Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 731
Filtrar
1.
Neuropsychobiology ; 83(1): 28-40, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38185116

RESUMEN

INTRODUCTION: Vasopressin (AVP) and oxytocin (OT) exert sex-specific effects on social pair bonding and stress reactions while also influencing craving in substance use disorders. In this regard, intranasal oxytocin (OT) and AVP antagonists present potential treatments for tobacco use disorder (TUD). Since transcription of both hormones is also regulated by gene methylation, we hypothesized sex-specific changes in methylation levels of the AVP, OT, and OT receptor (OXTR) gene during nicotine withdrawal. METHODS: The study population consisted of 49 smokers (29 males, 20 females) and 51 healthy non-smokers (25 males, 26 females). Blood was drawn at day 1, day 7, and day 14 of smoking cessation. Craving was assessed with the questionnaire on smoking urges (QSU). RESULTS: Throughout cessation, mean methylation of the OT promoter gene increased in males and decreased in females. OXTR receptor methylation decreased in females, while in males it was significantly lower at day 7. Regarding the AVP promoter, mean methylation increased in males while there were no changes in females. Using mixed linear modeling, CpG position, time point, sex, and the interaction of time point and sex as well as time point, sex, and QSU had a significant fixed effect on OT and AVP gene methylation. The interaction effect suggests that sex, time point, and QSU are interrelated, meaning that, depending on the sex, methylation could be different at different time points and vice versa. There was no significant effect of QSU on mean OXTR methylation. DISCUSSION: We identified differences at specific CpGs between controls and smokers in OT and AVP and in overall methylation of the AVP gene. Furthermore, we found sex-specific changes in mean methylation levels of the mentioned genes throughout smoking cessation, underlining the relevance of sex in the OT and vasopressin system. This is the first study on epigenetic regulation of the OT promoter in TUD. Our results have implications for research on the utility of the AVP and OT system for treating substance craving. Future studies on both targets need to analyze their effect in the context of sex, social factors, and gene regulation.


Asunto(s)
Oxitocina , Tabaquismo , Masculino , Femenino , Humanos , Oxitocina/genética , Oxitocina/metabolismo , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Tabaquismo/genética , Epigénesis Genética , Vasopresinas/genética , Vasopresinas/metabolismo , Metilación , Arginina Vasopresina/genética , Receptores de Vasopresinas/genética
2.
Exp Clin Endocrinol Diabetes ; 132(1): 33-38, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37977557

RESUMEN

AIM: To investigate the autoimmune and genetic relationship between primary hypophysitis (PH) and celiac disease (CD). METHODS: The study was retrospective and patients with PH followed in our clinic between 2007 and 2022 were evaluated. Clinical, endocrinologic, pathologic, and radiologic findings and treatment modalities were assessed. Patients diagnosed with CD in the Gastroenterology outpatient clinic in 2020-2022 were included in the study as a control group. Information such as sociodemographic data, year of diagnosis, human leukocyte antigen (HLA) DQ2/8 information, CD-specific antibody levels, pathologic results of duodenal biopsy, treatment received, follow-up status, additional diseases, hormone use, and surgical history was obtained from patient records at PH.In patients diagnosed with PH, a duodenal biopsy was obtained, and the tissue was examined for CD by experienced pathologists. Anti-pituitary antibody (APA) and anti-arginine-vasopressin (AAVP) antibody levels of individuals with PH and CD were measured. RESULTS: The study included 19 patients with lymphocytic hypophysitis, 30 celiac patients, and 30 healthy controls. When patients diagnosed with lymphocytic hypophysitis were examined by duodenal biopsy, no evidence of CD was found in the pathologic findings. The detection rate of HLA-DQ2/8 was 80% in celiac patients and 42% in PH (p=0.044). (APA and AAVP antibodies associated with PH were tested in two separate groups of patients and in the control group. APA and anti-arginine vasopressin (AAVP) levels in PH, CD and healthy controls, respectively M [IQR]: 542 [178-607];164 [125-243]; 82 [74-107] ng/dL (p=0.001), 174 [52-218]; 60 [47-82]; 59 [48-76] ng/dL (p=0.008) were detected. The presence of an HLA-DQ2/8 haplotype correlates with posterior hypophysitis and panhypophysitis (r=0.598, p=0.04 and r=0.657, p=0.02, respectively). CONCLUSION: Although patients with PH were found to have significant levels of HLA-DQ2/8, no CD was found in the tissue. Higher levels of pituitary antibodies were detected in celiac patients compared with healthy controls, but no hypophysitis clinic was observed at follow-up. Although these findings suggest that the two diseases may share a common genetic and autoimmune basis, the development of the disease may be partially explained by exposure to environmental factors.


Asunto(s)
Hipofisitis Autoinmune , Enfermedad Celíaca , Humanos , Enfermedad Celíaca/complicaciones , Enfermedad Celíaca/diagnóstico , Estudios Retrospectivos , Hipofisitis Autoinmune/complicaciones , Haplotipos , Vasopresinas/genética
3.
J Mol Evol ; 91(6): 865-881, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38010516

RESUMEN

The genetic basis underlying adaptive physiological mechanisms has been extensively explored in mammals after colonizing the seas. However, independent lineages of aquatic mammals exhibit complex patterns of secondary colonization in freshwater environments. This change in habitat represents new osmotic challenges, and additional changes in key systems, such as the osmoregulatory system, are expected. Here, we studied the selective regime on coding and regulatory regions of 20 genes related to the osmoregulation system in strict aquatic mammals from independent evolutionary lineages, cetaceans, and sirenians, with representatives in marine and freshwater aquatic environments. We identified positive selection signals in genes encoding the protein vasopressin (AVP) in mammalian lineages with secondary colonization in the fluvial environment and in aquaporins for lineages inhabiting the marine and fluvial environments. A greater number of sites with positive selection signals were found for the dolphin species compared to the Amazonian manatee. Only the AQP5 and AVP genes showed selection signals in more than one independent lineage of these mammals. Furthermore, the vasopressin gene tree indicates greater similarity in river dolphin sequences despite the independence of their lineages based on the species tree. Patterns of distribution and enrichment of Transcription Factors in the promoter regions of target genes were analyzed and appear to be phylogenetically conserved among sister species. We found accelerated evolution signs in genes ACE, AQP1, AQP5, AQP7, AVP, NPP4, and NPR1 for the fluvial mammals. Together, these results allow a greater understanding of the molecular bases of the evolution of genes responsible for osmotic control in aquatic mammals.


Asunto(s)
Delfines , Osmorregulación , Animales , Osmorregulación/genética , Cetáceos/genética , Mamíferos/genética , Agua Dulce , Vasopresinas/genética , Evolución Molecular , Filogenia
4.
Probl Endokrinol (Mosk) ; 69(2): 75-79, 2023 May 12.
Artículo en Ruso | MEDLINE | ID: mdl-37448274

RESUMEN

Congenital nephrogenic diabetes insipidus (CNDI, arginine vasopressin resistance) is a rare inherited disorder characterized by insensitivity of the kidney to the antidiuretic effect of vasopressin. NDI is clinically characterized by polyuria with hyposthenuria and nocturia and polydipsia. In the majority of cases, about 90%, nephrogenic diabetes insipidus is an X-linked recessive disorder caused by mutations in the AVP V2 receptor gene (AVPR2). In the remaining cases, about 10%, the disease is autosomal recessive or dominant and, for these patients, mutations in the aquaporin 2 gene (AQP2) have been reported. To date, the nucleotide variants registered in AQP2 were sporadic, there is no data on the presence of «frequent¼ mutations and the prevalence of the disease both among the global population and among individual ethnic groups. In this paper, we describe 12 cases of arginine vasopressin resistance caused by a new homozygous mutation p.R113C in AQP2 presented among the indigenous population of the Republic of Buryatia.


Asunto(s)
Acuaporina 2 , Diabetes Insípida Nefrogénica , Humanos , Acuaporina 2/genética , Arginina Vasopresina/genética , Mutación , Diabetes Insípida Nefrogénica/genética , Vasopresinas/genética
5.
Front Endocrinol (Lausanne) ; 14: 1173601, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293495

RESUMEN

The diluting and concentrating function of the kidney plays a crucial role in regulating the water homeostasis of the body. This function is regulated by the antidiuretic hormone, arginine vasopressin through the type 2 vasopressin receptor (V2R), allowing the body to adapt to periods of water load or water restriction. Loss-of-function mutations of the V2R cause X-linked nephrogenic diabetes insipidus (XNDI), which is characterized by polyuria, polydipsia, and hyposthenuria. Gain-of-function mutations of the V2R lead to nephrogenic syndrome of inappropriate antidiuresis disease (NSIAD), which results in hyponatremia. Various mechanisms may be responsible for the impaired receptor functions, and this review provides an overview of recent findings about the potential therapeutic interventions in the light of the current experimental data.


Asunto(s)
Receptores de Vasopresinas , Vasopresinas , Receptores de Vasopresinas/genética , Vasopresinas/genética , Mutación , Agua , Biología Molecular
6.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37373400

RESUMEN

Psychosis refers to a mental health condition characterized by a loss of touch with reality, comprising delusions, hallucinations, disorganized thought, disorganized behavior, catatonia, and negative symptoms. A first-episode psychosis (FEP) is a rare condition that can trigger adverse outcomes both for the mother and newborn. Previously, we demonstrated the existence of histopathological changes in the placenta of pregnant women who suffer an FEP in pregnancy. Altered levels of oxytocin (OXT) and vasopressin (AVP) have been detected in patients who manifested an FEP, whereas abnormal placental expression of these hormones and their receptors (OXTR and AVPR1A) has been proven in different obstetric complications. However, the precise role and expression of these components in the placenta of women after an FEP have not been studied yet. Thus, the purpose of the present study was to analyze the gene and protein expression, using RT-qPCR and immunohistochemistry (IHC), of OXT, OXTR, AVP, and AVPR1a in the placental tissue of pregnant women after an FEP in comparison to pregnant women without any health complication (HC-PW). Our results showed increased gene and protein expression of OXT, AVP, OXTR, and AVPR1A in the placental tissue of pregnant women who suffer an FEP. Therefore, our study suggests that an FEP during pregnancy may be associated with an abnormal paracrine/endocrine activity of the placenta, which can negatively affect the maternofetal wellbeing. Nevertheless, additional research is required to validate our findings and ascertain any potential implications of the observed alterations.


Asunto(s)
Oxitocina , Trastornos Psicóticos , Recién Nacido , Femenino , Humanos , Embarazo , Oxitocina/genética , Oxitocina/metabolismo , Placenta/metabolismo , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Vasopresinas/genética , Vasopresinas/metabolismo , Trastornos Psicóticos/genética
7.
Mol Metab ; 70: 101692, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36773648

RESUMEN

OBJECTIVES: The excessive release of the antidiuretic hormone vasopressin is implicated in many diseases including cardiovascular disease, diabetes, obesity, and metabolic syndrome. Once thought to be elevated as a consequence of diseases, data now supports a more causative role. We have previously identified CREB3L1 as a transcription factor that co-ordinates vasopressin synthesis and release in the hypothalamus. The objective here was to identify mechanisms orchestrated by CREB3L1 that co-ordinate vasopressin release. METHODS: We mined Creb3l1 knockdown SON RNA-seq data to identify downstream target genes. We proceeded to investigate the expression of these genes and associated pathways in the supraoptic nucleus of the hypothalamus in response to physiological and pharmacological stimulation. We used viruses to selectively knockdown gene expression in the supraoptic nucleus and assessed physiological and metabolic parameters. We adopted a phosphoproteomics strategy to investigate mechanisms that facilitate hormone release by the pituitary gland. RESULTS: We discovered glucagon like peptide 1 receptor (Glp1r) as a downstream target gene and found increased expression in stimulated vasopressin neurones. Selective knockdown of supraoptic nucleus Glp1rs resulted in decreased food intake and body weight. Treatment with GLP-1R agonist liraglutide decreased vasopressin synthesis and release. Quantitative phosphoproteomics of the pituitary neurointermediate lobe revealed that liraglutide initiates hyperphosphorylation of presynapse active zone proteins that control vasopressin exocytosis. CONCLUSION: In summary, we show that GLP-1R signalling inhibits the vasopressin system. Our data advises that hydration status may influence the pharmacodynamics of GLP-1R agonists so should be considered in current therapeutic strategies.


Asunto(s)
Hipotálamo , Liraglutida , Liraglutida/farmacología , Hipotálamo/metabolismo , Neuronas/metabolismo , Vasopresinas/genética , Vasopresinas/metabolismo
8.
Cardiovasc Res ; 119(8): 1740-1750, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-36368681

RESUMEN

AIMS: High salt intake is common and contributes to poor cardiovascular health. Urinary sodium excretion correlates directly with glucocorticoid excretion in humans and experimental animals. We hypothesized that high salt intake activates the hypothalamic-pituitary-adrenal axis activation and leads to sustained glucocorticoid excess. METHODS AND RESULTS: In male C57BL/6 mice, high salt intake for 2-8 weeks caused an increase in diurnal peak levels of plasma corticosterone. After 2 weeks, high salt increased Crh and Pomc mRNA abundance in the hypothalamus and anterior pituitary, consistent with basal hypothalamic-pituitary-adrenal axis activation. Additionally, high salt intake amplified glucocorticoid response to restraint stress, indicative of enhanced axis sensitivity. The binding capacity of Corticosteroid-Binding Globulin was reduced and its encoding mRNA downregulated in the liver. In the hippocampus and anterior pituitary, Fkbp5 mRNA levels were increased, indicating increased glucocorticoid exposure. The mRNA expression of the glucocorticoid-regenerating enzyme, 11ß-hydroxysteroid dehydrogenase Type 1, was increased in these brain areas and in the liver. Sustained high salt intake activated a water conservation response by the kidney, increasing plasma levels of the vasopressin surrogate, copeptin. Increased mRNA abundance of Tonebp and Avpr1b in the anterior pituitary suggested that vasopressin signalling contributes to hypothalamic-pituitary-adrenal axis activation by high salt diet. CONCLUSION: Chronic high salt intake amplifies basal and stress-induced glucocorticoid levels and resets glucocorticoid biology centrally, peripherally and within cells.


Asunto(s)
Glucocorticoides , Sistema Hipotálamo-Hipofisario , Humanos , Ratones , Animales , Masculino , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Cloruro de Sodio Dietético , Sistema Hipófiso-Suprarrenal/metabolismo , Ratones Endogámicos C57BL , Vasopresinas/genética , Vasopresinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Anat Rec (Hoboken) ; 306(9): 2388-2399, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-35475324

RESUMEN

Information on the localization of the Type 1 melanocortin receptors (MC1Rs) in different regions of the brain is very scarce. As a result, the role of MC1Rs in the functioning of brain neurons and in the central regulation of physiological functions has not been studied. This work aimed to study the expression and distribution of MС1Rs in different brain areas of female C57Bl/6J mice. Using real-time polymerase chain reaction, we demonstrated the Mс1R gene expression in the cerebral cortex, midbrain, hypothalamus, medulla oblongata, and hippocampus. Using an immunohistochemical approach, we showed the MС1R localization in neurons of the hypothalamic arcuate, paraventricular and supraoptic nuclei, nucleus tractus solitarius (NTS), dorsal hippocampus, substantia nigra, and cerebral cortex. Using double immunolabeling, the MC1Rs were visualized on the surface and in the bodies and outgrowths of pro-opiomelanocortin (POMC)-immunopositive neurons in the hypothalamic arcuate nucleus, NTS, hippocampal CA3 and CA1 regions, and cerebral cortex. Co-localization with POMC indicates that MC1R, like MC3R, is able to function as an autoreceptor. In the paraventricular and supraoptic nuclei, MC1Rs were visualized on the surface and in the cell bodies of vasopressin- and oxytocin-immunopositive neurons, indicating a relationship between hypothalamic MC1R signaling and vasopressin and oxytocin production. The data obtained indicate a wide distribution of MC1Rs in different areas of the mouse brain and their localization in POMC-, vasopressin- and oxytocin-immunopositive neurons, which may indicate the participation of MC1Rs in the control of many physiological processes in the central nervous system.


Asunto(s)
Oxitocina , Proopiomelanocortina , Ratones , Animales , Femenino , Proopiomelanocortina/metabolismo , Oxitocina/análisis , Oxitocina/metabolismo , Inmunohistoquímica , Hipotálamo/metabolismo , Vasopresinas/análisis , Vasopresinas/genética , Vasopresinas/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Receptores de Melanocortina/metabolismo
10.
Rev Soc Bras Med Trop ; 55: e01222022, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36287471

RESUMEN

BACKGROUND: Behavioral changes in Rattus norvegicus infected with two strains of Toxoplasma gondii (ME49 and VEG) were investigated. METHODS: Rats were evaluated for motor activity and aversion or attraction to cat urine 60 days after infection. After euthanasia, arginine-vasopressin gene methylation in the central nervous system was evaluated. RESULTS: A significant difference was observed in the methylation of the arginine-vasopressin promoter gene between rats infected with the ME49 and VEG strains. CONCLUSIONS: Although differences were not observed in many parameters, significant differences were observed in the methylation of the arginine-vasopressin promoter gene in rats infected with the two studied strains.


Asunto(s)
Toxoplasma , Toxoplasmosis Animal , Ratas , Animales , Toxoplasma/genética , Conducta Animal/fisiología , Epigénesis Genética , Vasopresinas/genética , Arginina/genética
11.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35886951

RESUMEN

Vasopressin type-2 receptor (V2R) is ectopically expressed and plays a pathogenic role in clear cell renal cell carcinoma (ccRCC) tumor cells. Here we examined how V2R signaling within human ccRCC tumor cells (Caki1 cells) stimulates stromal cancer-associated fibroblasts (CAFs). We found that cell culture conditioned media from Caki1 cells increased activation, migration, and proliferation of fibroblasts in vitro, which was inhibited by V2R gene silencing in Caki1 cells. Analysis of the conditioned media and mRNA of the V2R gene silenced and control Caki1 cells showed that V2R regulates the production of CAF-activating factors. Some of these factors were also found to be regulated by YAP in these Caki1 cells. YAP expression colocalized and correlated with V2R expression in ccRCC tumor tissue. V2R gene silencing or V2R antagonist significantly reduced YAP in Caki1 cells. Moreover, the V2R antagonist reduced YAP expression and myofibroblasts in mouse xenograft tumors. These results suggest that V2R plays an important role in secreting pro-fibrotic factors that stimulate fibroblast activation by a YAP-dependent mechanism in ccRCC tumors. Our results demonstrate a novel role for the V2R-YAP axis in the regulation of myofibroblasts in ccRCC and a potential therapeutic target.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Células Renales , Neoplasias Renales , Receptores de Vasopresinas , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Medios de Cultivo Condicionados , Fibroblastos/metabolismo , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Ratones , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología , Vasopresinas/genética , Vasopresinas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
J Clin Endocrinol Metab ; 107(6): e2513-e2522, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35137152

RESUMEN

CONTEXT: Familial pituitary diabetes insipidus has been described only in an autosomal dominant or recessive mode of inheritance. OBJECTIVE: This work aims to determine the cause of a novel form of familial diabetes insipidus (DI) that is controlled by desmopressin therapy but segregates in an X-linked recessive manner. METHODS: Thirteen members from 3 generations of the kindred with familial DI were studied. Water intake, urine volume, urine osmolality, plasma osmolality, and plasma vasopressin were measured under basal conditions, during fluid deprivation, 3% saline infusion, and water loading. Magnetic resonance images of the posterior pituitary also were obtained. In affected males, the effects of desmopressin therapy and linkage of the DI to markers for chromosome Xq28 were determined. In addition, the genes encoding vasopressin, aquaporin-2, the AVPR2 receptor, and its flanking regions were sequenced. RESULTS: This study showed that 4 males from 3 generations of the kindred have DI that is due to a deficiency of vasopressin, is corrected by standard doses of desmopressin, and segregates with markers for the AVPR2 gene in Xq28. However, no mutations were found in AVPR2 or its highly conserved flanking regions. Exome sequencing confirmed these findings and also revealed no deleterious variants in the provasopressin and aquaporin-2 genes. The 4 obligate female carriers osmo-regulated vasopressin in the low normal range. CONCLUSION: X-linked recessive transmission of DI can be due to a defect in either the secretion or the action of vasopressin. Other criteria are necessary to differentiate and manage the 2 disorders correctly.


Asunto(s)
Diabetes Insípida Nefrogénica , Diabetes Insípida , Diabetes Mellitus , Acuaporina 2/genética , Desamino Arginina Vasopresina/uso terapéutico , Diabetes Insípida/genética , Diabetes Insípida Nefrogénica/genética , Femenino , Humanos , Masculino , Receptores de Vasopresinas/genética , Vasopresinas/genética
13.
J Neuroendocrinol ; 34(9): e13083, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34978098

RESUMEN

The neuropeptide arginine-vasopressin (AVP) has long been implicated in the regulation of social behaviour and communication, but the sources of AVP release relevant for behaviour have not been precisely determined. Ablations of the sexually dimorphic AVP cells within the bed nucleus of the stria terminalis (BNST), which are more numerous in males, affect social behaviour differently in males and females. However, it is unknown whether these behavioural effects are caused by a reduction of AVP or of other factors associated with these cells. To test the role of AVP specifically, we used an shRNA viral construct to knock down AVP gene expression within the BNST of wild-type male and female mice, using scrambled sequence virus as a control, and evaluated subsequent changes in social behaviours (social investigation, ultrasonic vocalization (USV), scent marking, copulation, and aggression), or anxiety-like behaviours (elevated plus maze). We observed that, in males, knockdown of AVP expression in the BNST strongly reduced investigation of novel males, aggressive signalling towards other males (tail rattling, USV), and copulatory behaviour, but did not alter attack initiation, other measures of social communication, or anxiety-like behaviours. In females, however, BNST AVP knockdown did not alter any of these behaviours. These results point to differential involvement of AVP derived from the BNST in social behaviour.


Asunto(s)
Núcleos Septales , Animales , Arginina/metabolismo , Arginina Vasopresina/genética , Arginina Vasopresina/metabolismo , Femenino , Masculino , Ratones , ARN Interferente Pequeño/metabolismo , Núcleos Septales/metabolismo , Vasopresinas/genética , Vasopresinas/metabolismo
14.
J Neuroendocrinol ; 33(12): e13057, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34748241

RESUMEN

Vasopressin-synthesizing neurons are located in several brain regions, including the hypothalamic paraventricular nucleus (PVN), supraoptic nucleus (SON) and suprachiasmatic nucleus (SCN). Vasopressin has been shown to have various functions in the brain, including social recognition memory, stress responses, emotional behaviors and circadian rhythms. The precise physiological functions of vasopressin-synthesizing neurons in specific brain regions remain to be clarified. Conditional ablation of local vasopressin-synthesizing neurons may be a useful tool for investigation of the functions of vasopressin neurons in the regions. In the present study, we characterized a transgenic rat line that expresses a mutated human diphtheria toxin receptor under control of the vasopressin gene promoter. Under a condition of salt loading, which activates the vasopressin gene in the hypothalamic PVN and SON, transgenic rats were i.c.v. injected with diphtheria toxin. Intracerebroventricular administration of diphtheria toxin after salt loading depleted vasopressin-immunoreactive cells in the hypothalamic PVN and SON, but not in the SCN. The number of oxytocin-immunoreactive cells in the hypothalamus was not significantly changed. The rats that received i.c.v. diphtheria toxin after salt loading showed polydipsia and polyuria, which were rescued by peripheral administration of 1-deamino-8-d-arginine vasopressin via an osmotic mini-pump. Intrahypothalamic administration of diphtheria toxin in transgenic rats under a normal hydration condition reduced the number of vasopressin-immunoreactive neurons, but not the number of oxytocin-immunoreactive neurons. The transgenic rat model can be used for selective ablation of vasopressin-synthesizing neurons and may be useful for clarifying roles of vasopressin neurons at least in the hypothalamic PVN and SON in the rat.


Asunto(s)
Técnicas de Transferencia de Gen , Genes Transgénicos Suicidas , Neuronas/metabolismo , Vasopresinas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Toxina Diftérica/farmacología , Eliminación de Gen , Genes Transgénicos Suicidas/efectos de los fármacos , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Masculino , Neuronas/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas Endogámicas Lew , Ratas Transgénicas , Núcleo Supraóptico/efectos de los fármacos , Núcleo Supraóptico/metabolismo , Vasopresinas/genética
15.
Cell Rep ; 37(5): 109925, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731601

RESUMEN

Neurovascular coupling (NVC), the process that links neuronal activity to cerebral blood flow changes, has been mainly studied in superficial brain areas, namely the neocortex. Whether the conventional, rapid, and spatially restricted NVC response can be generalized to deeper and functionally diverse brain regions remains unknown. Implementing an approach for in vivo two-photon imaging from the ventral surface of the brain, we show that a systemic homeostatic challenge, acute salt loading, progressively increases hypothalamic vasopressin (VP) neuronal firing and evokes a vasoconstriction that reduces local blood flow. Vasoconstrictions are blocked by topical application of a VP receptor antagonist or tetrodotoxin, supporting mediation by activity-dependent, dendritically released VP. Salt-induced inverse NVC results in a local hypoxic microenvironment, which evokes positive feedback excitation of VP neurons. Our results reveal a physiological mechanism by which inverse NVC responses regulate systemic homeostasis, further supporting the notion of brain heterogeneity in NVC responses.


Asunto(s)
Circulación Cerebrovascular , Dendritas/metabolismo , Acoplamiento Neurovascular , Núcleo Supraóptico/irrigación sanguínea , Vasoconstricción , Vasopresinas/metabolismo , Potenciales de Acción , Animales , Velocidad del Flujo Sanguíneo , Hipoxia de la Célula , Microambiente Celular , Femenino , Homeostasis , Infusiones Intravenosas , Masculino , Microscopía de Fluorescencia por Excitación Multifotónica , Ratas Transgénicas , Ratas Wistar , Solución Salina Hipertónica/administración & dosificación , Factores de Tiempo , Vasopresinas/genética
16.
Presse Med ; 50(4): 104093, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34718110

RESUMEN

Diabetes insipidus (DI) is a disorder characterized by a high hypotonic urinary output of more than 50ml per kg body weight per 24 hours, with associated polydipsia of more than 3 liters a day [1,2]. Central DI results from inadequate secretion and usually deficient synthesis of Arginine vasopressin (AVP) in the hypothalamus or pituitary gland. Besides central DI further underlying etiologies of DI can be due to other primary forms (renal origin) or secondary forms of polyuria (resulting from primary polydipsia). All these forms belong to the Polyuria Polydipsia Syndrom (PPS). In most cases central and nephrogenic DI are acquired, but there are also congenital forms caused by genetic mutations of the AVP gene (central DI) [3] or by mutations in the gene for the AVP V2R or the AQP2 water channel (nephrogenic DI) [4]. Primary polydipsia (PP) as secondary form of polyuria includes an excessive intake of large amounts of fluid leading to polyuria in the presence of intact AVP secretion and appropriate antidiuretic renal response. Differentiation between the three mentioned entities is difficult [5], especially in patients with Primary polydipsia or partial, mild forms of DI [1,6], but different tests for differential diagnosis, most recently based on measurement of copeptin, and a thorough medical history mostly lead to the correct diagnosis. This is important since treatment strategies vary and application of the wrong treatment can be dangerous [7]. Treatment of central DI consists of fluid management and drug therapy with the synthetic AVP analogue Desmopressin (DDAVP), that is used as nasal or oral preparation in most cases. Main side effect can be dilutional hyponatremia [8]. In this review we will focus on central diabetes insipidus and describe the prevalence, the clinical manifestations, the etiology as well as the differential diagnosis and management of central diabetes insipidus in the out- and inpatient setting.


Asunto(s)
Diabetes Insípida , Polidipsia , Poliuria , Adulto , Fármacos Antidiuréticos/uso terapéutico , Acuaporina 2/genética , Niño , Desamino Arginina Vasopresina/uso terapéutico , Diabetes Insípida/diagnóstico , Diabetes Insípida/etiología , Diabetes Insípida/terapia , Diagnóstico Diferencial , Glicopéptidos/análisis , Humanos , Mutación , Neurofisinas/genética , Neurofisinas/metabolismo , Hipófisis/diagnóstico por imagen , Hipófisis/metabolismo , Polidipsia/clasificación , Polidipsia/diagnóstico , Polidipsia/etiología , Poliuria/diagnóstico , Poliuria/etiología , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Vasopresinas/genética , Vasopresinas/metabolismo
17.
Front Endocrinol (Lausanne) ; 12: 722487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512553

RESUMEN

Rhodnius prolixus (the kissing bug and a major vector of Chagas disease) is an obligate blood feeder that in the case of the fifth instar consumes up to 10 times its unfed body weight in a single 20-minute feed. A post-prandial diuresis is initiated, within minutes of the start of gorging, in order to lower the mass and concentrate the nutrients of the meal. Thus, R. prolixus rapidly excretes a fluid that is high in NaCl content and hypo-osmotic to the hemolymph, thereby eliminating 50% of the volume of the blood meal within 3 hours of gorging. In R. prolixus, as with other insects, the Malpighian tubules play a critical role in diuresis. Malpighian tubules are not innervated, and their fine control comes under the influence of the neuroendocrine system that releases amines and neuropeptides as diuretic or antidiuretic hormones. These hormones act upon the Malpighian tubules via a variety of G protein-coupled receptors linked to second messenger systems that influence ion transporters and aquaporins; thereby regulating fluid secretion. Much has been discovered about the control of diuresis in R. prolixus, and other model insects, using classical endocrinological studies. The post-genomic era, however, has brought new insights, identifying novel diuretic and antidiuretic hormone-signaling pathways whilst also validating many of the classical discoveries. This paper will focus on recent discoveries into the neuroendocrine control of the rapid post-prandial diuresis in R. prolixus, in order to emphasize new insights from a transcriptome analysis of Malpighian tubules taken from unfed and fed bugs.


Asunto(s)
Líquidos Corporales/metabolismo , Túbulos de Malpighi/metabolismo , Sistemas Neurosecretores/fisiología , Rhodnius , Transcriptoma , Animales , Diuresis/genética , Diuréticos/metabolismo , Perfilación de la Expresión Génica , Hormonas de Insectos/genética , Hormonas de Insectos/metabolismo , Sistemas Neurosecretores/metabolismo , Periodo Posprandial , Rhodnius/genética , Rhodnius/metabolismo , Transcriptoma/genética , Vasopresinas/genética , Vasopresinas/metabolismo
18.
EMBO J ; 40(20): e108614, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34487375

RESUMEN

Circadian rhythms in mammals are governed by the hypothalamic suprachiasmatic nucleus (SCN), in which 20,000 clock cells are connected together into a powerful time-keeping network. In the absence of network-level cellular interactions, the SCN fails as a clock. The topology and specific roles of its distinct cell populations (nodes) that direct network functions are, however, not understood. To characterise its component cells and network structure, we conducted single-cell sequencing of SCN organotypic slices and identified eleven distinct neuronal sub-populations across circadian day and night. We defined neuropeptidergic signalling axes between these nodes, and built neuropeptide-specific network topologies. This revealed their temporal plasticity, being up-regulated in circadian day. Through intersectional genetics and real-time imaging, we interrogated the contribution of the Prok2-ProkR2 neuropeptidergic axis to network-wide time-keeping. We showed that Prok2-ProkR2 signalling acts as a key regulator of SCN period and rhythmicity and contributes to defining the network-level properties that underpin robust circadian co-ordination. These results highlight the diverse and distinct contributions of neuropeptide-modulated communication of temporal information across the SCN.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Hormonas Gastrointestinales/genética , Neuropéptidos/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Núcleo Supraquiasmático/metabolismo , Transcriptoma , Animales , Péptido Liberador de Gastrina/genética , Péptido Liberador de Gastrina/metabolismo , Hormonas Gastrointestinales/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Receptores de Bombesina/genética , Receptores de Bombesina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Núcleo Supraquiasmático/citología , Péptido Intestinal Vasoactivo/genética , Péptido Intestinal Vasoactivo/metabolismo , Vasopresinas/genética , Vasopresinas/metabolismo
19.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502322

RESUMEN

Vasopressin is a ubiquitous molecule playing an important role in a wide range of physiological processes thereby implicated in the pathomechanism of many disorders. Its effect is well characterized through V2 receptors, which regulates the water resorption in kidney, while its vasoconstrictory effect through V1a receptor also received a lot of attention in the maintenance of blood pressure during shock. However, the most striking is its central effect both through the V1b receptors in stress-axis regulation as well as through V1a receptors regulating many aspects of our behavior (e.g., social behavior, learning and memory). Vasopressin has been implicated in the development of depression, due to its connection with chronic stress, as well as schizophrenia because of its involvement in social interactions and memory processes. Epigenetic changes may also play a role in the development of these disorders. The possible mechanism includes DNA methylation, histone modification and/or micro RNAs, and these possible regulations will be in the focus of our present review.


Asunto(s)
Epigénesis Genética , Homeostasis , Trastornos Mentales/patología , Receptores de Vasopresinas/metabolismo , Vasopresinas/metabolismo , Animales , Humanos , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Receptores de Vasopresinas/genética , Transducción de Señal , Vasopresinas/genética
20.
Eur J Pharmacol ; 909: 174383, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34332923

RESUMEN

Due to its various function vasopressin has been associated with many psychiatric disorders, including schizophrenia. Our previous study confirmed that vasopressin-deficient (di/di) Brattleboro rat can be a good genetic model for schizophrenia. Our present aim was to confirm whether the treatment effects of marketed antipsychotics are similar in di/di rats to those seen in human schizophrenic patients. Chronic subcutaneous administration of aripiprazole (5 mg/kg), clozapine (1 mg/kg), haloperidol (0.1 mg/kg), olanzapine (0.3 mg/kg) or risperidone (0.25 mg/kg) was used for 15 days in control (+/+ Brattleboro) and di/di rats. Social discrimination, social avoidance and prepulse inhibition tests were conducted on day 1, 8 and 15 of the treatment. Vasopressin-deficient rats showed social memory- and sensorimotor gating deficit. All used antipsychotics successfully normalized the reduced prepulse inhibition of di/di animals. However, most were effective only after prolonged treatment. Aripiprazole, clozapine, and olanzapine normalized the social memory deficit, while the effects of haloperidol and risperidone were not unequivocal. All drugs reduced social interest to some extent both in control and in di/di animals, aripiprazole being the less implicated in this regard during the social avoidance test. The restoration of schizophrenia-like behavior by antipsychotic treatment further support the utility of the vasopressin-deficient Brattleboro rat as a good preclinical model. Reduced social interest might be a general side-effect of antipsychotics, and aripiprazole has the most favorable profile in this regard.


Asunto(s)
Antipsicóticos/administración & dosificación , Esquizofrenia/tratamiento farmacológico , Vasopresinas/deficiencia , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Inyecciones Subcutáneas , Masculino , Ratas , Ratas Brattleboro , Ratas Transgénicas , Esquizofrenia/genética , Conducta Social , Vasopresinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...