Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 17(11): 3866-3876, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30220204

RESUMEN

The salivary apparatus of the common octopus ( Octopus vulgaris) has been the subject of biochemical study for over a century. A combination of bioassays, behavioral studies and molecular analysis on O. vulgaris and related species suggests that its proteome should contain a mixture of highly potent neurotoxins and degradative proteins. However, a lack of genomic and transcriptomic data has meant that the amino acid sequences of these proteins remain almost entirely unknown. To address this, we assembled the posterior salivary gland transcriptome of O. vulgaris and combined it with high resolution mass spectrometry data from the posterior and anterior salivary glands of two adults, the posterior salivary glands of six paralarvae and the saliva from a single adult. We identified a total of 2810 protein groups from across this range of salivary tissues and age classes, including 84 with homology to known venom protein families. Additionally, we found 21 short secreted cysteine rich protein groups of which 12 were specific to cephalopods. By combining protein expression data with phylogenetic analysis we demonstrate that serine proteases expanded dramatically within the cephalopod lineage and that cephalopod specific proteins are strongly associated with the salivary apparatus.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Venenos de Moluscos/genética , Octopodiformes/genética , Proteogenómica/métodos , Saliva/metabolismo , Transcriptoma , Animales , Femenino , Ontología de Genes , Larva/química , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Anotación de Secuencia Molecular , Venenos de Moluscos/clasificación , Venenos de Moluscos/metabolismo , Neurotoxinas/clasificación , Neurotoxinas/genética , Neurotoxinas/metabolismo , Octopodiformes/química , Octopodiformes/crecimiento & desarrollo , Octopodiformes/metabolismo , Filogenia , Proteoma/genética , Proteoma/metabolismo , Saliva/química , Glándulas Salivales/química , Glándulas Salivales/crecimiento & desarrollo , Glándulas Salivales/metabolismo , Serina Proteasas/clasificación , Serina Proteasas/genética , Serina Proteasas/metabolismo
2.
J Exp Biol ; 214(Pt 1): 147-61, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21147978

RESUMEN

Diversity among Conus toxins mirrors the high species diversity in the Indo-Pacific region, and evolution of both is thought to stem from feeding-niche specialization derived from intra-generic competition. This study focuses on Conus californicus, a phylogenetic outlier endemic to the temperate northeast Pacific. Essentially free of congeneric competitors, it preys on a wider variety of organisms than any other cone snail. Using molecular cloning of cDNAs and mass spectrometry, we examined peptides isolated from venom ducts to elucidate the sequences and post-translational modifications of two eight-cysteine toxins (cal12a and cal12b of type 12 framework) that block voltage-gated Na(+) channels. Based on homology of leader sequence and mode of action, these toxins are related to the O-superfamily, but differ significantly from other members of that group. Six of the eight cysteine residues constitute the canonical framework of O-members, but two additional cysteine residues in the N-terminal region define an O+2 classification within the O-superfamily. Fifteen putative variants of Cal12.1 toxins have been identified by mRNAs that differ primarily in two short hypervariable regions and have been grouped into three subtypes (Cal12.1.1-3). This unique modular variation has not been described for other Conus toxins and suggests recombination as a diversity-generating mechanism. We propose that these toxin isoforms show specificity for similar molecular targets (Na(+) channels) in the many species preyed on by C. californicus and that individualistic utilization of specific toxin isoforms may involve control of gene expression.


Asunto(s)
Caracol Conus/química , Venenos de Moluscos/genética , Péptidos/genética , Bloqueadores de los Canales de Sodio/toxicidad , Animales , Secuencia de Bases , California , Clonación Molecular , Cartilla de ADN/genética , Electrofisiología , Biblioteca de Genes , Espectrometría de Masas , Datos de Secuencia Molecular , Venenos de Moluscos/análisis , Venenos de Moluscos/clasificación , Océano Pacífico , Péptidos/análisis , Péptidos/clasificación , Análisis de Secuencia de ADN
3.
Biopolymers ; 80(6): 815-23, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15931669

RESUMEN

The chi-conopeptides MrIA and MrIB are 13-residue peptides with two disulfide bonds that inhibit human and rat norepinephrine transporter systems and are of significant interest for the design of novel drugs involved in pain treatment. In the current study we have determined the solution structure of MrIA using NMR spectroscopy. The major element of secondary structure is a beta-hairpin with the two strands connected by an inverse gamma-turn. The residues primarily involved in activity have previously been shown to be located in the turn region (Sharpe, I. A.; Palant, E.; Schroder, C. I.; Kaye, D. M.; Adams, D. J.; Alewood, P. F.; Lewis, R. J. J Biol Chem 2003, 278, 40317-40323), which appears to be more flexible than the beta-strands based on disorder in the ensemble of calculated structures. Analogues of MrIA with N-terminal truncations indicate that the N-terminal residues play a role in defining a stable conformation and the native disulfide connectivity. In particular, noncovalent interactions between Val3 and Hyp12 are likely to be involved in maintaining a stable conformation. The N-terminus also affects activity, as a single N-terminal deletion introduced additional pharmacology at rat vas deferens, while deleting the first two amino acids reduced chi-conopeptide potency.


Asunto(s)
Venenos de Moluscos/química , Norepinefrina/metabolismo , Péptidos/química , Péptidos/clasificación , Simportadores/metabolismo , Alanina/metabolismo , Sustitución de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Simulación por Computador , Conotoxinas/química , Conotoxinas/metabolismo , Conotoxinas/farmacología , Caracol Conus , Disulfuros/química , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Epidídimo/anatomía & histología , Epidídimo/cirugía , Humanos , Concentración de Iones de Hidrógeno , Masculino , Conformación Molecular , Venenos de Moluscos/clasificación , Venenos de Moluscos/farmacología , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Péptidos/síntesis química , Péptidos/genética , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Péptidos/farmacología , Unión Proteica , Ratas , Soluciones , Espectrometría Raman , Estereoisomerismo , Conducto Deferente/efectos de los fármacos , Conducto Deferente/fisiología , Agua/química
4.
IDrugs ; 7(11): 1011-6, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15551176

RESUMEN

The venoms from Conus snails are rich in peptides with potent specificity for mammalian receptor sites. Each venom typically contains up to 100 conopeptides, and with approximately 500 species of Conus snail, the number of active peptides is considerable. The receptor sites targeted appear to be mostly linked to ion channels, with voltage-gated, ligand-gated and G-protein linked sites identified. Both the central and peripheral nervous system present possible physiological targets for therapeutic products derived from the venoms, although the molecules in the most advanced development target the central nervous system. In turn, this presents problems of bioavailability, while the potency is a potential source of toxicity.


Asunto(s)
Venenos de Moluscos/farmacología , Animales , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/metabolismo , Sistemas de Liberación de Medicamentos , Humanos , Canales Iónicos/efectos de los fármacos , Venenos de Moluscos/química , Venenos de Moluscos/clasificación , Receptores Acoplados a Proteínas G/efectos de los fármacos , Terminología como Asunto
5.
Toxicon ; 42(6): 613-9, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14602116

RESUMEN

The full-length cDNAs of two A-superfamily conotoxins, kappaA-SIVA and alpha-SII, were respectively cloned and sequenced from Conus striatus using 3' RACE and 5' RACE. The cDNA of kappaA-SIVA encodes a precursor of 68 residues, including a signal peptide of 21 residues, a pro-peptide of 17 residues, and a mature peptide of 30 residues with an additional residue Gly which is prerequisite for the amidation of the preceding C-terminal Cys. The cDNA-deduced sequence of alpha-SII is composed of a signal peptide of 21 residues, a pro-peptide of 29 residues, a mature peptide of 19 residues and three additional residues Arg-Thr-Ile at the C-terminus. This tripeptide might be cleaved off by proteolytic processing. Although these two conotoxins belong to different families and target voltage-gated potassium channel and nicotinic acetylcholine receptor, respectively, they share the same signal sequence, and both are processed at the common signal site -X-Arg- immediately before the mature peptide sequences. The length of 3' untranslational region of alpha-conotoxin SII was extraordinarily large about 10 times longer than that of kappaA-SIVA with 770 and 75 bp, respectively. The elucidated cDNAs of these two toxins will facilitate a better understanding of the process of their post-translational modifications.


Asunto(s)
ADN Complementario/genética , Moluscos/genética , Venenos de Moluscos/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Evolución Molecular , Datos de Secuencia Molecular , Venenos de Moluscos/clasificación
6.
Nat Neurosci ; 4(9): 902-7, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11528421

RESUMEN

Cone snails use venom containing a cocktail of peptides ('conopeptides') to capture their prey. Many of these peptides also target mammalian receptors, often with exquisite selectivity. Here we report the discovery of two new classes of conopeptides. One class targets alpha1-adrenoceptors (rho-TIA from the fish-hunting Conus tulipa), and the second class targets the neuronal noradrenaline transporter (chi-MrIA and chi-MrIB from the mollusk-hunting C. marmoreus). rho-TIA and chi-MrIA selectively modulate these important membrane-bound proteins. Both peptides act as reversible non-competitive inhibitors and provide alternative avenues for the identification of inhibitor drugs.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Venenos de Moluscos/clasificación , Venenos de Moluscos/farmacología , Receptores Adrenérgicos alfa/efectos de los fármacos , Simportadores , Secuencia de Aminoácidos/genética , Animales , Imagenología Tridimensional , Espectroscopía de Resonancia Magnética , Masculino , Datos de Secuencia Molecular , Venenos de Moluscos/química , Venenos de Moluscos/genética , Neuronas/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática , Ratas , Ratas Wistar
7.
Curr Pharm Des ; 6(12): 1249-85, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10903392

RESUMEN

There are approximately 500 species of predatory cone snails within the genus Conus. They comprise what is arguably the largest single genus of marine animals alive today. It has been estimated that the venom of each Conus species has between 50 and 200 components. These highly constrained sulfur rich components or conotoxins represent a unique arsenal of neuropharmacologically active peptides that have been evolutionarily tailored to afford unprecedented and exquisite selectivity for a wide variety of ion-channel subtypes. Remarkable divergence occurs when cone snails speciate. Consequently, the complement of venom peptides in any one Conus species is distinct from that of any other species. Hence many thousands of peptides that modulate ion channel function are present within Conus venoms. Evolutionary pressures have afforded a "pre-optimized," structurally sophisticated library that has been "fine tuned" over 50 million years. The statistics associated with sampling such libraries bear testimony to the validity and feasibility of this strategy. Although approximately 100 conotoxin sequences have been published in the scientific literature, representing a mere 0.2 % of the estimated library size, this sample has already afforded a peptide of proven clinical utility and several pre-clinical leads for CNS disorders. Conus libraries represent a rich pharmacopoeia and the potential to "therapeutically mine" such a resource appears limitless. The paucity of synthetic methodologies necessary to achieve the regioisomeric folding patterns present in these native peptides precludes access to synthetic conotoxin libraries, further validating the overall "mining" strategy. In this article, we will present a pragmatic overview of the molecular diversity as well as the neurobiological mechanisms that define each major class of conotoxin.


Asunto(s)
Venenos de Moluscos/farmacología , Secuencias de Aminoácidos , Animales , Anticonvulsivantes/farmacología , Sitios de Unión , Humanos , Canales Iónicos/efectos de los fármacos , Venenos de Moluscos/química , Venenos de Moluscos/clasificación , Pliegue de Proteína , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores Nicotínicos/efectos de los fármacos , Caracoles/clasificación
8.
Ann N Y Acad Sci ; 870: 223-37, 1999 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-10415486

RESUMEN

All 500 species of cone snails (Conus) are venomous predators. From a biochemical/genetic perspective, differences among Conus species may be based on the 50-200 different peptides in the venom of each species. Venom is used for prey capture as well as for interactions with predators and competitors. The venom of every species has its own distinct complement of peptides. Some of the interspecific divergence observed in venom peptides can be explained by differential expression of venom peptide superfamilies in different species and of peptide superfamily branching in various Conus lineages into pharmacologic groups with different targeting specificity. However, the striking interspecific divergence of peptide sequences is the dominant factor in the differences observed between venoms. The small venom peptides (typically 10-35 amino acids in length) are processed from larger prepropeptide precursors (ca. 100 amino acids). If interspecific comparisons are made between homologous prepropeptides, the three different regions of a Conus peptide precursor (signal sequence, pro-region, mature peptide) are found to have diverged at remarkably different rates. Analysis of synonymous and nonsynonymous substitution rates for the different segments of a prepropeptide suggests that mutation frequency varies by over an order of magnitude across the segments, with the mature toxin region undergoing the highest rate. The three sections of the prepropeptide which exhibit apparently different mutation rates are separated by introns. This striking segment-specific rate of divergence of Conus prepropeptides suggests a role for introns in evolution: exons separated by introns have the potential to evolve very different mutation rates. Plausible mechanisms that could underlie differing mutational frequency in the different exons of a gene are discussed.


Asunto(s)
Evolución Molecular , Intrones , Venenos de Moluscos/genética , Caracoles/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN Complementario , Exones , Variación Genética , Humanos , Datos de Secuencia Molecular , Venenos de Moluscos/clasificación , Mutación , Péptidos/genética , Caracoles/clasificación , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...