Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 585
Filtrar
1.
Commun Biol ; 7(1): 975, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128945

RESUMEN

Lymphatic vessels are essential for preventing the accumulation of harmful components within peripheral tissues, including the artery wall. Various endogenous mechanisms maintain adequate lymphatic function throughout life, with platelets being essential for preserving lymphatic vessel integrity. However, since lymph lacks platelets, their impact on the lymphatic system has long been viewed as restricted to areas where lymphatics intersect with blood vessels. Nevertheless, platelets can also exert long range effects through the release of extracellular vesicles (EVs) upon activation. We observed that platelet EVs (PEVs) are present in lymph, a compartment to which they could transfer regulatory effects of platelets. Here, we report that PEVs in lymph exhibit a distinct signature enabling them to interact with lymphatic endothelial cells (LECs). In vitro experiments show that the internalization of PEVs by LECs maintains their functional integrity. Treatment with PEVs improves lymphatic contraction capacity in atherosclerosis-prone mice. We suggest that boosting lymphatic pumping with exogenous PEVs offers a novel therapeutic approach for chronic inflammatory diseases characterized by defective lymphatics.


Asunto(s)
Plaquetas , Células Endoteliales , Vesículas Extracelulares , Vasos Linfáticos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/fisiología , Vasos Linfáticos/metabolismo , Vasos Linfáticos/fisiología , Animales , Células Endoteliales/fisiología , Células Endoteliales/metabolismo , Plaquetas/metabolismo , Plaquetas/fisiología , Ratones , Humanos , Ratones Endogámicos C57BL , Masculino , Femenino
2.
J Vis Exp ; (208)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39007605

RESUMEN

The meningeal lymphatic vessels (MLVs) play an important role in the removal of toxins from the brain. The development of innovative technologies for the stimulation of MLV functions is a promising direction in the progress of the treatment of various brain diseases associated with MLV abnormalities, including Alzheimer's and Parkinson's diseases, brain tumors, traumatic brain injuries, and intracranial hemorrhages. Sleep is a natural state when the brain's drainage processes are most active. Therefore, stimulation of the brain's drainage and MLVs during sleep may have the most pronounced therapeutic effects. However, such commercial technologies do not currently exist. This study presents a new portable technology of transcranial photobiomodulation (tPBM) under electroencephalographic (EEG) control of sleep designed to photo-stimulate removal of toxins (e.g., soluble amyloid beta (Aß)) from the brain of aged BALB/c mice with the ability to compare the therapeutic effectiveness of different optical resources. The technology can be used in the natural condition of a home cage without anesthesia, maintaining the motor activity of mice. These data open up new prospects for developing non-invasive and clinically promising photo-technologies for the correction of age-related changes in the MLV functions and brain's drainage processes and for effectively cleansing brain tissues from metabolites and toxins. This technology is intended both for preclinical studies of the functions of the sleeping brain and for developing clinically relevant treatments for sleep-related brain diseases.


Asunto(s)
Encéfalo , Electroencefalografía , Ratones Endogámicos BALB C , Sueño , Animales , Ratones , Encéfalo/efectos de la radiación , Electroencefalografía/métodos , Sueño/fisiología , Sueño/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Péptidos beta-Amiloides/metabolismo , Vasos Linfáticos/efectos de la radiación , Vasos Linfáticos/fisiología
3.
Microcirculation ; 31(6): e12873, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38953384

RESUMEN

OBJECTIVE: Intravascular lymphatic valves often occur in proximity to vessel junctions. It is commonly held that disturbed flow at junctions is responsible for accumulation of valve-forming cells (VFCs) at these locations as the initial step in valve creation, and the one which explains the association with these sites. However, evidence in favor is largely limited to cell culture experiments. METHODS: We acquired images of embryonic lymphatic vascular networks from day E16.5, when VFC accumulation has started but the developing valve has not yet altered the local vessel geometry, stained for Prox1, which co-localizes with Foxc2. Using finite-element computational fluid mechanics, we simulated the flow through the networks, under conditions appropriate to this early development stage. Then we correlated the Prox1 distributions with the distributions of simulated fluid shear and shear stress gradient. RESULTS: Across a total of 16 image sets, no consistent correlation was found between Prox1 distribution and the local magnitude of fluid shear, or its positive or negative gradient. CONCLUSIONS: This, the first direct semi-empirical test of the localization hypothesis to interrogate the tissue from in vivo at the critical moment of development, does not support the idea that a feature of the local flow determines valve localization.


Asunto(s)
Proteínas de Homeodominio , Vasos Linfáticos , Proteínas Supresoras de Tumor , Animales , Vasos Linfáticos/embriología , Vasos Linfáticos/fisiología , Vasos Linfáticos/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ratones , Factores de Transcripción Forkhead/metabolismo , Hidrodinámica , Modelos Biológicos , Embrión de Mamíferos
4.
J Physiol ; 602(14): 3351-3373, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704841

RESUMEN

Ca2+ signalling plays a crucial role in determining lymphatic muscle cell excitability and contractility through its interaction with the Ca2+-activated Cl- channel anoctamin 1 (ANO1). In contrast, the large-conductance (BK) Ca2+-activated K+ channel (KCa) and other KCa channels have prominent vasodilatory actions by hyperpolarizing vascular smooth muscle cells. Here, we assessed the expression and contribution of the KCa family to mouse and rat lymphatic collecting vessel contractile function. The BK channel was the only KCa channel consistently expressed in fluorescence-activated cell sorting-purified mouse lymphatic muscle cell lymphatic muscle cells. We used a pharmacological inhibitor of BK channels, iberiotoxin, and small-conductance Ca2+-activated K+ channels, apamin, to inhibit KCa channels acutely in ex vivo isobaric myography experiments and intracellular membrane potential recordings. In basal conditions, BK channel inhibition had little to no effect on either mouse inguinal-axillary lymphatic vessel (MIALV) or rat mesenteric lymphatic vessel contractions or action potentials (APs). We also tested BK channel inhibition under loss of ANO1 either by genetic ablation (Myh11CreERT2-Ano1 fl/fl, Ano1ismKO) or by pharmacological inhibition with Ani9. In both Ano1ismKO MIALVs and Ani9-pretreated MIALVs, inhibition of BK channels increased contraction amplitude, increased peak AP and broadened the peak of the AP spike. In rat mesenteric lymphatic vessels, BK channel inhibition also abolished the characteristic post-spike notch, which was exaggerated with ANO1 inhibition, and significantly increased the peak potential and broadened the AP spike. We conclude that BK channels are present and functional on mouse and rat lymphatic muscle cells but are otherwise masked by the dominance of ANO1. KEY POINTS: Mouse and rat lymphatic muscle cells express functional BK channels. BK channels make little contribution to either rat or mouse lymphatic collecting vessel contractile function in basal conditions across a physiological pressure range. ANO1 limits the peak membrane potential achieved in the action potential and sets a plateau potential limiting the voltage-dependent activation of BK. BK channels are activated when ANO1 is absent or blocked and slightly impair contractile strength by reducing the peak membrane potential achieved in the action potential spike and accelerating the post-spike repolarization.


Asunto(s)
Potenciales de Acción , Anoctamina-1 , Canales de Potasio de Gran Conductancia Activados por el Calcio , Vasos Linfáticos , Animales , Anoctamina-1/metabolismo , Anoctamina-1/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Ratones , Ratas , Potenciales de Acción/fisiología , Masculino , Vasos Linfáticos/fisiología , Vasos Linfáticos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular/fisiología , Ratas Sprague-Dawley , Femenino , Miocitos del Músculo Liso/fisiología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos
5.
Exp Neurol ; 377: 114783, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38688418

RESUMEN

The structural and functional features of lymphatic vessels in the peripheral nervous system (pLVs) is still unclear. Here, we clarify the existence of pLVs in rats, PROX1-EGFP transgenic mice and human, and exhibit a clear three-dimensional structure for helping understand its structural features. Moreover, two specific phenotypes of lymphatics endothelial cells (Rnd1Hi LECs and Ccl21Hi LECs) in peripheral nerves are well characterized by single-cell sequencing. Subsequently, the ability of trans-lymphatic delivery to peripheral nerves via pLVs has been dynamically demonstrated. After peripheral nerve injury (PNI), extensive lymphangiogenesis occurs in the lesion area and further enhances the efficiency of retrograde lymphatic-nerve transport. In PNI animal models, subcutaneously footpad-injected exosomes are efficiently delivered to sciatic nerve via pLVs which can promote nerve regeneration. The trans-lymphatic delivery to peripheral nerves via pLVs can subtly bypass BNB which provides an easy and alternative delivery route for PNI treatment.


Asunto(s)
Vasos Linfáticos , Ratones Transgénicos , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Animales , Regeneración Nerviosa/fisiología , Vasos Linfáticos/fisiología , Ratones , Traumatismos de los Nervios Periféricos/patología , Ratas , Humanos , Sistema Nervioso Periférico , Ratas Sprague-Dawley , Masculino , Nervio Ciático/fisiología , Nervio Ciático/lesiones , Linfangiogénesis/fisiología , Células Endoteliales/fisiología , Exosomas/metabolismo
6.
Adv Drug Deliv Rev ; 209: 115304, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38599495

RESUMEN

The lymphatic system has garnered significant attention in drug delivery research due to the advantages it offers, such as enhancing systemic exposure and enabling lymph node targeting for nanomedicines via the lymphatic delivery route. The journey of drug carriers involves transport from the administration site to the lymphatic vessels, traversing the lymph before entering the bloodstream or targeting specific lymph nodes. However, the anatomical and physiological barriers of the lymphatic system play a pivotal role in influencing the behavior and efficiency of carriers. To expedite research and subsequent clinical translation, this review begins by introducing the composition and classification of the lymphatic system. Subsequently, we explore the routes and mechanisms through which nanoparticles enter lymphatic vessels and lymph nodes. The review further delves into the interactions between nanomedicine and body fluids at the administration site or within lymphatic vessels. Finally, we provide a comprehensive overview of recent advancements in lymphatic delivery systems, addressing the challenges and opportunities inherent in current systems for delivering macromolecules and vaccines.


Asunto(s)
Sistemas de Liberación de Medicamentos , Sistema Linfático , Nanopartículas , Humanos , Nanopartículas/administración & dosificación , Sistema Linfático/metabolismo , Animales , Vasos Linfáticos/metabolismo , Vasos Linfáticos/fisiología , Portadores de Fármacos/química , Nanomedicina , Ganglios Linfáticos/metabolismo
7.
J Biomech Eng ; 146(9)2024 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558115

RESUMEN

A previously developed model of a lymphatic vessel as a chain of lymphangions was investigated to determine whether lymphangions of unequal length reduce pumping relative to a similar chain of equal-length ones. The model incorporates passive elastic and active contractile properties taken from ex vivo measurements, and intravascular lymphatic valves as transvalvular pressure-dependent resistances to flow with hysteresis and transmural pressure-dependent bias to the open state as observed experimentally. Coordination of lymphangion contractions is managed by marrying an autonomous transmural pressure-dependent pacemaker for each lymphangion with bidirectional transmission of activation signals between lymphangions, qualitatively matching empirical observations. With eight lymphangions as used here and many nonlinear constraints, the model is capable of complex outcomes. The expected flow-rate advantage conferred by longer lymphangions everywhere was confirmed. However, the anticipated advantage of uniform lymphangions over those of unequal length, compared in chains of equal overall length, was not found. A wide variety of dynamical outcomes was observed, with the most powerful determinant being the adverse pressure difference, rather than the arrangement of long and short lymphangions. This work suggests that the wide variation in lymphangion length which is commonly observed in collecting lymphatic vessels does not confer disadvantage in pumping lymph.


Asunto(s)
Vasos Linfáticos , Modelos Biológicos , Sistema Linfático/fisiología , Vasos Linfáticos/fisiología , Linfa/fisiología , Presión , Contracción Muscular
8.
Exp Eye Res ; 243: 109904, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642600

RESUMEN

Aqueous humor (AQH) is a transparent fluid with characteristics similar to those of the interstitial fluid, which fills the eyeball posterior and anterior chambers and circulates in them from the sites of production to those of drainage. The AQH volume and pressure homeostasis is essential for the trophism of the ocular avascular tissues and their normal structure and function. Different AQH outflow pathways exist, including a main pathway, quite well defined anatomically and referred to as the conventional pathway, and some accessory pathways, more recently described and still not fully morphofunctionally understood, generically referred to as unconventional pathways. The conventional pathway is based on the existence of a series of conduits starting with the trabecular meshwork and Schlemm's Canal and continuing with a system of intrascleral and episcleral venules, which are tributaries to veins of the anterior segment of the eyeball. The unconventional pathways are mainly represented by the uveoscleral pathway, in which AQH flows through clefts, interstitial conduits located in the ciliary body and sclera, and then merges into the aforementioned intrascleral and episcleral venules. A further unconventional pathway, the lymphatic pathway, has been supported by the demonstration of lymphatic microvessels in the limbal sclera and, possibly, in the uvea (ciliary body, choroid) as well as by the ocular glymphatic channels, present in the neural retina and optic nerve. It follows that AQH may be drained from the eyeball through blood vessels (TM-SC pathway, US pathway) or lymphatic vessels (lymphatic pathway), and the different pathways may integrate or compensate for each other, optimizing the AQH drainage. The present review aims to define the state-of-the-art concerning the structural organization and the functional anatomy of all the AQH outflow pathways. Particular attention is paid to examining the regulatory mechanisms active in each of them. The new data on the anatomy and physiology of AQH outflow pathways is the key to understanding the pathophysiology of AQH outflow disorders and could open the way for novel approaches to their treatment.


Asunto(s)
Humor Acuoso , Sistema Linfático , Humor Acuoso/fisiología , Humor Acuoso/metabolismo , Humanos , Sistema Linfático/fisiología , Esclerótica/irrigación sanguínea , Malla Trabecular/metabolismo , Vasos Linfáticos/fisiología , Venas/fisiología , Úvea , Animales , Presión Intraocular/fisiología , Linfa/fisiología , Cuerpo Ciliar/irrigación sanguínea , Cuerpo Ciliar/metabolismo
9.
Annu Rev Neurosci ; 47(1): 323-344, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38648267

RESUMEN

Since its recent discovery, the meningeal lymphatic system has reshaped our understanding of central nervous system (CNS) fluid exchange, waste clearance, immune cell trafficking, and immune privilege. Meningeal lymphatics have also been demonstrated to functionally modify the outcome of neurological disorders and their responses to treatment, including brain tumors, inflammatory diseases such as multiple sclerosis, CNS injuries, and neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review, we discuss recent evidence of the contribution of meningeal lymphatics to neurological diseases, as well as the available experimental methods for manipulating meningeal lymphatics in these conditions. Finally, we also provide a discussion of the pressing questions and challenges in utilizing meningeal lymphatics as a prime target for CNS therapeutic intervention and possibly drug delivery for brain disorders.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Meninges , Humanos , Animales , Enfermedades del Sistema Nervioso Central/fisiopatología , Enfermedades del Sistema Nervioso Central/patología , Sistema Linfático/fisiología , Sistema Linfático/fisiopatología , Vasos Linfáticos/fisiología
10.
J Vis Exp ; (205)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38587372

RESUMEN

The lymphatic vasculature, now often referred to as "the third circulation," is located in many vital organ systems. A principal mechanical function of the lymphatic vasculature is to return fluid from extracellular spaces back to the central venous ducts. Lymph transport is mediated by spontaneous rhythmic contractions of lymph vessels (LVs). LV contractions are largely regulated by the cyclic rise and fall of cytosolic, free calcium ([Ca2+]i). This paper presents a method to concurrently calculate changes in absolute concentrations of [Ca2+]i and vessel contractility/rhythmicity in real time in isolated, pressurized LVs. Using isolated rat mesenteric LVs, we studied changes in [Ca2+]i and contractility/rhythmicity in response to drug addition. Isolated LVs were loaded with the ratiometric Ca2+-sensing indicator Fura-2AM, and video microscopy coupled with edge-detection software was used to capture [Ca2+]i and diameter measurements continuously in real time. The Fura-2AM signal from each LV was calibrated to the minimum and maximum signal for each vessel and used to calculate absolute [Ca2+]i. Diameter measurements were used to calculate contractile parameters (amplitude, end diastolic diameter, end systolic diameter, calculated flow) and rhythmicity (frequency, contraction time, relaxation time) and correlated with absolute [Ca2+]i measurements.


Asunto(s)
Calcio , Vasos Linfáticos , Ratas , Animales , Vasos Linfáticos/fisiología , Linfa , Contracción Muscular/fisiología
11.
Neuroreport ; 35(3): 160-169, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38305109

RESUMEN

To investigate the distribution and characteristics of lymphatic vessels within the central nervous system, we focus on the meninges of the spinal cord and brain parenchyma in mice. Additionally, we aim to provide experimental methods for obtaining optimal imaging and clear structures of lymphatic vessels, while optimizing the perfusion parameters to improve histomorphological quality. Male C57BL/6J mice were randomly divided into four groups, with each group assigned a specific perfusion parameter based on perfusion volumes and temperatures. Immunofluorescence staining of lymphatics and blood vessels was performed on both meningeal and the brain tissue samples. Statistical analysis was performed using one-way analysis of variance to compare the groups, and a significant level of P < 0.05 was considered statistically significant. Our study reports the presence of lymphatic vessels in the meninges of the spinal cord and brain parenchyma in mice. We highlight the crucial role of high perfusion volume of paraformaldehyde with low temperature in fixation for achieving optimal results. We provide experimental methods for obtaining optimal imaging and clear structures of lymphatic vessels in the meninges of the spinal cord and brain parenchyma in mice, which contribute to our understanding of the distribution and characteristics of lymphatic vessels within the central nervous system. Further research is warranted to explore the functional implications of these lymphatic vessels and their potential therapeutic significance in neurodegenerative and neuroinflammatory diseases.


Asunto(s)
Sistema Nervioso Central , Vasos Linfáticos , Masculino , Ratones , Animales , Ratones Endogámicos C57BL , Vasos Linfáticos/diagnóstico por imagen , Vasos Linfáticos/fisiología , Meninges/diagnóstico por imagen , Encéfalo , Perfusión
12.
Commun Biol ; 7(1): 229, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402351

RESUMEN

Crosstalk between central nervous system (CNS) and systemic responses is important in many pathological conditions, including stroke, neurodegeneration, schizophrenia, epilepsy, etc. Accumulating evidence suggest that signals for central-systemic crosstalk may utilize glymphatic and lymphatic pathways. The glymphatic system is functionally connected to the meningeal lymphatic system, and together these pathways may be involved in the distribution of soluble proteins and clearance of metabolites and waste products from the CNS. Lymphatic vessels in the dura and meninges transport cerebrospinal fluid, in part collected from the glymphatic system, to the cervical lymph nodes, where solutes coming from the brain (i.e., VEGFC, oligomeric α-syn, ß-amyloid) might activate a systemic inflammatory response. There is also an element of time since the immune system is strongly regulated by circadian rhythms, and both glymphatic and lymphatic dynamics have been shown to change during the day and night. Understanding the mechanisms regulating the brain-cervical lymph node (CLN) signaling and how it might be affected by diurnal or circadian rhythms is fundamental to find specific targets and timing for therapeutic interventions.


Asunto(s)
Sistema Nervioso Central , Vasos Linfáticos , Vasos Linfáticos/fisiología , Encéfalo/metabolismo , Sistema Linfático , Meninges
13.
Physiol Rep ; 12(3): e15950, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355142

RESUMEN

Lymphatic vessels are actively involved in the recovery process of inflamed tissues. However, the changes in intramuscular lymphatic vessels during inflammation caused by skeletal muscle injury remain unclear. Therefore, the purpose of this study was to clarify the changes in lymphatic vessels after skeletal muscle injury. The left tibialis anterior muscles of male mice were subjected to lengthening contractions (LC) for inducing skeletal muscle injury, and samples were collected on Days 2, 4, and 7 for examining changes in both the skeletal muscles and intramuscular lymphatic vessels. With hematoxylin-eosin staining, the inflammatory response was observed in myofibers on Days 2 and 4 after LC, whereas regeneration of myofibers was found on Day 7 after LC. The number and area of intramuscular lymphatic vessels analyzed by immunohistochemical staining with an antibody against lymphatic vessel endothelial hyaluronan receptor 1 were significantly increased only on Day 4 after LC. Based on the abovementioned results, intramuscular lymphatic vessels undergo morphological changes such as increase under the state of muscle inflammation. This study demonstrated that the morphology of intramuscular lymphatic vessels undergoes significant changes during the initial recovery phase following skeletal muscle injury.


Asunto(s)
Vasos Linfáticos , Músculo Esquelético , Ratones , Masculino , Animales , Músculo Esquelético/fisiología , Contracción Muscular/fisiología , Vasos Linfáticos/fisiología , Inflamación/patología
14.
Signal Transduct Target Ther ; 9(1): 9, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172098

RESUMEN

Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.


Asunto(s)
Vasos Linfáticos , Humanos , Vasos Linfáticos/patología , Vasos Linfáticos/fisiología , Linfangiogénesis/genética , Transducción de Señal/genética
15.
Nature ; 625(7996): 768-777, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200313

RESUMEN

Cerebrospinal fluid (CSF) in the subarachnoid space around the brain has long been known to drain through the lymphatics to cervical lymph nodes1-17, but the connections and regulation have been challenging to identify. Here, using fluorescent CSF tracers in Prox1-GFP lymphatic reporter mice18, we found that the nasopharyngeal lymphatic plexus is a major hub for CSF outflow to deep cervical lymph nodes. This plexus had unusual valves and short lymphangions but no smooth-muscle coverage, whereas downstream deep cervical lymphatics had typical semilunar valves, long lymphangions and smooth muscle coverage that transported CSF to the deep cervical lymph nodes. α-Adrenergic and nitric oxide signalling in the smooth muscle cells regulated CSF drainage through the transport properties of deep cervical lymphatics. During ageing, the nasopharyngeal lymphatic plexus atrophied, but deep cervical lymphatics were not similarly altered, and CSF outflow could still be increased by adrenergic or nitric oxide signalling. Single-cell analysis of gene expression in lymphatic endothelial cells of the nasopharyngeal plexus of aged mice revealed increased type I interferon signalling and other inflammatory cytokines. The importance of evidence for the nasopharyngeal lymphatic plexus functioning as a CSF outflow hub is highlighted by its regression during ageing. Yet, the ageing-resistant pharmacological activation of deep cervical lymphatic transport towards lymph nodes can still increase CSF outflow, offering an approach for augmenting CSF clearance in age-related neurological conditions in which greater efflux would be beneficial.


Asunto(s)
Líquido Cefalorraquídeo , Vértebras Cervicales , Drenaje , Vasos Linfáticos , Animales , Ratones , Envejecimiento/metabolismo , Líquido Cefalorraquídeo/metabolismo , Vértebras Cervicales/metabolismo , Células Endoteliales/metabolismo , Fluorescencia , Genes Reporteros , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Vasos Linfáticos/fisiología , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Nariz/fisiología , Faringe/metabolismo , Receptores Adrenérgicos alfa/metabolismo , Análisis de la Célula Individual , Transducción de Señal
16.
Biomech Model Mechanobiol ; 23(1): 3-22, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37902894

RESUMEN

Historically, research into the lymphatic system has been overlooked due to both a lack of knowledge and limited recognition of its importance. In the last decade however, lymphatic research has gained substantial momentum and has included the development of a variety of computational models to aid understanding of this complex system. This article reviews existing computational fluid dynamic models of the lymphatics covering each structural component including the initial lymphatics, pre-collecting and collecting vessels, and lymph nodes. This is followed by a summary of limitations and gaps in existing computational models and reasons that development in this field has been hindered to date. Over the next decade, efforts to further characterize lymphatic anatomy and physiology are anticipated to provide key data to further inform and validate lymphatic fluid dynamic models. Development of more comprehensive multiscale- and multi-physics computational models has the potential to significantly enhance the understanding of lymphatic function in both health and disease.


Asunto(s)
Hidrodinámica , Vasos Linfáticos , Sistema Linfático/fisiología , Vasos Linfáticos/fisiología , Simulación por Computador , Física
17.
Sci Rep ; 13(1): 21241, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040740

RESUMEN

Lymphedema is a condition in which lymph transport is compromised. The factors that govern the timing of lymphatic contractions are largely unknown; however, these factors likely play a central role in lymphatic health. Computational models have proven useful in quantifying changes in lymph transport; nevertheless, there is still much unknown regarding the regulation of contractions. The purpose of this paper is to utilize computational modeling to examine the role of pacemaking activity in lymph transport. A 1D fluid-solid modeling framework was utilized to describe the interaction between the contracting vessel and the lymph flow. The distribution of contractions along a three-lymphangion chain in time and space was determined by specifying the pacemaking sites and parameters obtained from experimentation. The model effectively replicates the contractility patterns in experiments. Quantitatively, the flow rates were measured at 5.44 and 2.29 [Formula: see text], and the EF values were 78% and less than 33% in the WT and KO models, respectively, which are consistent with the literature. Applying pacemaking parameters in this modeling framework effectively captures lymphatic contractile wave propagations and their relation to lymph transport. It can serve as a motivation for conducting novel studies to evaluate lymphatic pumping function during the development of lymphedema.


Asunto(s)
Vasos Linfáticos , Linfedema , Humanos , Linfa/fisiología , Vasos Linfáticos/fisiología , Contracción Muscular/fisiología , Simulación por Computador , Sistema Linfático/fisiología
18.
Cell Mol Life Sci ; 80(12): 366, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985518

RESUMEN

The lymphatic vasculature plays a crucial role in fluid clearance and immune responses in peripheral organs by connecting them to distal lymph nodes. Recently, attention has been drawn to the lymphatic vessel network surrounding the brain's border tissue (Aspelund et al. in J Exp Med 212:991-999, 2015. https://doi.org/10.1084/jem.20142290 ; Louveau et al. in Nat Neurosci 21:1380-1391, 2018. https://doi.org/10.1038/s41593-018-0227-9 ), which guides immune cells in mediating protection against tumors (Song et al. in Nature 577:689-694, 2020. https://doi.org/10.1038/s41586-019-1912-x ) and pathogens Li et al. (Nat Neurosci 25:577-587, 2022. https://doi.org/10.1038/s41593-022-01063-z ) while also contributing to autoimmunity (Louveau et al. 2018) and neurodegeneration (Da Mesquita et al. in Nature 560:185-191, 2018. https://doi.org/10.1038/s41586-018-0368-8 ). New studies have highlighted the integral involvement of meningeal lymphatic vessels in neuropathology. However, our limited understanding of spinal cord meningeal lymphatics and immunity hinders efforts to protect and heal the spinal cord from infections, injury, and other immune-mediated diseases. This review aims to provide a comprehensive overview of the state of spinal cord meningeal immunity, highlighting its unique immunologically relevant anatomy, discussing immune cells and lymphatic vasculature, and exploring the potential impact of injuries and inflammatory disorders on this intricate environment.


Asunto(s)
Sistema Nervioso Central , Vasos Linfáticos , Meninges , Sistema Linfático , Médula Espinal , Vasos Linfáticos/fisiología
19.
Methodist Debakey Cardiovasc J ; 19(5): 37-46, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028969

RESUMEN

This article highlights the importance of the structure and function of cardiac lymphatics in cardiovascular diseases and the therapeutic potential of cardiac lymphangiogenesis. Specifically, we explore the innate lymphangiogenic response to damaged cardiac tissue or cardiac injury, derive key findings from regenerative models demonstrating how robust lymphangiogenic responses can be supported to improve cardiac function, and introduce an approach to imaging the structure and function of cardiac lymphatics.


Asunto(s)
Enfermedades Cardiovasculares , Vasos Linfáticos , Humanos , Linfangiogénesis/fisiología , Vasos Linfáticos/fisiología , Corazón , Regeneración
20.
J Gen Physiol ; 155(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37851028

RESUMEN

Lymphatic system defects are involved in a wide range of diseases, including obesity, cardiovascular disease, and neurological disorders, such as Alzheimer's disease. Fluid return through the lymphatic vascular system is primarily provided by contractions of muscle cells in the walls of lymphatic vessels, which are in turn driven by electrochemical oscillations that cause rhythmic action potentials and associated surges in intracellular calcium ion concentration. There is an incomplete understanding of the mechanisms involved in these repeated events, restricting the development of pharmacological treatments for dysfunction. Previously, we proposed a model where autonomous oscillations in the membrane potential (M-clock) drove passive oscillations in the calcium concentration (C-clock). In this paper, to model more accurately what is known about the underlying physiology, we extend this model to the case where the M-clock and the C-clock oscillators are both active but coupled together, thus both driving the action potentials. This extension results from modifications to the model's description of the IP3 receptor, a key C-clock mechanism. The synchronised dual-driving clock behaviour enables the model to match IP3 receptor knock-out data, thus resolving an issue with previous models. We also use phase-plane analysis to explain the mechanisms of coupling of the dual clocks. The model has the potential to help determine mechanisms and find targets for pharmacological treatment of some causes of lymphoedema.


Asunto(s)
Relojes Biológicos , Vasos Linfáticos , Relojes Biológicos/fisiología , Receptores de Inositol 1,4,5-Trifosfato/genética , Calcio/metabolismo , Células Musculares/metabolismo , Vasos Linfáticos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA