malarial transmission, and emphasize the potential of anti-PDI agents to act as anti-malarials, facilitating the future development of novel transmission-blocking interventions.


Asunto(s)
Antimaláricos , Bacitracina , Vacunas contra la Malaria , Malaria , Plasmodium berghei/enzimología , Proteína Disulfuro Isomerasas/fisiología , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Bacitracina/farmacología , Bacitracina/uso terapéutico , Femenino , Malaria/prevención & control , Malaria/transmisión , Vacunas contra la Malaria/farmacología , Vacunas contra la Malaria/uso terapéutico , Masculino , Ratones , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/patogenicidad , Proteínas Protozoarias/fisiología
18.
Sci Rep ; 9(1): 8386, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182757

RESUMEN

A highly effective vaccine that confers sterile protection to malaria is urgently needed. Immunization under chemoprophylaxis with sporozoites (CPS) consistently confers high levels of protection in the Controlled Human Malaria infection (CHMI) model. To provide a broad, unbiased assessment of the composition and kinetics of direct ex vivo human immune responses to CPS, we profiled whole-blood transcriptomes by RNA-seq before and during CPS immunization and following CHMI challenge. Differential expression of genes enriched in modules related to T cells, NK cells, protein synthesis, and mitochondrial processes were detected in fully protected individuals four weeks after the first immunization. Non-protected individuals demonstrated transcriptomic changes after the third immunization and the day of treatment, with upregulation of interferon and innate inflammatory genes and downregulation of B-cell signatures. Protected individuals demonstrated more significant interactions between blood transcription modules compared to non-protected individuals several weeks after the second and third immunizations. These data provide insight into the molecular and cellular basis of CPS-induced immune protection from P. falciparum infection.


Asunto(s)
Cloroquina/farmacología , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/genética , Transcriptoma/efectos de los fármacos , Animales , Antimaláricos/farmacología , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Quimioprevención , Humanos , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/farmacología , Malaria Falciparum/genética , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Esporozoítos/efectos de los fármacos , Esporozoítos/genética , Esporozoítos/patogenicidad , Transcriptoma/genética , Vacunación
19.
Trop Doct ; 49(3): 160-164, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31060446

RESUMEN

Over the past two decades, malaria-related deaths have reduced substantially, especially in African children. However, the global malaria burden still remains high. The recent emergence of resistance to artemisinin, the backbone of malaria management, could threaten malaria control. Importantly, over the past five years, there has been an upsurge in research in the development of novel antimalarial drugs (and combinations), malaria vaccine and new vector-control strategies that can boost the malaria control programme.


Asunto(s)
Malaria/prevención & control , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Descubrimiento de Drogas , Resistencia a Medicamentos , Salud Global , Humanos , Malaria/epidemiología , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/farmacología , Control de Mosquitos , Plasmodium/efectos de los fármacos
20.
Cell Microbiol ; 21(7): e13030, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30965383

RESUMEN

An effective vaccine is a priority for malaria control and elimination. The leading candidate in the Plasmodium falciparum blood stage is PfRh5. PfRh5 assembles into trimeric complex with PfRipr and PfCyRPA in the parasite, and this complex is essential for erythrocyte invasion. In this study, we show that antibodies specific for PfRh5 and PfCyRPA prevent trimeric complex formation. We identify the EGF-7 domain on PfRipr as a neutralising epitope and demonstrate that antibodies against this region act downstream of complex formation to prevent merozoite invasion. Antibodies against the C-terminal region of PfRipr were more inhibitory than those against either PfRh5 or PfCyRPA alone, and a combination of antibodies against PfCyRPA and PfRipr acted synergistically to reduce invasion. This study supports prioritisation of PfRipr for development as part of a next-generation antimalarial vaccine.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Antígenos de Protozoos/genética , Proteínas Portadoras/genética , Malaria Falciparum/tratamiento farmacológico , Proteínas Protozoarias/genética , Anticuerpos Neutralizantes/inmunología , Proteínas Portadoras/antagonistas & inhibidores , Eritrocitos/efectos de los fármacos , Eritrocitos/inmunología , Humanos , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/farmacología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Merozoítos/efectos de los fármacos , Merozoítos/inmunología , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...