Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(34): 12283-7, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25136134

RESUMEN

Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.


Asunto(s)
Vacunación/historia , Técnicas de Cultivo de Célula/historia , Ingeniería Genética/historia , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Virus Reordenados/genética , Vacunas Atenuadas/historia , Vacunas de Productos Inactivados/historia , Vacunas de Subunidad/historia , Vacunas Virales/historia
2.
Expert Rev Vaccines ; 13(1): 31-42, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24192014

RESUMEN

Vaccination against influenza represents our most effective form of prevention. Historical approaches toward vaccine creation and production have yielded highly effective vaccines that are safe and immunogenic. Despite their effectiveness, these historical approaches do not allow for the incorporation of changes into the vaccine in a timely manner. In 2013, a recombinant protein-based vaccine that induces immunity toward the influenza virus hemagglutinin was approved for use in the USA. This vaccine represents the first approved vaccine formulation that does not require an influenza virus intermediate for production. This review presents a brief history of influenza vaccines, with insight into the potential future application of vaccines generated using recombinant technology.


Asunto(s)
Descubrimiento de Drogas/tendencias , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/aislamiento & purificación , Tecnología Farmacéutica/tendencias , Descubrimiento de Drogas/historia , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Vacunas contra la Influenza/historia , Gripe Humana/prevención & control , Tecnología Farmacéutica/historia , Estados Unidos , Vacunas Atenuadas/historia , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/aislamiento & purificación , Vacunas de Productos Inactivados/historia , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/aislamiento & purificación , Vacunas de Subunidad/historia , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/aislamiento & purificación , Vacunas Sintéticas/historia , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/aislamiento & purificación
3.
Vaccine ; 30 Suppl 2: B18-25, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22607895

RESUMEN

Novartis Vaccines has a long-standing research and development interest in the prevention of invasive meningococcal disease. From the initial licensure of the monovalent meningococcal C glycoconjugate vaccine, Menjugate(®), in response to the emergence of a virulent serogroup C ST-11 strain in the United Kingdom to the more recent development and licensure of a quadrivalent meningococcal ACWY glycoconjugate vaccine, Menveo(®), Novartis has a continuing commitment to the development of more effective tools for the control of meningococcal disease. Menveo is now licensed for use in adolescents and adults in over 50 countries and results from phase III studies have shown the vaccine to be well-tolerated and highly immunogenic in infants with vaccination beginning from 2 months of age. The 'holy grail' of meningococcal disease control is a broadly protective vaccine against serogroup B (MenB), preferably a vaccine that protects all age groups including infants. As the serogroup B capsule is poorly immunogenic, efforts over the past 40 years have focused on identifying conserved proteins expressed on the bacterial surface that elicit bactericidal antibodies. Novartis has approached this problem utilizing genomic tools to identify proteins meeting these criteria in a process now known as 'reverse vaccinology'[1]. This process has resulted in a novel multicomponent MenB vaccine (4CMenB) that consists of four major immunogenic components (three subcapsular MenB protein antigens plus outer membrane vesicles (OMVs) which themselves provide multiple subcapsular antigens, the immunodominant one being PorA). These all induce bactericidal antibodies against the antigens that are important in determining the survival, function, and virulence of the meningococci. Phase II studies of 4CMenB have been completed and have demonstrated that the vaccine is highly immunogenic against reference meningococcal strains selected to support licensure. Post-vaccination sera from clinical studies have also been tested against a diverse panel of serogroup B strains to support the development of the Meningococcal Antigen Typing System (MATS), a tool used to predict vaccine strain coverage [2] This overview is intended to give a broad summary of the key clinical data derived from the Menveo and 4CMenB clinical development programs.


Asunto(s)
Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/historia , Vacunas Meningococicas/inmunología , Neisseria meningitidis/inmunología , Investigación Biomédica/tendencias , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Vacunas Meningococicas/administración & dosificación , Neisseria meningitidis/clasificación , Serotipificación , Vacunas Conjugadas/historia , Vacunas Conjugadas/inmunología , Vacunas de Subunidad/historia , Vacunas de Subunidad/inmunología
4.
Adv Exp Med Biol ; 603: 415-24, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17966437

RESUMEN

Plague, an infectious disease that reached catastrophic proportions during three pandemics, continues to be a legitimate public health concern worldwide. Although antibiotic therapy for the causative agent Yersinia pestis is available, pharmaceutical supply limitations, multi-drug resistance from natural selection as well as malicious bioengineering are a reality. Consequently, plague vaccinology is a priority for biodefense research. Development of a multi-subunit vaccine with Fraction 1 and LcrV as protective antigens seems to be receiving the most attention. However, LcrV has been shown to cause immune suppression and Y. pestis mutants lacking F1 expression are thought to be fully virulent in nature and in animal experiments. The LcrV variant, rV10, retains the well documented protective antigenic properties of LcrV but with diminished inhibitory effects on the immune system. More research is required to examine the molecular mechanisms of vaccine protection afforded by surface protein antigens and to decipher the host mechanisms responsible for vaccine success.


Asunto(s)
Peste/inmunología , Peste/prevención & control , Animales , Proteínas de la Membrana Bacteriana Externa/inmunología , Fimbrias Bacterianas/inmunología , Salud Global , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Peste/historia , Vacuna contra la Peste/historia , Vacuna contra la Peste/aislamiento & purificación , Investigación/historia , Vacunas de Subunidad/historia , Vacunas de Subunidad/aislamiento & purificación , Yersinia pestis/inmunología , Yersinia pestis/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA