Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.293
Filtrar
1.
Acta Cir Bras ; 39: e391724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629650

RESUMEN

PURPOSE: To investigate inflammation and cell adhesion molecules in the vagina after ovarian ischemia-reperfusion (IR) injury. METHODS: 20 Wistar albino female rats were divided into two groups: control, and IR groups. In IR group, blood flow was restricted for 2 hours for ovarian ischemia. Then, tissues were re-blood 2 hours for reperfusion. Vagina tissues were excised and processed for histopathological analysis. Histopathological and biochemical follow-ups were performed. RESULTS: Both malondialdehyde and myeloperoxidase values were increased in IR group compared to control group. Glutathione content was decreased in IR group compared to control group. Epithelial degeneration, inflammation, dilatation, and nuclear factor-κB (NF-κB) expression were increased in IR group compared to control group. E-cadherin expression was significantly decreased in IR group. In the IR group, E-cadherin showed a positive reaction in adenomas, gland-like cryptic structures, cellular junctions with clustered inflammatory cells. In the IR group, NF-κB expression was increased in basement membrane, inflammatory cells, in blood vessels. CONCLUSIONS: Ovarian ischemia caused degeneration of epithelial cells in the vaginal region and disruptions in the cell junction complex, which leads to activation of E-cadherin and NF-κB signaling pathway and alterations in reproductive and embryonal development in the vaginal region.


Asunto(s)
Cadherinas , FN-kappa B , Daño por Reperfusión , Animales , Femenino , Ratas , Cadherinas/metabolismo , Inflamación , Isquemia/metabolismo , FN-kappa B/metabolismo , Ratas Wistar , Daño por Reperfusión/patología , Ovario/patología , Vagina/metabolismo , Vagina/patología
2.
Nanoscale ; 16(17): 8216-8235, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38572613

RESUMEN

Extracellular vesicles (EVs) are cell-derived nanoparticles that carry small molecules, nucleic acids, and proteins long distances in the body facilitating cell-cell communication. Microorganism-derived EVs mediate communication between parent cells and host cells, with recent evidence supporting their role in biofilm formation, horizontal gene transfer, and suppression of the host immune system. As lipid-bound bacterial byproducts, EVs demonstrate improved cellular uptake and distribution in vivo compared to cell-free nucleic acids, proteins, or small molecules, allowing these biological nanoparticles to recapitulate the effects of parent cells and contribute to a range of human health outcomes. Here, we focus on how EVs derived from vaginal microorganisms contribute to gynecologic and obstetric outcomes. As the composition of the vaginal microbiome significantly impacts women's health, we discuss bacterial EVs from both healthy and dysbiotic vaginal microbiota. We also examine recent work done to evaluate the role of EVs from common vaginal bacterial, fungal, and parasitic pathogens in pathogenesis of female reproductive tract disease. We highlight evidence for the role of EVs in women's health, gaps in current knowledge, and opportunities for future work. Finally, we discuss how leveraging the innate interactions between microorganisms and mammalian cells may establish EVs as a novel therapeutic modality for gynecologic and obstetric indications.


Asunto(s)
Vesículas Extracelulares , Microbiota , Salud Reproductiva , Vagina , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Vagina/microbiología , Vagina/metabolismo , Bacterias/metabolismo
3.
Int Urogynecol J ; 35(3): 713-722, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38430238

RESUMEN

INTRODUCTION AND HYPOTHESIS: Fully absorbable implants may be an alternative to permanent meshes in the correction pf pelvic organ prolapse (POP) as they may reduce adverse events by promoting tissue regeneration and collagen metabolism. This study was aimed at evaluating the long-term host and biomechanical response to a fully absorbable poly-4-hydroxybutyrate (P4HB) scaffold in comparison with polypropylene (PP) mesh. METHODS: Poly-4-hydroxybutyrate scaffold (n = 16) and PP mesh (n = 16) were surgically implanted in the posterior vaginal wall of parous female Dohne Merino sheep. Vaginal explants were evaluated in terms of gross necropsy, host response (immune response, collagen deposition, tissue regeneration), biomechanics, and degradation of P4HB at 12 and 24 months post-implantation. RESULTS: Gross necropsy revealed no infection or fluid collection using P4HB or PP. At 12 months, exposures were observed with both P4HB (3 out of 8) and PP (4 out of 8), whereas at 24 months, exposures were observed only with PP (4 out of 8). The tensile stiffness of the P4HB explants was maintained over time despite complete absorption of P4HB. The collagen amount of the vaginal tissue after P4HB implantation increased over time and was significantly higher than PP at 24 months. P4HB scaffolds exhibited significantly lower myofibroblast differentiation than PP meshes at 24 months. CONCLUSIONS: The P4HB scaffold allowed for gradual load transfer to the vaginal wall and resulted in mechanically self-sufficient tissue. P4HB scaffold had a more favorable host response than PP mesh, with higher collagen content, lower myofibroblastic differentiation, and no exposures at 24 months. P4HB scaffolds have potential as an alternative to permanent implants in treating POP.


Asunto(s)
Prolapso de Órgano Pélvico , Femenino , Humanos , Prolapso de Órgano Pélvico/cirugía , Prolapso de Órgano Pélvico/metabolismo , Vagina/cirugía , Vagina/metabolismo , Colágeno/metabolismo , Implantes Absorbibles , Cicatrización de Heridas , Mallas Quirúrgicas/efectos adversos
4.
Dis Model Mech ; 17(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38501211

RESUMEN

Mitogen-activated protein 3 kinase 1 (MAP3K1) has a plethora of cell type-specific functions not yet fully understood. Herein, we describe a role for MAP3K1 in female reproductive tract (FRT) development. MAP3K1 kinase domain-deficient female mice exhibited an imperforate vagina, labor failure and infertility. These defects corresponded with shunted Müllerian ducts (MDs), the embryonic precursors of FRT, that manifested as a contorted caudal vagina and abrogated vaginal-urogenital sinus fusion in neonates. The MAP3K1 kinase domain is required for optimal activation of the Jun-N-terminal kinase (JNK) and cell polarity in the MD epithelium, and for upregulation of WNT signaling in the mesenchyme surrounding the caudal MD. The MAP3K1-deficient epithelial cells and MD epithelium had reduced expression of WNT7B ligands. Correspondingly, conditioned media derived from MAP3K1-competent, but not -deficient, epithelial cells activated a TCF/Lef-luciferase reporter in fibroblasts. These observations indicate that MAP3K1 regulates MD caudal elongation and FRT development, in part through the induction of paracrine factors in the epithelium that trans-activate WNT signaling in the mesenchyme.


Asunto(s)
Células Epiteliales , Quinasa 1 de Quinasa de Quinasa MAP , Vagina , Animales , Femenino , Ratones , Células Epiteliales/metabolismo , Epitelio/metabolismo , Vagina/metabolismo , Vía de Señalización Wnt , Quinasa 1 de Quinasa de Quinasa MAP/genética , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo
5.
Trends Cancer ; 10(2): 97-99, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38242824

RESUMEN

Accumulating studies have demonstrated the presence of viable and metabolically active bacterial communities within a range of solid tumor types. However, the precise mechanisms by which these microbes modulate their infected tumor niches or impact patient responses to cancer treatments remain to be elucidated. Recently, Colbert et al. revealed that L-lactate produced by intratumoral Lactobacillus iners reprograms metabolic capabilities of cervical tumors to support chemoradiotherapy resistance. This finding has implications for many solid cancer types.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Vagina/metabolismo , Vagina/microbiología , Ácido Láctico , Bacterias , Quimioradioterapia
6.
Adv Healthc Mater ; 13(7): e2302736, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38061349

RESUMEN

Failure to reconstruct the Lactobacillus microbiota is the major reason for the recurrence of vaginal infection. However, most empiric therapies focus on the efficacy of pathogen elimination but do not sufficiently consider the viability of Lactobacillus. Herein, cotton fibers with a lactic acid-like surface (LC) are fabricated by NaIO4 oxidation and L-isoserine grafting. The lactic acid analog chain ends and imine structure of LC can penetrate cell walls to cause protein cleavage in Escherichia coli and Candida albicans and inhibit vaginal pathogens. Meanwhile, the viability of Lactobacillus acidophilus is unaffected by the LC treatment, thus revealing a selective way to suppress pathogens as well as provide a positive route to re-establish protective microbiota in the vaginal tract. Moreover, LC has excellent properties such as good biosafety, antiadhesion, water absorption, and weight retention. The strategy proposed here not only is practical, but also provides insights into the treatment of vaginal infections.


Asunto(s)
Lactobacillus , Microbiota , Femenino , Humanos , Lactobacillus/metabolismo , Ácido Láctico , Fibra de Algodón , Vagina/metabolismo , Escherichia coli/metabolismo
7.
Histochem Cell Biol ; 161(2): 195-205, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37874337

RESUMEN

Pelvic organ prolapse (POP) is a common disorder among women that negatively affects women's quality of life. Early growth response 2 (EGR2) is a transcription factor that regulates cell growth. The present study aimed to explore the role of EGR2 in POP progression and provided a new target for the treatment and prevention of POP. Firstly, we extracted primary vaginal anterior wall fibroblasts from POP tissues and non-POP tissues and then constructed an EGR2-silencing lentivirus for further study. Immunoblotting, qPCR, TUNEL assay, CCK-8 assay, dual luciferase assay, and ELISA assay were carried out. EGR2 expression was much higher in POP tissues than in control tissues, and EGR2 expression positively correlated with cytokine signaling 3 (SOCS3) expression. Knockdown of EGR2 increased cell proliferation, upregulated PCNA expression, and reduced apoptosis in POP fibroblasts. Moreover, we found that the knockdown of EGR2 increased COL1A1, COL3A1, and Elastin expression and decreased MMP2 and MMP9 activities, and knockdown of EGR2 increased TGF-ß/Smad pathway activity in POP fibroblasts. Interestingly, the results of dual luciferase assay demonstrated that EGR2 was able to increase SOCS3 transcriptional activity. EGR2 knockdown alleviated the apoptosis of POP fibroblasts by reducing SOCS3 expression and improving the proliferation and collagen synthesis of POP fibroblasts. Overall, our study illustrated that EGR2 was highly expressed in POP tissues, and knockdown of EGR2 alleviated apoptosis and reduced matrix degradation in POP fibroblasts. This study might provide a new insight into the pathogenesis of POP.


Asunto(s)
Prolapso de Órgano Pélvico , Calidad de Vida , Femenino , Humanos , Transducción de Señal , Prolapso de Órgano Pélvico/metabolismo , Prolapso de Órgano Pélvico/patología , Vagina/metabolismo , Vagina/patología , Luciferasas/metabolismo
8.
Sci Rep ; 13(1): 20065, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973920

RESUMEN

The vaginal microenvironment is key in mediating susceptibility to sexually transmitted infections. A polymicrobial environment with reduced Lactobacilllus spp. is characteristic of vaginal dysbiosis, associated with increased production of several short chain fatty acids (SCFAs), vaginal inflammation and an increased risk of HIV-1 acquisition. In contrast, a eubiotic vaginal microbiome (VMB), dominated by Lactobacillus spp. correlates with increased production of lactic acid (LA), an acidic milieu and protection against HIV-1. Vaginal metabolites, specifically LA and SCFAs including butyric, succinic and acetic acids are associated with modulation of HIV-1 risk. We assessed the impact of combined and individual SCFAs and LA on vaginal epithelial cells (VK2) grown in air-liquid interface cultures. Treatment of VK2 cells with eubiotic SCFA + LA mixture showed increased epithelial barrier integrity, reduced FITC dextran leakage and enhanced expression of cell-cell adhesion proteins. Treatment with dysbiotic SCFA + LA mixture diminished epithelial barrier integrity, increased NFκB activation and inflammatory mediators: TNF-α, IL-6, IL-8 and RANTES. LA was found to be the primary contributor of the beneficial effects. Eubiotic SCFA + LA mixture ameliorated HIV-1 mediated barrier disruption and HIV-1 leakage, whereas dysbiotic SCFA + LA treatment exacerbated HIV-1 effects. These findings indicate a key role for LA in future prophylactic strategies.


Asunto(s)
Seropositividad para VIH , VIH-1 , Femenino , Humanos , VIH-1/fisiología , Ácido Láctico/farmacología , Ácido Láctico/metabolismo , Disbiosis , Vagina/metabolismo , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/metabolismo
9.
Microbiology (Reading) ; 169(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37909284

RESUMEN

Within the vaginal ecosystem, lactobacilli and Gardnerella spp. likely interact and influence each other's growth, yet the details of this interaction are not clearly defined. Using medium simulating vaginal fluid and a two-chamber co-culturing system to prevent cell-to-cell contact between the bacteria, we examined the possibility that Lactobacillus jensenii 62B (Lj 62B) and/or G. piotii (Gp) JCP8151B produce extracellular factors through which they influence each other's viability. By 24 h post-inoculation (hpi) in the co-culture system and under conditions similar to the vaginal environment - pH 5.0, 37 °C, and 5% CO2, Lj 62B viability was not affected but Gp JCP8151B had been eliminated. Cell-free supernatant harvested from Lj 62B cultures (Lj-CFS) at 20 hpi, but not 16 hpi, also eliminated Gp JCP8151B growth. Neither lactic acid nor H2O2 production by Lj 62B was responsible for this effect. The Lj-CFS did not affect viability of three species of lactobacilli or eight species of Gram-positive and Gram-negative uropathogens but eliminated viability of eight different strains of Gardnerella spp. Activity of the inhibitory factor within Lj-CFS was abolished by protease treatment and reduced by heat treatment suggesting it is most likely a bacteriocin-like protein; fractionation revealed that the factor has a molecular weight within the 10-30 kDa range. These results suggest that, in medium mimicking vaginal fluid and growth conditions similar to the vaginal environment, Lj 62B produces a potential bacteriocin-like inhibitory substance (Lj-BLIS) that clearly targets Gardnerella spp. strains. Once fully characterized, Lj-BLIS may be a potential treatment for Gardnerella-related BV that does not alter the vaginal microflora.


Asunto(s)
Bacteriocinas , Femenino , Humanos , Bacteriocinas/farmacología , Bacteriocinas/metabolismo , Gardnerella/metabolismo , Peróxido de Hidrógeno/metabolismo , Ecosistema , Vagina/metabolismo , Vagina/microbiología , Gardnerella vaginalis
10.
Biomaterials ; 302: 122337, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37793268

RESUMEN

In pelvic organ prolapse (POP) patients, the uterus, bladder and/or rectum descends into vagina due to weakened support tissues. High recurrence rates after POP surgery suggest an urgent need for improved surgical outcomes. Our aim is to promote connective tissue healing that results in stimulated tissue support functions by surgically applying a hydrogel functionalized with biological cues. We used known vaginal wound healing promoting factors (basic fibroblast growth factor, ß-estradiol, adipose-derived stem cells) in the biomimetic and injectable polyisocyanide (PIC) hydrogel, which in itself induces regenerative vaginal fibroblast behavior. The regenerative capacity of injected PIC hydrogel, and the additional pro-regenerative effects of these bioactive factors was evaluated in abdominal wounds in rabbits. Assessment of connective tissue healing (tensile testing, histology, immunohistochemistry) revealed that injection with all PIC formulations resulted in a statistically significant stiffness and collagen increase over time, in contrast to sham. Histological evaluation indicated new tissue growth with moderate to mild immune activity at the hydrogel - tissue interface. The results suggest that PIC injection in an abdominal wound improves healing towards regaining load-bearing capacity, which encourages us to investigate application of the hydrogel in a more translational vaginal model for POP surgery in sheep.


Asunto(s)
Hidrogeles , Cicatrización de Heridas , Femenino , Humanos , Conejos , Animales , Ovinos , Hidrogeles/farmacología , Colágeno/metabolismo , Vagina/metabolismo , Tejido Conectivo
11.
Physiol Rep ; 11(15): e15762, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37549960

RESUMEN

Loss of estrogen as a result of aging, pelvic cancer therapy, genetics, or eating disorders affects numerous body systems including the reproductive tract. Specifically, a chronic hypoestrogenic state fosters debilitating vaginal symptoms like atrophy, dryness, and dyspareunia. Current treatment options, including vaginal estrogen and hyaluronan (HA), anecdotally improve symptoms, but rectifying mechanisms are largely understudied. In order to study the hypoestrogenic vaginal environment, in particular the extracellular matrix (ECM), as well as understand the mechanisms behind current treatments and develop new therapies, we characterized a reliable and reproducible animal model. Bilateral ovariectomies (OVX) were performed on 9-week-old CD1 mice. After 1 month of estrogen loss due to ovarian removal, a phenotype that is similar to human vaginal tissue in an estrogen reduced state was noted in mice compared to sham-operated controls. The uterine to body weight ratio decreased by 80% and vaginal epithelium was significantly thinner in OVX compared to sham mice. Estrogen signaling was altered in OVX, but submucosal ERα localization did not reach statistical differences. HA localization in the submucosal area was altered and CD44 expression decreased in OVX mice. Collagen turn-over was altered following OVX. The inflammation profile was also disrupted, and submucosal vaginal CD45+ and F4/80+ cell populations were significantly reduced in the OVX mice. These results show altered cellular and molecular changes due to reduced estrogen levels. Developing new treatments for hypoestrogenic vaginal symptoms rely on better understanding of not only the cellular changes, but also the altered vaginal ECM environment. Further studies using this mouse model has the potential to advance women's vaginal health treatments and aid in understanding the interplay between organ systems in both healthy, aged, and diseased states.


Asunto(s)
Estrógenos , Vagina , Humanos , Ratones , Femenino , Animales , Anciano , Vagina/metabolismo , Receptores de Estrógenos/metabolismo , Útero , Ovariectomía/efectos adversos
12.
Am J Reprod Immunol ; 90(2): e13750, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37491925

RESUMEN

Preterm birth (PTB) is a leading cause of morbidity and mortality in young children. Infection is a major cause of this adverse outcome, particularly in PTBs characterised by spontaneous rupture of membranes, referred to as spontaneous (s)PTB. However, the aetiology of sPTB is not well defined and specific bacteria associated with sPTB differ between studies and at the individual level. This may be due to many factors including a lack of understanding of strain-level differences in bacteria that influence how they function and interact with each other and the host. Metaproteomics and metabolomics are mass spectrometry-based methods that enable the collection of detailed microbial and host functional information. Technological advances in this field have dramatically increased the resolution of these approaches, enabling the simultaneous detection of thousands of proteins or metabolites. These data can be used for taxonomic analysis of vaginal bacteria and other microbes, to understand microbiome-host interactions, and identify diagnostic biomarkers or therapeutic targets. Although these methods have been used to assess host proteins and metabolites, few have characterized the microbial compartment in the context of pregnancy. The utilisation of metaproteomic and metabolomic-based approaches has the potential to vastly improve our understanding of the mechanisms leading to sPTB.


Asunto(s)
Nacimiento Prematuro , Embarazo , Femenino , Niño , Recién Nacido , Humanos , Preescolar , Nacimiento Prematuro/metabolismo , Vagina/metabolismo , Espectrometría de Masas , Metabolómica/métodos
13.
Mol Microbiol ; 120(2): 258-275, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37357823

RESUMEN

Type VIIb secretion systems (T7SSb) in Gram-positive bacteria facilitate physiology, interbacterial competition, and/or virulence via EssC ATPase-driven secretion of small ɑ-helical proteins and toxins. Recently, we characterized T7SSb in group B Streptococcus (GBS), a leading cause of infection in newborns and immunocompromised adults. GBS T7SS comprises four subtypes based on variation in the C-terminus of EssC and the repertoire of downstream effectors; however, the intraspecies diversity of GBS T7SS and impact on GBS-host interactions remains unknown. Bioinformatic analysis indicates that GBS T7SS loci encode subtype-specific putative effectors, which have low interspecies and inter-subtype homology but contain similar domains/motifs and therefore may serve similar functions. We further identify orphaned GBS WXG100 proteins. Functionally, we show that GBS T7SS subtype I and III strains secrete EsxA in vitro and that in subtype I strain CJB111, esxA1 appears to be differentially transcribed from the T7SS operon. Furthermore, we observe subtype-specific effects of GBS T7SS on host colonization, as CJB111 subtype I but not CNCTC 10/84 subtype III T7SS promotes GBS vaginal colonization. Finally, we observe that T7SS subtypes I and II are the predominant subtypes in clinical GBS isolates. This study highlights the potential impact of T7SS heterogeneity on host-GBS interactions.


Asunto(s)
Infecciones Estreptocócicas , Sistemas de Secreción Tipo VII , Recién Nacido , Femenino , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VII/genética , Virulencia , Operón/genética , Genitales Femeninos/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Vagina/metabolismo , Vagina/microbiología
14.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047060

RESUMEN

Pelvic organ prolapse (POP) represents a major health care burden in women, but its underlying pathophysiological mechanisms have not been elucidated. We first used a case-control design to perform an exome chip study in 526 women with POP and 960 control women to identify single nucleotide variants (SNVs) associated with the disease. We then integrated the functional interactions between the POP candidate proteins derived from the exome chip study and other POP candidate molecules into a molecular landscape. We found significant associations between POP and SNVs in 54 genes. The proteins encoded by 26 of these genes fit into the molecular landscape, together with 43 other POP candidate molecules. The POP landscape is located in and around epithelial cells and fibroblasts of the urogenital tract and harbors four interacting biological processes-epithelial-mesenchymal transition, immune response, modulation of the extracellular matrix, and fibroblast function-that are regulated by sex hormones and TGFB1. Our findings were corroborated by enrichment analyses of differential gene expression data from an independent POP cohort. Lastly, based on the landscape and using vaginal fibroblasts from women with POP, we predicted and showed that metformin alters gene expression in these fibroblasts in a beneficial direction. In conclusion, our integrated molecular landscape of POP provides insights into the biological processes underlying the disease and clues towards novel treatments.


Asunto(s)
Prolapso de Órgano Pélvico , Femenino , Humanos , Prolapso de Órgano Pélvico/genética , Prolapso de Órgano Pélvico/metabolismo , Vagina/metabolismo , Causalidad
15.
J Obstet Gynaecol ; 43(1): 2204975, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37118943

RESUMEN

We evaluated quantitative cervicovaginal foetal-fibronectin as a predictor of cervical ripening and labour duration in late-term pregnant women with an unfavourable cervix. This was an analytical cross-sectional study wherein 152 women, with late-term pregnancy and unfavourable cervix, at 41weeks3days gestational age, had pre-induction quantitative cervicovaginal foetal-fibronectin determined using ELISA. Data were compared in nulliparas and multiparas at a significance level < 0.05. The mean age of late-term pregnant women was 30.4 ± 4.3 years. Median cervicovaginal foetal-fibronectin levels in nulliparous and multiparous women were 45.35 ng/ml and 46.93 ng/ml respectively(p = 0.289). The correlation between foetal-fibronectin levels and cervical ripening duration was poor in nulliparous(r = 0.014) and multiparous(r = 0.024) women. The Youden's foetal-fibronectin cut-off level had a sensitivity of 53.5% and specificity of 71.6% in predicting cervical ripening duration of > 12 hours in late-term pregnancy with an area under the ROC curve of 0.634. Quantitative cervicovaginal foetal-fibronectin is a poor correlate and predictor of cervical ripening and induced labour duration in late-term pregnancy.IMPACT STATEMENTWhat is already known on this subject? Cervicovaginal foetal fibronectin is useful in the prediction of preterm delivery but its role in prolonged pregnancy is unclear.What the results of this study add? Cervicovaginal foetal fibronectin is a poor correlate and predictor of cervical ripening and induced labour duration in late-term pregnancyWhat the implications are of these findings for clinical practice and/or further research? Cervicovaginal fibronectin should not be used to predict ease and success of cervical ripening and induction of labour in women with late-term pregnancy.


Asunto(s)
Maduración Cervical , Cuello del Útero , Fibronectinas , Trabajo de Parto Inducido , Humanos , Femenino , Embarazo , Recién Nacido , Adulto , Maduración Cervical/metabolismo , Estudios Prospectivos , Estudios Transversales , Tercer Trimestre del Embarazo , Cuello del Útero/metabolismo , Vagina/metabolismo
16.
ACS Macro Lett ; 12(4): 446-453, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36951898

RESUMEN

Low mucus penetration ability and cellular uptake seriously limit the effectiveness of local vaginal drug administration because of the rapid foreign particulate and pathogen removal property of the mucus layer. Our previous work proved that nanoparticles with a highly dense polyethylene glycol (PEG) coating can penetrate mucus rapidly (mucus-penetrating nanoparticles, MPPs) and improve drug distribution and retention at mucosal surfaces. However, the "stealth-effect" of the PEG coating also restricts cellular uptake of MPPs. In this work, we designed pH-responsive mucus-penetrating nanoparticles (pMPPs) with hydrazone bonds as the linker to conjugate a dense PEG surface coating, which enabled the pMPPs to rapidly penetrate through the mucus layer. More importantly, the acidic environment of the vaginal mucus induces slow shedding of the PEG layer, leading to a positive charge exposure to facilitate cellular uptake. Overall, pMPPs demonstrate potential as an effective delivery platform for the prophylactic and therapeutic treatment of female reproductive diseases.


Asunto(s)
Moco , Nanopartículas , Humanos , Femenino , Moco/química , Vagina/metabolismo , Transporte Biológico , Nanopartículas/uso terapéutico , Polietilenglicoles/farmacología , Concentración de Iones de Hidrógeno
17.
PLoS One ; 18(3): e0280421, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36928065

RESUMEN

A synthetic estrogen, diethylstilbestrol (DES), is known to cause adult vaginal carcinoma by neonatal administration of DES to mice. However, the carcinogenic process remains unclear. By Cap Analysis of Gene Expression method, we found that neonatal DES exposure up-regulated inflammatory Cxcl chemokines 2, 3, 5, and 7 located in the 5qE1 region in the vaginal epithelium of mice 70 days after birth. When we examined the gene expressions of these genes much earlier stages, we found that neonatal DES exposure increased these Cxcl chemokine genes expression even after 17 days after birth. It implies the DES-mediated persistent activation of inflammatory genes. Intriguingly, we also detected DES-induced non-coding RNAs from a region approximately 100 kb far from the Cxcl5 gene. The non-coding RNA up-regulation by DES exposure was confirmed on the 17-day vagina and continued throughout life, which may responsible for the activation of Cxcl chemokines located in the same region, 5qE1. This study shows that neonatal administration of DES to mice causes long-lasting up-regulation of inflammatory Cxcl chemokines in the vaginal epithelium. DES-mediated inflammation may be associated with the carcinogenic process.


Asunto(s)
Quimiocinas CXC , Dietilestilbestrol , Congéneres del Estradiol , Animales , Femenino , Ratones , Animales Recién Nacidos , Carcinógenos/farmacología , Dietilestilbestrol/efectos adversos , Dietilestilbestrol/farmacología , Epitelio/patología , Congéneres del Estradiol/efectos adversos , Congéneres del Estradiol/farmacología , Vagina/metabolismo , Neoplasias Vaginales/inducido químicamente , Quimiocinas CXC/efectos de los fármacos , Quimiocinas CXC/metabolismo
18.
Front Cell Infect Microbiol ; 13: 1024723, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743303

RESUMEN

Microbiota-relevant signatures have been investigated for human papillomavirus-related cervical cancer (CC), but lack consistency because of study- and methodology-derived heterogeneities. Here, four publicly available 16S rRNA datasets including 171 vaginal samples (51 CC versus 120 healthy controls) were analyzed to characterize reproducible CC-associated microbial signatures. We employed a recently published clustering approach called VAginaL community state typE Nearest CentroId clAssifier to assign the metadata to 13 community state types (CSTs) in our study. Nine subCSTs were identified. A random forest model (RFM) classifier was constructed to identify 33 optimal genus-based and 94 species-based signatures. Confounder analysis revealed confounding effects on both study- and hypervariable region-associated aspects. After adjusting for confounders, multivariate analysis identified 14 significantly changed taxa in CC versus the controls (P < 0.05). Furthermore, predicted functional analysis revealed significantly upregulated pathways relevant to the altered vaginal microbiota in CC. Cofactor, carrier, and vitamin biosynthesis were significantly enriched in CC, followed by fatty acid and lipid biosynthesis, and fermentation of short-chain fatty acids. Genus-based contributors to the differential functional abundances were also displayed. Overall, this integrative study identified reproducible and generalizable signatures in CC, suggesting the causal role of specific taxa in CC pathogenesis.


Asunto(s)
Microbiota , Neoplasias del Cuello Uterino , Femenino , Humanos , ARN Ribosómico 16S/genética , Vagina/metabolismo , Microbiota/genética , Análisis por Conglomerados
19.
Vet Res Commun ; 47(3): 1155-1175, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36729278

RESUMEN

The adherens junctions (AJs) maintain the epithelial cell layers' structural integrity and barrier function. AJs also play a vital role in various biological and pathological processes. AJs perform these functions through the cadherin-catenin adhesion complex. This study investigated the presence, cell-specific localization, and temporal distribution of AJ components such as classical type I cadherins and beta-catenin in the cow cervix and vagina during the estrous cycle. Immunohistochemistry and Western blot analysis results demonstrated that beta-catenin and epithelial (E)-, neural (N)-, and placental (P)-cadherins are expressed in the cow cervix and vagina during the estrous cycle. These adhesion molecules were localized in the membrane and cytoplasm of the ciliated and non-ciliated cervical cells and the stratified vaginal epithelial cells. Positive immunostaining for P-, N-cadherin, and beta-catenin was also observed in the vascular endothelial cells of the cervical and vaginal stroma. Quantitative immunohistochemistry examinations revealed that in the cervical and vaginal epithelia, P-cadherin's optical density values (ODv) were the highest; in contrast, the N-cadherin ODv were the lowest. The ODv of P-cadherin and beta-catenin in the cervical epithelium and E-cadherin in the vagina were significantly higher in the luteal phase versus the follicular phase of the estrous cycle. Furthermore, the ODv of P-cadherin, N-cadherin, and beta-catenin in the cervix's central and peripheral epithelial regions were different during the estrous cycle. These findings indicate that classical cadherins and beta-catenin in the cervix and vagina exhibit cell- and tissue-specific expression patterns under the influence of estrogen and progesterone hormones during the estrous cycle.


Asunto(s)
Cuello del Útero , Vagina , beta Catenina , Animales , Bovinos , Femenino , Embarazo , Cadherinas/metabolismo , Cuello del Útero/metabolismo , Células Endoteliales/metabolismo , Placenta/metabolismo , Vagina/metabolismo
20.
Biol Reprod ; 108(3): 359-362, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36611017

RESUMEN

Forkhead box protein A2 (FOXA2) is a pioneer transcription factor important for epithelial budding and morphogenesis in different organs. It has been used as a specific marker for uterine glandular epithelial cells (GE). FOXA2 has close interactions with estrogen receptor α (ERα). ERα binding to Foxa2 gene in the uterus indicates its regulation of Foxa2. The intimate interactions between ERα and FOXA2 and their essential roles in early pregnancy led us to investigate the expression of FOXA2 in the female reproductive tract of pre-implantation epiERα-/- (Esr1fl/flWnt7aCre/+) mice, in which ERα is conditionally deleted in the epithelium of reproductive tract. In the oviduct, FOXA2 is detected in the ciliated epithelial cells of ampulla but absent in the isthmus of day 3.5 post-coitum (D3.5) Esr1fl/fl control and epiERα-/- mice. In the uterus, FOXA2 expression in the GE appears to be comparable between Esr1fl/fl and epiERα-/- mice. However, FOXA2 is upregulated in the D0.5 and D3.5 but not PND25-28 epiERα-/- uterine luminal epithelial cells (LE). In the vagina, FOXA2 expression is low in the basal layer and increases toward the superficial layer of the D3.5 Esr1fl/fl vaginal epithelium, but FOXA2 is detected in the basal, intermediate, and superficial layers, with the strongest FOXA2 expression in the intermediate layers of the D3.5 epiERα-/- vaginal epithelium. This study demonstrates that loss of ERα in LE and vaginal basal layer upregulates FOXA2 expression in these epithelial cells during early pregnancy. The mechanisms for epithelial cell-type specific regulation of FOXA2 by ERα remain to be elucidated.


Asunto(s)
Receptor alfa de Estrógeno , Útero , Animales , Femenino , Ratones , Embarazo , Epitelio/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Regulación hacia Arriba , Útero/metabolismo , Vagina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...