Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.077
Filtrar
1.
Lasers Med Sci ; 39(1): 171, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965082

RESUMEN

To evaluate the effects of red and infrared wavelengths, separately and combined, on the inflammatory process and collagen deposition in muscle damage caused by B. leucurus venom. 112 mice were inoculated with diluted venom (0.6mg/kg) in the gastrocnemius muscle. The animals were divided into four groups: one control (CG) and three treatments, namely: 1) red laser (λ=660 nm) (RG), 2) infrared laser (λ=808 nm) (IG) and 3) red laser (λ=660 nm) + infrared (λ=808 nm) (RIG). Each group was subdivided into four subgroups, according to the duration of treatment application (applications every 24 hours over evaluation times of up to 144 hours). A diode laser was used (0.1 W, CW, 1J/point, ED: 10 J/cm2). Both wavelengths reduced the intensity of inflammation and the combination between them significantly intensified the anti-inflammatory response. Photobiomodulation also changed the type of inflammatory infiltrate observed and RIG had the highest percentage of mononuclear cells in relation to the other groups. Hemorrhage intensity was significantly lower in treated animals and RIG had the highest number of individuals in which this variable was classified as mild. As for collagen deposition, there was a significant increase in RG in relation to CG, in RIG in relation to CG and in RIG in relation to IG. Photobiomodulation proved to be effective in the treatment of inflammation and hemorrhage caused by B. leucurus venom and stimulated collagen deposition. Better results were obtained with the combined wavelengths.


Asunto(s)
Bothrops , Colágeno , Venenos de Crotálidos , Hemorragia , Inflamación , Terapia por Luz de Baja Intensidad , Músculo Esquelético , Animales , Ratones , Terapia por Luz de Baja Intensidad/métodos , Músculo Esquelético/efectos de la radiación , Músculo Esquelético/efectos de los fármacos , Hemorragia/patología , Colágeno/metabolismo , Colágeno/análisis , Venenos de Crotálidos/toxicidad , Rayos Infrarrojos , Masculino , Láseres de Semiconductores/uso terapéutico , Mordeduras de Serpientes/radioterapia
2.
Exp Clin Transplant ; 22(5): 399-401, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38970285

RESUMEN

Envenomation of humans by snakes, a global health challenge, is poorly studied in liver transplant recipients. We report a case of rattlesnake envenomation in a 52-year-old female patient who had previously received a liver transplant to treat nonalcoholic steatohepatitis cirrhosis. Despite stable graft function since her transplant, she exhibited elevated liver enzymes on admission, with a mixed hepatocellular and cholestatic pattern. Treatment included CroFab Crotalidae polyvalent immune Fab (ovine) antivenom and close monitoring, with continuation of her standard immunosuppression regimen. Inpatient observation showed reduced swelling and pain but persistently elevated enzymes. Imaging indicated fatty infiltration with patent hepatic vasculature. Her liver enzymes improved spontaneously, and she was discharged after 5 days, with complete normalization of herliver enzyme levels as shown by repeated laboratory test results 1 month later. Our case emphasizes the risk of graftinjury in liver transplant recipients, as well as the need for vigilant monitoring and early antivenom administration. We urge furtherresearch to establish guidelines for optimal care in this unique population.


Asunto(s)
Antivenenos , Trasplante de Hígado , Mordeduras de Serpientes , Humanos , Mordeduras de Serpientes/diagnóstico , Mordeduras de Serpientes/complicaciones , Persona de Mediana Edad , Trasplante de Hígado/efectos adversos , Femenino , Antivenenos/uso terapéutico , Resultado del Tratamiento , Animales , Venenos de Crotálidos , Fragmentos Fab de Inmunoglobulinas/uso terapéutico , Inmunosupresores/efectos adversos , Inmunosupresores/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/cirugía , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Crotalus
3.
ACS Chem Neurosci ; 15(14): 2600-2611, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38957957

RESUMEN

Over a century has passed since Alois Alzheimer first described Alzheimer's disease (AD), and since then, researchers have made significant strides in understanding its pathology. One key feature of AD is the presence of amyloid-ß (Aß) peptides, which form amyloid plaques, and therefore, it is a primary target for treatment studies. Naturally occurring peptides have garnered attention for their potential pharmacological benefits, particularly in the central nervous system. In this study, nine peptide derivatives of Crotamine, a polypeptide from Crotalus durissus terrificus Rattlesnake venom, as well as one d-enantiomer, were evaluated for their ability to modulate Aß42 aggregation through various assays such as ThT, QIAD, SPR, and sFIDA. All tested peptides were able to decrease Aß42 aggregation and eliminate Aß42 aggregates. Additionally, all of the peptides showed an affinity for Aß42. This study is the first to describe the potential of crotamine derivative peptides against Aß42 aggregation and to identify a promising d-peptide that could be used as an effective pharmacological tool against AD in the future.


Asunto(s)
Péptidos beta-Amiloides , Venenos de Crotálidos , Fragmentos de Péptidos , Péptidos beta-Amiloides/metabolismo , Humanos , Animales , Agregado de Proteínas/efectos de los fármacos , Venenos de Serpiente/química , Péptidos/farmacología , Péptidos/química , Crotalus
4.
Cells ; 13(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38920625

RESUMEN

Envenomation by the Hypnale hypnale in the Western Ghats of India (particularly in the Malabar region of Kerala) and the subcontinent island nation of Sri Lanka is known to inflict devastating mortality and morbidity. Currently, H. hypnale bites in India are devoid of anti-venom regimens. A detailed characterization of the venom is essential to stress the need for therapeutic anti-venom. Notably, the deleterious effects of this venom on human blood cells have largely remained less explored. Therefore, in continuation of our previous study, in the present study, we envisioned investigating the effect of venom on the morphological and physiological properties of red blood cells (RBCs). The venom readily induced deleterious morphological changes and, finally, the aggregation of washed RBCs. The aggregation process was independent of the ROS and the intracellular Ca2+ ion concentration. Confocal and scanning electron microscopy (SEM) images revealed the loss of biconcave morphology and massive cytoskeletal disarray. Crenation or serrated plasma membrane projections were evenly distributed on the surface of the RBCs. The venom did not cause the formation of methemoglobin in washed RBCs but was significantly induced in whole blood. Venom did not affect glucose uptake and Na+/K+ -ATPase activity but inhibited glucose 6 phosphate dehydrogenase activity and decreased the fluidity of the plasma membrane. Venom-induced RBC aggregates exhibited pro-coagulant activity but without affecting platelet aggregation. In pre-incubation or co-treatment studies, none of the bioactive compounds, such as melatonin, curcumin, fisetin, berberine, and quercetin, sugars such as mannose and galactose, and therapeutic polyvalent anti-venoms (Bharat and VINS) were inhibited, whereas only N-acetylcysteine and H. hypnale monovalent anti-venom could inhibit venom-induced deleterious morphological changes and aggregation of RBCs. In post-treatment studies, paradoxically, none of the bioactives and anti-venoms, including N-acetylcysteine and H. hypnale monovalent anti-venom, reversed the venom-induced RBC aggregates.


Asunto(s)
Acetilcisteína , Venenos de Crotálidos , Eritrocitos , Animales , Humanos , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Acetilcisteína/farmacología , Agregación Eritrocitaria/efectos de los fármacos , Antivenenos/farmacología , Calcio/metabolismo , Crotalinae , Especies Reactivas de Oxígeno/metabolismo
5.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928044

RESUMEN

Eastern Diamondback Rattlesnake (Crotalus adamanteus) envenomation is a medical emergency encountered in the Southeastern United States. The venom contains a snake venom thrombin-like enzyme (SVTLE) that is defibrinogenating, causing coagulopathy without effects on platelets in humans. This investigation utilized thrombelastographic methods to document this coagulopathy kinetically on the molecular level in a rabbit model of envenomation via the analyses of whole blood samples without and with platelet inhibition. Subsequently, the administration of a novel ruthenium compound containing site-directed antivenom abrogated the coagulopathic effects of envenomation in whole blood without platelet inhibition and significantly diminished loss of coagulation in platelet-inhibited samples. This investigation provides coagulation kinetic insights into the molecular interactions and results of SVTLE on fibrinogen-dependent coagulation and confirmation of the efficacy of a ruthenium antivenom. These results serve as a rationale to investigate the coagulopathic effects of other venoms with this model and assess the efficacy of this site-directed antivenom.


Asunto(s)
Antivenenos , Coagulación Sanguínea , Venenos de Crotálidos , Crotalus , Animales , Conejos , Antivenenos/farmacología , Venenos de Crotálidos/farmacología , Venenos de Crotálidos/antagonistas & inhibidores , Coagulación Sanguínea/efectos de los fármacos , Tromboelastografía , Rutenio/química , Rutenio/farmacología , Mordeduras de Serpientes/tratamiento farmacológico , Masculino , Serpientes Venenosas
6.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928132

RESUMEN

Ruthenium chloride (RuCl3) is widely utilized for synthesis and catalysis of numerous compounds in academia and industry and is utilized as a key molecule in a variety of compounds with medical applications. Interestingly, RuCl3 has been demonstrated to modulate human plasmatic coagulation and serves as a constituent of a compounded inorganic antivenom that neutralizes the coagulopathic effects of snake venom in vitro and in vivo. Using thrombelastography, this investigation sought to determine if RuCl3 inhibition of the fibrinogenolytic effects of Crotalus atrox venom could be modulated by vehicle composition in human plasma. Venom was exposed to RuCl3 in 0.9% NaCl, phosphate-buffered saline (PBS), or 0.9% NaCl containing 1% dimethyl sulfoxide (DMSO). RuCl3 inhibited venom-mediated delay in the onset of thrombus formation, decreased clot growth velocity, and decreased clot strength. PBS and DMSO enhanced the effects of RuCl3. It is concluded that while a Ru-based cation is responsible for significant inhibition of venom activity, a combination of Ru-based ions containing phosphate and DMSO enhances RuCl3-mediated venom inhibition. Additional investigation is indicated to determine what specific Ru-containing molecules cause venom inhibition and what other combinations of inorganic/organic compounds may enhance the antivenom effects of RuCl3.


Asunto(s)
Antivenenos , Coagulación Sanguínea , Venenos de Crotálidos , Crotalus , Dimetilsulfóxido , Humanos , Dimetilsulfóxido/farmacología , Dimetilsulfóxido/química , Antivenenos/farmacología , Antivenenos/química , Venenos de Crotálidos/antagonistas & inhibidores , Venenos de Crotálidos/farmacología , Animales , Coagulación Sanguínea/efectos de los fármacos , Compuestos de Rutenio/farmacología , Compuestos de Rutenio/química , Cloruro de Sodio/farmacología , Cloruro de Sodio/química , Tromboelastografía , Serpientes Venenosas
7.
Toxicon ; 244: 107775, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782188

RESUMEN

Patients occasionally present with reports of ocular exposure to fluids from rattlesnakes, claiming or suspecting the substance to be venom. This study set out to evaluate and characterize reported cases of suspected venom-induced ophthalmia in humans. A retrospective review of rattlesnake exposures reported to the Arizona Poison and Drug Information Center over a 24-year period was conducted for ocular exposures. Recorded information included patient demographics, clinical course, laboratory results, and treatments. Documentation regarding interactions between patients and snakes was reviewed by Arizona Poison and Drug Information Center herpetologists to evaluate what substance was expelled from the snake resulting in ocular exposure. Our review of rattlesnake encounters found a total of 26 ocular exposure cases. Patient demographics were largely intentional interactions and involved the male sex. Symptoms ranged from asymptomatic to minor effects with 46.2% managed from home and treated with fluid irrigation. A review of cases by herpetologists concluded the exposure patients commonly experienced was to snake musk. Kinematics of venom expulsion by rattlesnakes conclude the venom gland must be compressed, fangs erected to ≥60o, and fang sheath compressed against the roof of the mouth for venom expulsion. Evidence suggests the chance of venom "spitting" by rattlesnakes is close to zero. Rattlesnakes are documented to forcefully expel airborne malodorous "musk" defensively. An important distinction to remember is musk has a foul odor and is usually colorless, while venom is comparatively odorless and yellow. Rattlesnake venom-induced ophthalmia is a rare event as venom expulsion requires the kinematics of feeding or defensive bites. If the rattlesnake is not in the process of biting or otherwise contacting some other object with its mouth, it is more biologically plausible patients are being exposed to snake musk as a deterrent. Whether it's venom or musk, topical exposure to the eyes should prompt immediate irrigation.


Asunto(s)
Venenos de Crotálidos , Crotalus , Mordeduras de Serpientes , Animales , Arizona , Humanos , Masculino , Estudios Retrospectivos , Femenino , Venenos de Crotálidos/toxicidad , Adulto , Persona de Mediana Edad , Adolescente , Anciano , Niño , Ojo/efectos de los fármacos , Adulto Joven , Centros de Control de Intoxicaciones
8.
Toxicon ; 244: 107748, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710309

RESUMEN

Rattlesnakes belonging to the genus Crotalus are widely distributed throughout the Americas. In Brazil, symptoms commonly associated with envenomation by Crotalus durissus collilineatus include myalgia, rhabdomyolysis, renal failure, neurotoxicity, and progressive paralysis, which are related to the protein composition of this venom. Snake venom composition exhibits compositional variability that may reflect geographic distribution, age, captivity, diet, sex, and even individual genetics. Although seasonality is also considered a possible source of variation, there are few reports of such variability in snake venom. In this work, venoms of the same eight C. durissus collilineatus were extracted every three months for two years, to analyze seasonal changes in composition and activities. To this end, venom composition was analyzed by protein quantification, SDS-PAGE, and HPLC, and the LAAO, PLA2 and coagulant activities were measured. Venoms of these C. d. collilineatus showed minor seasonal differences in venom activities and no composition differences were found. LAAO and coagulant activities displayed a pattern of seasonal change, while PLA2 activity seemed to have no seasonality tendency. Also, there are sexual differences, in which males seem to be more stable than females in regard to some activities. Individual variability occurs even in seasonal variation of activities, highlighting the importance of controlling circumstances of venom extraction before comparing results between groups of snakes.


Asunto(s)
Venenos de Crotálidos , Crotalus , Estaciones del Año , Animales , Venenos de Crotálidos/toxicidad , Venenos de Crotálidos/química , Masculino , Femenino , Brasil , Cromatografía Líquida de Alta Presión , Fosfolipasas A2 , Serpientes Venenosas
9.
Toxicon ; 244: 107756, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740096

RESUMEN

Despite a recent surge in high-throughput venom research that has enabled many species to be studied, some snake venoms remain understudied. The long-tailed rattlesnakes (Crotalus ericsmithi, C. lannomi, and C. stejnegeri) are one group where such research lags, largely owing to the rarity of these snakes and the hazardous areas, ripe with drug (marijuana and opium) production, they inhabit in Mexico. To fill this knowledge gap, we used multiple functional assays to examine the coagulotoxic (including across different plasma types), neurotoxic, and myotoxic activity of the venom of the long-tailed rattlesnakes. All crude venoms were shown to be potently anticoagulant on human plasma, which we discovered was not due to the destruction of fibrinogen, except for C. stejnegeri displaying minor fibrinogen destruction activity. All venoms exhibited anticoagulant activity on rat, avian, and amphibian plasmas, with C. ericsmithi being the most potent. We determined the mechanism of anticoagulant activity by C. ericsmithi and C. lannomi venoms to be phospholipid destruction and inhibition of multiple coagulation factors, leading to a net disruption of the clotting cascade. In the chick biventer assay, C. ericsmithi and C. lannomi did not exhibit neurotoxic activity but displayed potential weak myotoxic activity. BIRMEX® (Faboterápico Polivalente Antiviperino) antivenom was not effective in neutralising this venom effect. Overall, this study provides an in-depth investigation of venom function of understudied long-tailed rattlesnakes and provides a springboard for future venom and ecology research on the group.


Asunto(s)
Anticoagulantes , Venenos de Crotálidos , Crotalus , Animales , Venenos de Crotálidos/toxicidad , Humanos , Anticoagulantes/farmacología , Cannabis/química , Ratas , Coagulación Sanguínea/efectos de los fármacos , México
10.
Clin Toxicol (Phila) ; 62(5): 314-321, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38804837

RESUMEN

INTRODUCTION: North American pit viper envenomation occurs over 4,000 times annually in the United States, with polyvalent Fab antivenom being the primary treatment. Fasciotomy is occasionally performed due to concerns about compartment syndrome. We utilized our direct access to Texas Poison Center Network data to create a new snakebite abstraction form and database on relevant available information between 2004 and 2021 and to identify, describe, and estimate the incidence of fasciotomy following pit viper envenomation in Texas. METHODS: We searched the Texas Poison Center Network database for cases during 2004-2021 using keywords such as fasciotomy, surgery, compartment pressure, and compartment syndrome. Descriptive statistics summarized the data. RESULTS: Of 16,911 reported envenomations, 0.69 percent involved fasciotomies (n = 117). Most common bite sites were digits/hands and lower extremities. Patients who underwent fasciotomy were typically male, aged 20-59, and 10 years younger than the total snakebite population. Only 6 percent of reported compartment syndrome cases had a compartment pressure measurement. Antivenom was administered in 101 (86.3 percent) cases, 92 (91.1 percent) of which received only Fab antivenom product. Patients with bites from rattlesnakes (47.9 percent) were associated with most fasciotomies. DISCUSSION: Our findings suggest a potential increase in snakebite exposures, accompanied by a decrease in fasciotomies. Overall, copperheads constituted the majority of snakebites, but most fasciotomies were from rattlesnake envenomations (47.9 percent). In this cohort, compartment syndrome diagnosis and decisions regarding fasciotomy were primarily based on clinical evaluation/surgeon expertise without compartment pressure measurements. Despite the efficacy of antivenom, only 86.3 percent of patients in our study received antivenom. CONCLUSIONS: Fasciotomy after North American pit viper envenomation in Texas is uncommon (0.69 percent) and has decreased over time, possibly due to increased antivenom use or surgeon comfort with nonsurgical management.


Asunto(s)
Antivenenos , Síndromes Compartimentales , Fasciotomía , Mordeduras de Serpientes , Mordeduras de Serpientes/epidemiología , Texas/epidemiología , Humanos , Antivenenos/uso terapéutico , Masculino , Adulto , Animales , Femenino , Persona de Mediana Edad , Síndromes Compartimentales/etiología , Síndromes Compartimentales/epidemiología , Síndromes Compartimentales/cirugía , Adulto Joven , Niño , Adolescente , Crotalinae , Preescolar , Anciano , Centros de Control de Intoxicaciones/estadística & datos numéricos , Venenos de Crotálidos/antagonistas & inhibidores , Bases de Datos Factuales
11.
PLoS Negl Trop Dis ; 18(5): e0012227, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814992

RESUMEN

BACKGROUND: Photobiomodulation has exhibited promise in mitigating the local effects induced by Bothrops snakebite envenoming; however, the mechanisms underlying this protection are not yet fully understood. Herein, the effectiveness of photobiomodulation effects on regenerative response of C2C12 myoblast cells following exposure to Bothrops jararacussu venom (BjsuV), as well as the mechanisms involved was investigated. METHODOLOGY/PRINCIPAL FINDINGS: C2C12 myoblast cells were exposed to BjsuV (12.5 µg/mL) and irradiated once for 10 seconds with laser light of 660 nm (14.08 mW; 0.04 cm2; 352 mW/cm2) or 780 nm (17.6 mW; 0.04 cm2; 440 mW/ cm2) to provide energy densities of 3.52 and 4.4 J/cm2, and total energies of 0.1408 and 0.176 J, respectively. Cell migration was assessed through a wound-healing assay. The expression of MAPK p38-α, NF-Кß, Myf5, Pax-7, MyoD, and myogenin proteins were assessed by western blotting analysis. In addition, interleukin IL1-ß, IL-6, TNF-alfa and IL-10 levels were measured in the supernatant by ELISA. The PBM applied to C2C12 cells exposed to BjsuV promoted cell migration, increase the expression of myogenic factors (Pax7, MyF5, MyoD and myogenin), reduced the levels of proinflammatory cytokines, IL1-ß, IL-6, TNF-alfa, and increased the levels of anti-inflammatory cytokine IL-10. In addition, PBM downregulates the expression of NF-kB, and had no effect on p38 MAKP. CONCLUSION/SIGNIFICANCE: These data demonstrated that protection of the muscle cell by PBM seems to be related to the increase of myogenic factors as well as the modulation of inflammatory mediators. PBM therapy may offer a new therapeutic strategy to address the local effects of snakebite envenoming by promoting muscle regeneration and reducing the inflammatory process.


Asunto(s)
Bothrops , Venenos de Crotálidos , Citocinas , Terapia por Luz de Baja Intensidad , Mioblastos , Miogenina , Animales , Mioblastos/efectos de los fármacos , Mioblastos/efectos de la radiación , Mioblastos/metabolismo , Ratones , Terapia por Luz de Baja Intensidad/métodos , Citocinas/metabolismo , Línea Celular , Venenos de Crotálidos/toxicidad , Miogenina/metabolismo , Miogenina/genética , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética , FN-kappa B/metabolismo , Proteína MioD/metabolismo , Proteína MioD/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/efectos de la radiación , Factor 5 Regulador Miogénico/metabolismo , Factor 5 Regulador Miogénico/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Mordeduras de Serpientes/radioterapia , Serpientes Venenosas
12.
J Ethnopharmacol ; 332: 118349, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38762214

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Snakebite envenomation (SBE) is the world's most lethal neglected tropical disease. Bothrops jararaca is the species that causes the greatest number of SBEs in the South and Southeastern of Brazil. The main symptoms are local (inflammation, edema, hemorrhage, and myonecrosis) and systemic (hemorrhage, hemostatic alterations with consumptive coagulopathy, and death) effects. Species of the genus Siparuna, Siparunaceae, are used in folk and traditional medicine to treat SBE. However, limited information is available concerning Brazilian Siparuna species against SBE. AIM OF THE STUDY: To investigate the correlation between the compounds present in the extracts of five Siparuna species as potential agents against proteolytic activity, plasma coagulation, and phospholipase A2 (PLA2) activity caused by B. jararaca venom, using data obtained by UHPLC-MS/MS, biological activity, and multivariate statistics. MATERIALS AND METHODS: The ethanol extracts from leaves of S. ficoides, S. decipiens, S. glycycarpa, S. reginae, and S. cymosa were fractionated by liquid-liquid extraction using different solvents of increasing polarity (hexane, dichloromethane, ethyl acetate, and n-butanol), affording their respective extracts, totaling 25 samples that were assayed through in vitro plasma coagulation and proteolytic activity assays. Moreover, the extracts were analyzed by UHPLC-MS/MS, using electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) in negative and positive ionization modes. The data was processed in MZmine v. 2.53 and evaluated by multivariate statistical tests (PLS) using the software UnscramblerX v. 10.4. These data were also used to build molecular networks (GNPS), and some ions of interest could be annotated using the library of molecules on the GNPS platform. RESULTS: A total of 19 extracts inhibited B. jararaca-induced plasma coagulation, with emphasis on S. cymosa and S. reginae (800 s). The inhibition of the proteolytic activity was also promising, ranging from 16% (S. glycycarpa) to 99% (S. cymosa, S. decipiens, and S. reginae). In addition, most extracts from S. cymosa and S. reginae inhibited 70-90% of PLA2 activity. Based on data from positive mode APCI analyses, it was possible to obtain a statistic model with reliable predictive capacity which exhibited an average R2 of 0.95 and a Q2 of 0.88, indicating a robust fit. This process revealed five ions, identified as the alkaloids: coclaurine (1), stepholidine (2) O-methylisopiline (3), nornantenine (4) and laurolitsine (5). This is the first study to evidence the potential antivenom of alkaloids from Siparuna species. CONCLUSIONS: Altogether, our results give support to the popular use of Siparuna extracts in SBE accidents, suggesting their potential as an alternative or complementary strategy against envenoming by B. jararaca venom. The predicted ions in the chemometric analysis for the assayed activities can also be correlated with the blocking activity and encourage the continuation of this study for possible isolation and testing of individual compounds on the used models.


Asunto(s)
Alcaloides , Coagulación Sanguínea , Bothrops , Venenos de Crotálidos , Extractos Vegetales , Animales , Coagulación Sanguínea/efectos de los fármacos , Venenos de Crotálidos/toxicidad , Extractos Vegetales/farmacología , Extractos Vegetales/química , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Alcaloides/química , Brasil , Proteolisis/efectos de los fármacos , Fosfolipasas A2/metabolismo , Inhibidores de Fosfolipasa A2/farmacología , Inhibidores de Fosfolipasa A2/aislamiento & purificación , Hojas de la Planta/química , Antivenenos/farmacología , Antivenenos/aislamiento & purificación , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/aislamiento & purificación , Espectrometría de Masas en Tándem , Bothrops jararaca
13.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38753011

RESUMEN

Understanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic diversity evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole-genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce differences in venom gene expression. Through comparisons within and between species, we find a remarkably high degree of gene expression and regulatory network variation across even a shallow level of evolutionary divergence. We use these data to test hypotheses about the roles of specific trans-factors and cis-regulatory elements, how these roles may vary across venom genes and gene families, and how variation in regulatory systems drive diversity in venom phenotypes. Our results illustrate that differences in chromatin and genotype at regulatory elements play major roles in modulating expression. However, we also find that enhancer deletions, differences in transcription factor expression, and variation in activity of the insulator protein CTCF also likely impact venom phenotypes. Our findings provide insight into the diversity and gene-specificity of gene regulatory features and highlight the value of comparative studies to link gene regulatory network variation to phenotypic variation.


Asunto(s)
Venenos de Crotálidos , Crotalus , Evolución Molecular , Animales , Crotalus/genética , Venenos de Crotálidos/genética , Redes Reguladoras de Genes , Regulación de la Expresión Génica
14.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791221

RESUMEN

Snakebite accidents, neglected tropical diseases per the WHO, pose a significant public health threat due to their severity and frequency. Envenomation by Bothrops genus snakes leads to severe manifestations due to proteolytic enzymes. While the antibothropic serum produced by the Butantan Institute saves lives, its efficacy is limited as it fails to neutralize certain serine proteases. Hence, developing new-generation antivenoms, like monoclonal antibodies, is crucial. This study aimed to explore the inhibitory potential of synthetic peptides homologous to the CDR3 regions of a monoclonal antibody targeting a snake venom thrombin-like enzyme (SVTLE) from B. atrox venom. Five synthetic peptides were studied, all stable against hydrolysis by venoms and serine proteases. Impressively, four peptides demonstrated uncompetitive SVTLE inhibition, with Ki values ranging from 10-6 to 10-7 M. These findings underscore the potential of short peptides homologous to CDR3 regions in blocking snake venom toxins, suggesting their promise as the basis for new-generation antivenoms. Thus, this study offers potential advancements in combatting snakebites, addressing a critical public health challenge in tropical and subtropical regions.


Asunto(s)
Anticuerpos Monoclonales , Bothrops , Péptidos , Serina Proteasas , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Péptidos/química , Péptidos/farmacología , Serina Proteasas/química , Serina Proteasas/metabolismo , Antivenenos/química , Antivenenos/inmunología , Antivenenos/farmacología , Regiones Determinantes de Complementariedad/química , Venenos de Crotálidos/antagonistas & inhibidores , Venenos de Crotálidos/inmunología , Venenos de Crotálidos/enzimología , Venenos de Crotálidos/química , Secuencia de Aminoácidos , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología
15.
PLoS Negl Trop Dis ; 18(5): e0012152, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38717980

RESUMEN

BACKGROUND: Each year, 3,800 cases of snakebite envenomation are reported in Mexico, resulting in 35 fatalities. The only scientifically validated treatment for snakebites in Mexico is the use of antivenoms. Currently, two antivenoms are available in the market, with one in the developmental phase. These antivenoms, produced in horses, consist of F(ab')2 fragments generated using venoms from various species as immunogens. While previous studies primarily focused on neutralizing the venom of the Crotalus species, our study aims to assess the neutralization capacity of different antivenom batches against pit vipers from various genera in Mexico. METHODOLOGY: We conducted various biological and biochemical tests to characterize the venoms. Additionally, we performed neutralization tests using all three antivenoms to evaluate their effectiveness against lethal activity and their ability to neutralize proteolytic and fibrinogenolytic activities. RESULTS: Our results reveal significant differences in protein content and neutralizing capacity among different antivenoms and even between different batches of the same product. Notably, the venom of Crotalus atrox is poorly neutralized by all evaluated batches despite being the primary cause of envenomation in the country's northern region. Furthermore, even at the highest tested concentrations, no antivenom could neutralize the lethality of Metlapilcoatlus nummifer and Porthidium yucatanicum venoms. These findings highlight crucial areas for improving existing antivenoms and developing new products. CONCLUSION: Our research reveals variations in protein content and neutralizing potency among antivenoms, emphasizing the need for consistency in venom characteristics as immunogens. While Birmex neutralizes more LD50 per vial, Antivipmyn excels in specific neutralization. The inability of antivenoms to neutralize certain venoms, especially M. nummifer and P. yucatanicum, highlights crucial improvement opportunities, given the medical significance of these species.


Asunto(s)
Antivenenos , Pruebas de Neutralización , Antivenenos/farmacología , Antivenenos/inmunología , Animales , México , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/inmunología , Viperidae , Crotalus , Venenos de Crotálidos/inmunología
16.
Toxicon ; 243: 107746, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38704124

RESUMEN

Our study presents the anticancer potential of crotamine from Crotalus durissus terrificus in human prostate cancer cell line DU-145. Crotamine isolation was conducted through RP-FPLC, its molecular mass analyzed by MALDI-TOF was 4881.4 kDa, and N-terminal sequencing confirmed crotamine identity. Crotamine demonstrated no toxicity and did not inhibit migration in HUVEC cells. Although no cell death occurred in DU-145 cells, crotamine inhibited their migration. Thus, crotamine presented potential to be a prototype of anticancer drug.


Asunto(s)
Antineoplásicos , Movimiento Celular , Venenos de Crotálidos , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Venenos de Crotálidos/toxicidad , Antineoplásicos/farmacología , Crotalus , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Animales
17.
Toxicon ; 243: 107742, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38705486

RESUMEN

Phospholipases A2 (PLA2s) from snake venom possess antitumor and antiangiogenic properties. In this study, we evaluated the antimetastatic and antiangiogenic effects of MjTX-II, a Lys49 PLA2 isolated from Bothrops moojeni venom, on lung cancer and endothelial cells. Using in vitro and ex vivo approaches, we demonstrated that MjTX-II reduced cell proliferation and inhibited fundamental processes for lung cancer cells (A549) growth and metastasis, such as adhesion, migration, invasion, and actin cytoskeleton decrease, without significantly interfering with non-tumorigenic lung cells (BEAS-2B). Furthermore, MjTX-II caused cell cycle alterations, increased reactive oxygen species production, modulated the expression of pro- and antiangiogenic genes, and decreased vascular endothelial growth factor (VEGF) expression in HUVECs. Finally, MjTX-II inhibited ex vivo angiogenesis processes in an aortic ring model. Therefore, we conclude that MjTX-II exhibits antimetastatic and antiangiogenic effects in vitro and ex vivo and represents a molecule that hold promise as a pharmacological model for antitumor therapy.


Asunto(s)
Inhibidores de la Angiogénesis , Bothrops , Proliferación Celular , Venenos de Crotálidos , Neoplasias Pulmonares , Animales , Humanos , Inhibidores de la Angiogénesis/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Fosfolipasas A2/farmacología , Movimiento Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células A549 , Línea Celular Tumoral , Antineoplásicos/farmacología , Neovascularización Patológica/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Serpientes Venenosas
18.
J Emerg Med ; 66(5): e601-e605, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38702243

RESUMEN

BACKGROUND: A minority of snake envenomations in the United States involve non-native snakes. In this report, we describe what we believe is the first documented human envenoming from an emerald horned pitviper, Ophryacus smaragdinus. CASE REPORT: A previously healthy 36-year-old woman was bitten on her left index finger by a captive emerald horned pitviper she was medicating at work. Swelling to the entire hand was present on emergency department arrival. She had no systemic symptoms and her initial laboratory studies were unremarkable. The affected limb was elevated. We administered five vials of Antivipmyn TRIⓇ (Bioclon), which specifically lists Ophryacus among the envenomations for which it is indicated. She developed pruritus and was treated with IV diphenhydramine and famotidine. Her swelling improved, but her repeat laboratory studies were notable for a platelet count of 102 K/µL and a fibrinogen level of 116 mg/dL. She declined additional antivenom because of the previous allergic reaction. She was admitted for further monitoring and pain control. Subsequent laboratory tests were better, but a small hemorrhagic bleb developed at the bite site. She was discharged the next day and followed up as an outpatient. Her swelling had resolved, her bleb had healed, and her laboratory studies continued to improve. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians may be required to treat bites from non-native snakes. Many of these bites will warrant treatment with non-U.S. Food and Drug Administration-approved antivenoms. Consultation with a regional poison center or medical toxicologist may be necessary to procure the proper antivenom.


Asunto(s)
Antivenenos , Mordeduras de Serpientes , Femenino , Humanos , Adulto , Mordeduras de Serpientes/complicaciones , Antivenenos/uso terapéutico , Animales , Crotalinae , Venenos de Crotálidos
19.
Int Immunopharmacol ; 134: 112215, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744173

RESUMEN

Camelid single-domain antibodies (VHH) represent a promising class of immunobiologicals for therapeutic applications due to their remarkable stability, specificity, and therapeutic potential. To enhance the effectiveness of antivenoms for snakebites, various methods have been explored to address limitations associated with serum therapy, particularly focusing on mitigating local damage and ensuring sustainable production. Our study aimed to characterize the pharmacological profile and neutralization capacity of anti-Phospholipase A2 (PLA2) monomeric VHH (Genbank accessions: KC329718). Using a post-envenoming mouse model, we used intravital microscopy to assess leukocyte influx, measured CK and LDH levels, and conducted a histopathology analysis to evaluate VHH KC329718's ability to neutralize myotoxic activity. Our findings demonstrated that VHH KC329718 exhibited heterogeneous distribution in muscle tissue. Treatment with VHH KC329718 reduced leukocyte influx caused by BthTX-I (a Lys-49 PLA2) by 28 %, as observed through intravital microscopy. When administered at a 1:10 ratio [venom or toxin:VHH (w/w)], VHH KC329718 significantly decreased myotoxicity, resulting in a 35-40 % reduction in CK levels from BthTX-I and BthTX-II (an Asp-49 PLA2) and a 60 % decrease in CK levels from B. jararacussu venom. LDH levels also showed reductions of 60%, 80%, and 60% induced by BthTX-I, BthTX-II, and B. jararacussu venom, respectively. Histological analysis confirmed the neutralization potential, displaying a significant reduction in tissue damage and inflammatory cell count in mice treated with VHH KC329718 post B. jararacussu venom inoculation. This study underscores the potential of monomeric anti-PLA2 VHH in mitigating myotoxic effects, suggesting a promising avenue for the development of new generation antivenoms to address current therapeutic limitations.


Asunto(s)
Antivenenos , Bothrops , Fosfolipasas A2 , Anticuerpos de Dominio Único , Mordeduras de Serpientes , Animales , Anticuerpos de Dominio Único/inmunología , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/inmunología , Antivenenos/farmacología , Antivenenos/uso terapéutico , Ratones , Fosfolipasas A2/metabolismo , Venenos de Crotálidos/inmunología , Venenos de Crotálidos/toxicidad , Masculino , Modelos Animales de Enfermedad , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Humanos , Creatina Quinasa/sangre
20.
Protein J ; 43(3): 603-612, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734856

RESUMEN

Disintegrins, a family of snake venom protein, which are capable of modulating the activity of integrins that play a fundamental role in the regulation of many physiological and pathological processes. The main purpose of this study is to obtain the recombinant disintegrin (r-DI) and evaluate its biological activity. In this study, we explored a high-level expression prokaryotic system and purification strategy for r-DI. Then, r-DI was treated to assay effects on cell growth, migration, and invasion. The affinity for the interactions of r-DI with integrin was determined using Surface plasmon resonance (SPR) analyses. The r-DI can be expressed in Escherichia coli and purified by one-step chromatography. The r-DI can inhibit B16F10 cells proliferation, migration, and invasion. Also, we found that r-DI could interact with the integrin αIIbß3 (GPIIb/IIIa). The r-DI can be expressed, purified, characterized through functional assays, and can also maintain strong biological activities. Thus, this study showed potential therapeutic effects of r-DI for further functional and structural studies.


Asunto(s)
Desintegrinas , Escherichia coli , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Animales , Desintegrinas/química , Desintegrinas/genética , Desintegrinas/aislamiento & purificación , Desintegrinas/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Ratones , Viperidae/genética , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Línea Celular Tumoral , Expresión Génica , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Venenos de Crotálidos/química , Venenos de Crotálidos/genética , Crotalinae , Serpientes Venenosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA