Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.939
Filtrar
1.
Commun Biol ; 7(1): 596, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762629

RESUMEN

Apicomplexan parasites harbor a complex endomembrane system as well as unique secretory organelles. These complex cellular structures require an elaborate vesicle trafficking system, which includes Rab GTPases and their regulators, to assure the biogenesis and secretory of the organelles. Here we exploit the model apicomplexan organism Toxoplasma gondii that encodes a family of Rab GTPase Activating Proteins, TBC (Tre-2/Bub2/Cdc16) domain-containing proteins. Functional profiling of these proteins in tachyzoites reveals that TBC9 is the only essential regulator, which is localized to the endoplasmic reticulum (ER) in T. gondii strains. Detailed analyses demonstrate that TBC9 is required for normal distribution of proteins targeting to the ER, and the Golgi apparatus in the parasite, as well as for the normal formation of daughter inner membrane complexes (IMCs). Pull-down assays show a strong protein interaction between TBC9 and specific Rab GTPases (Rab11A, Rab11B, and Rab2), supporting the role of TBC9 in daughter IMC formation and early vesicular transport. Thus, this study identifies the only essential TBC domain-containing protein TBC9 that regulates early vesicular transport and IMC formation in T. gondii and potentially in closely related protists.


Asunto(s)
Retículo Endoplásmico , Proteínas Activadoras de GTPasa , Proteínas Protozoarias , Toxoplasma , Proteínas de Unión al GTP rab , Toxoplasma/metabolismo , Toxoplasma/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Retículo Endoplásmico/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Aparato de Golgi/metabolismo , Transporte de Proteínas , Animales , Vesículas Transportadoras/metabolismo
2.
Nat Commun ; 15(1): 2843, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565573

RESUMEN

Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.


Asunto(s)
Glucosa , Factor de Crecimiento Derivado de Plaquetas , Transportador de Glucosa de Tipo 1/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Membrana Celular/metabolismo , Glucosa/metabolismo , Vesículas Transportadoras/metabolismo
3.
J Biol Chem ; 300(3): 105687, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280430

RESUMEN

HIV-1 Gag protein is synthesized in the cytosol and is transported to the plasma membrane, where viral particle assembly and budding occur. Endosomes are alternative sites of Gag accumulation. However, the intracellular transport pathways and carriers for Gag have not been clarified. We show here that Syntaxin6 (Syx6), a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) involved in membrane fusion in post-Golgi networks, is a molecule responsible for Gag trafficking and also for tumor necrosis factor-α (TNFα) secretion and that Gag and TNFα are cotransported via Syx6-positive compartments/vesicles. Confocal and live-cell imaging revealed that Gag colocalized and cotrafficked with Syx6, a fraction of which localizes in early and recycling endosomes. Syx6 knockdown reduced HIV-1 particle production, with Gag distributed diffusely throughout the cytoplasm. Coimmunoprecipitation and pulldown show that Gag binds to Syx6, but not its SNARE partners or their assembly complexes, suggesting that Gag preferentially binds free Syx6. The Gag matrix domain and the Syx6 SNARE domain are responsible for the interaction and cotrafficking. In immune cells, Syx6 knockdown/knockout similarly impaired HIV-1 production. Interestingly, HIV-1 infection facilitated TNFα secretion, and this enhancement did not occur in Syx6-depleted cells. Confocal and live-cell imaging revealed that TNFα and Gag partially colocalized and were cotransported via Syx6-positive compartments/vesicles. Biochemical analyses indicate that TNFα directly binds the C-terminal domain of Syx6. Altogether, our data provide evidence that both Gag and TNFα make use of Syx6-mediated trafficking machinery and suggest that Gag expression does not inhibit but rather facilitates TNFα secretion in HIV-1 infection.


Asunto(s)
VIH-1 , Proteínas Qa-SNARE , Vesículas Transportadoras , Factor de Necrosis Tumoral alfa , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , Endosomas/metabolismo , VIH-1/genética , VIH-1/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Transporte de Proteínas/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Unión Proteica , Dominios Proteicos , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Línea Celular , Vesículas Transportadoras/metabolismo , Replicación Viral/genética
4.
Nephrology (Carlton) ; 29(2): 76-85, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37927194

RESUMEN

BACKGROUND: Annexin A1 is a membrane-associated calcium-binding protein that participates in the progression of many diseases by facilitating vesicle aggregation. It has been documented that reducing vesicle formation alleviates podocyte injury and albuminuria in idiopathic membranous nephropathy (IMN). However, the role of Annexin A1 (ANXA1) in IMN is unknown. METHODS: Electron microscopy was used to observe the numbers of vesicles in podocytes. The expression of ANXA1 in IMN was investigated by bioinformatics analysis. We validated the hub genes with the Nephroseq V5 online tool and microarray data from the GEO. Immunohistochemical staining and qPCR were performed to measure gene and protein expression. RESULTS: The numbers of vesicles in IMN podocytes were significantly increased. Bioinformatics analysis showed that ANXA1, one of the differentially expressed genes, was upregulated in glomeruli from IMN patients. In the validation database and dataset, we confirmed that ANXA1 expression was upregulated in the glomeruli of IMN patients. We revealed that the increased expression of ANXA1 was negatively correlated with the glomerular filtration rate (GFR) and proteinuria. Moreover, ANXA1 was enriched in the biological process of vesicle fusion, in which the expression of SNAREs and the SNARE complex was increased. Finally, the expression of ANXA1 and genes related to SNAREs and the SNARE complex was upregulated in glomeruli from IMN patients according to immunohistochemical staining and qPCR. CONCLUSION: We conclude that ANXA1 may mediate endocytic vesicle fusion and transport by promoting SNARE assembly, contributing to the morphological changes in podocytes and massive proteinuria in IMN.


Asunto(s)
Anexina A1 , Glomerulonefritis Membranosa , Podocitos , Humanos , Anexina A1/genética , Anexina A1/metabolismo , Glomerulonefritis Membranosa/genética , Glomerulonefritis Membranosa/metabolismo , Podocitos/metabolismo , Proteinuria , Proteínas SNARE/metabolismo , Vesículas Transportadoras/metabolismo
5.
Can J Physiol Pharmacol ; 101(11): 554-564, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37683292

RESUMEN

Avoiding hepatic steatosis is crucial for preventing liver dysfunction, and one mechanism by which this is accomplished is through synchronization of the rate of very low density lipoprotein (VLDL) synthesis with its secretion. Endoplasmic reticulum (ER)-to-Golgi transport of nascent VLDL is the rate-limiting step in its secretion and is mediated by the VLDL transport vesicle (VTV). Recent in vivo studies have indicated that α-tocopherol (α-T) supplementation can reverse steatosis in nonalcoholic fatty liver disease, but its effects on hepatic lipoprotein metabolism are poorly understood. Here, we investigated the impact of α-T on hepatic VLDL synthesis, secretion, and intracellular ER-to-Golgi VLDL trafficking using an in vitro model. Pulse-chase assays using [3H]-oleic acid and 100 µmol/L α-T demonstrated a disruption of early VLDL synthesis, resulting in enhanced apolipoprotein B-100 expression, decreased expression in markers for VTV budding, ER-to-Golgi VLDL transport, and reduced VLDL secretion. Additionally, an in vitro VTV budding assay indicated a significant decrease in VTV production and VTV-Golgi fusion. Confocal imaging of lipid droplet (LD) localization revealed a decrease in overall LD retention, diminished presence of ER-associated LDs, and an increase in Golgi-level LD retention. We conclude that α-T disrupts ER-to-Golgi VLDL transport by modulating the expression of specific proteins and thus reduces VLDL secretion.


Asunto(s)
Hígado Graso , Lipoproteínas VLDL , Humanos , Lipoproteínas VLDL/metabolismo , alfa-Tocoferol/farmacología , alfa-Tocoferol/metabolismo , Hígado/metabolismo , Vesículas Transportadoras/metabolismo , Hígado Graso/metabolismo , Retículo Endoplásmico/metabolismo , Triglicéridos/metabolismo
6.
Nat Commun ; 14(1): 4652, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532690

RESUMEN

Endosomal maturation is critical for robust and timely cargo transport to specific cellular compartments. The most prominent model of early endosomal maturation involves a phosphoinositide-driven gain or loss of specific proteins on individual endosomes, emphasising an autonomous and stochastic description. However, limitations in fast, volumetric imaging long hindered direct whole cell-level measurements of absolute numbers of maturation events. Here, we use lattice light-sheet imaging and bespoke automated analysis to track individual very early (APPL1-positive) and early (EEA1-positive) endosomes over the entire population, demonstrating that direct inter-endosomal contact drives maturation between these populations. Using fluorescence lifetime, we show that this endosomal interaction is underpinned by asymmetric binding of EEA1 to very early and early endosomes through its N- and C-termini, respectively. In combination with agent-based simulation which supports a 'trigger-and-convert' model, our findings indicate that APPL1- to EEA1-positive maturation is driven not by autonomous events but by heterotypic EEA1-mediated interactions, providing a mechanism for temporal and population-level control of maturation.


Asunto(s)
Vesículas Transportadoras , Proteínas de Transporte Vesicular , Proteínas de Transporte Vesicular/metabolismo , Vesículas Transportadoras/metabolismo , Endosomas/metabolismo
7.
Autophagy ; 19(11): 3017-3018, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37415304

RESUMEN

ABBREVIATIONS: Autophagy-related 9 (Atg9); cytoplasm-to-vacuole targeting (Cvt); Golgi-associated retrograde protein (GARP); multisubunit tethering complexes (MTCs); phagophore assembly site (PAS); phosphatidylserine (PS); Protein interactions from Imaging Complexes after Translocation (PICT); transport protein particle III (TRAPPIII); type IV P-type ATPases (P4-ATPases).


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Autofagia , Proteínas Relacionadas con la Autofagia/metabolismo , Frío , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo
8.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37194499

RESUMEN

Stationary clusters of vesicles are a prominent feature of axonal transport, but little is known about their physiological and functional relevance to axonal transport. Here, we investigated the role of vesicle motility characteristics in modulating the formation and lifetimes of such stationary clusters, and their effect on cargo flow. We developed a simulation model describing key features of axonal cargo transport, benchmarking the model against experiments in the posterior lateral mechanosensory neurons of Caenorhabditis elegans. Our simulations included multiple microtubule tracks and varied cargo motion states, and account for dynamic cargo-cargo interactions. Our model also incorporates static obstacles to vesicle transport in the form of microtubule ends, stalled vesicles and stationary mitochondria. We demonstrate, both in simulations and in an experimental system, that a reduction in reversal rates is associated with a higher proportion of long-lived stationary vesicle clusters and reduced net anterograde transport. Our simulations support the view that stationary clusters function as dynamic reservoirs of cargo vesicles, and reversals aid cargo in navigating obstacles and regulate cargo transport by modulating the proportion of stationary vesicle clusters along the neuronal process.


Asunto(s)
Neuronas , Vesículas Sinápticas , Animales , Vesículas Sinápticas/metabolismo , Neuronas/fisiología , Transporte Axonal/fisiología , Fagocitosis , Orgánulos , Caenorhabditis elegans , Vesículas Transportadoras/metabolismo
9.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239817

RESUMEN

The use of infectious bursal disease virus (IBDV) reverse genetics to engineer tagged reporter viruses has revealed that the virus factories (VFs) of the Birnaviridae family are biomolecular condensates that show properties consistent with liquid-liquid phase separation (LLPS). Although the VFs are not bound by membranes, it is currently thought that viral protein 3 (VP3) initially nucleates the formation of the VF on the cytoplasmic leaflet of early endosomal membranes, and likely drives LLPS. In addition to VP3, IBDV VFs contain VP1 (the viral polymerase) and the dsRNA genome, and they are the sites of de novo viral RNA synthesis. Cellular proteins are also recruited to the VFs, which are likely to provide an optimal environment for viral replication; the VFs grow due to the synthesis of the viral components, the recruitment of other proteins, and the coalescence of multiple VFs in the cytoplasm. Here, we review what is currently known about the formation, properties, composition, and processes of these structures. Many open questions remain regarding the biophysical nature of the VFs, as well as the roles they play in replication, translation, virion assembly, viral genome partitioning, and in modulating cellular processes.


Asunto(s)
Birnaviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Birnaviridae/metabolismo , Compartimentos de Replicación Viral , Línea Celular , Replicación Viral , Proteínas Virales/genética , Proteínas Virales/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas Estructurales Virales/metabolismo
10.
Mol Biol Cell ; 34(7): br9, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37017489

RESUMEN

The proper functioning of organelles depends on their intracellular localization, mediated by motor protein-dependent transport on cytoskeletal tracks. Rather than directly associating with a motor protein, peroxisomes move by hitchhiking on motile early endosomes in the filamentous fungus Aspergillus nidulans. However, the physiological role of peroxisome hitchhiking is unclear. Peroxisome hitchhiking requires the protein PxdA, which is conserved within the fungal subphylum Pezizomycotina but absent from other fungal clades. Woronin bodies are specialized peroxisomes that are also unique to the Pezizomycotina. In these fungi, multinucleate hyphal segments are separated by incomplete cell walls called septa that possess a central pore enabling cytoplasmic exchange. Upon damage to a hyphal segment, Woronin bodies plug septal pores to prevent widespread leakage. Here, we tested whether peroxisome hitchhiking is important for Woronin body motility, distribution, and function in A. nidulans. We show that Woronin body proteins are present within all motile peroxisomes and hitchhike on PxdA-labeled early endosomes during bidirectional, long-distance movements. Loss of peroxisome hitchhiking significantly affected Woronin body distribution and motility in the cytoplasm, but Woronin body hitchhiking is ultimately dispensable for septal localization and plugging.


Asunto(s)
Aspergillus nidulans , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Peroxisomas/metabolismo , Vesículas Transportadoras/metabolismo , Endosomas/metabolismo
11.
Curr Opin Cell Biol ; 80: 102151, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36610080

RESUMEN

In eukaryotic cells, the budding and fusion of intracellular transport vesicles is carefully orchestrated in space and time. Locally, a vesicle's source compartment, its cargo, and its destination compartment are controlled by dynamic multi-protein specificity modules. Globally, vesicle constituents must be recycled to ensure homeostasis of compartment compositions. The emergence of a novel vesicle pathway therefore requires new specificity modules as well as new recycling routes. Here, we review recent research on local (molecular) constraints on gene module duplication and global (cellular) constraints on intracellular recycling. By studying the evolution of vesicle traffic, we may discover general principles of how complex traits arise via multiple intermediate steps.


Asunto(s)
Orgánulos , Vesículas Transportadoras , Orgánulos/metabolismo , Vesículas Transportadoras/metabolismo , Transporte Biológico , Células Eucariotas/metabolismo , Proteínas/metabolismo
12.
Methods Mol Biol ; 2557: 349-364, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36512226

RESUMEN

The Golgi-associated retrograde protein (GARP) complex is proposed to tether endosome-derived transport vesicles, but the exact function and mechanism of GARP action are not completely understood. To uncover the GARP function in human cells, we employ CRISPR/Cas9 strategy and knock out (KO) the unique VPS54 subunit of the GARP complex. In this chapter, we describe the detailed method of generating CRISPR/Cas9-mediated VPS54-KO in hTERT-RPE1 cells, rescue of resulting KO cells with stable near-endogenous expression of myc-tagged VPS54, and validation of KO and rescued (KO-R) cells using Western blot and immunofluorescence approaches. This approach is helpful in uncovering new functions of the GARP and other vesicle tethering complexes.


Asunto(s)
Aparato de Golgi , Proteínas de Transporte Vesicular , Humanos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Aparato de Golgi/metabolismo , Endosomas/metabolismo , Línea Celular , Vesículas Transportadoras/metabolismo
13.
Biosci Rep ; 42(11)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36156116

RESUMEN

Dynamin is one of the major proteins involved in endocytosis. First identified 50 years ago in a genetic screen in Drosophila melanogaster, it has become a central player in many forms of endocytosis, such as clathrin-mediated endocytosis or synaptic vesicle endocytosis, as well as other important cellular processes such as actin remodelling. Decades of work using biochemical and structural studies, cell-free assays, live cell imaging, acute inhibition and genetic studies have led to important insights on its mode of action. Dynamin is a remarkable mechano-GTPase, which can do a lot to membranes on its own but which is, in cells, at the centre of a vast protein and lipid network and cannot work in isolation. This review summarizes the main features of dynamin structure and function and its central role in membrane remodelling events, and give an update on the latest results.


Asunto(s)
Clatrina , Drosophila melanogaster , Animales , Clatrina/metabolismo , Drosophila melanogaster/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Endocitosis/fisiología , Vesículas Transportadoras/metabolismo
14.
J Biol Chem ; 298(10): 102483, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36108741

RESUMEN

Sepsis is an often life-threatening response to infection, occurring when host proinflammatory immune responses become abnormally elevated and dysregulated. To diagnose sepsis, the patient must have a confirmed or predicted infection, as well as other symptoms associated with the pathophysiology of sepsis. However, a recent study found that a specific causal organism could not be determined in the majority (70.1%) of sepsis cases, likely due to aggressive antibiotics or localized infections. The timing of a patient's sepsis diagnosis is often predictive of their clinical outcome, underlining the need for a more definitive molecular diagnostic test. Here, we outline the advantages and challenges to using bacterial outer membrane vesicles (OMVs), nanoscale spherical buds derived from the outer membrane of Gram-negative bacteria, as a diagnostic biomarker for Gram-negative sepsis. Advantages include OMV abundance, their robustness in the presence of antibiotics, and their unique features derived from their parent cell that could allow for differentiation between bacterial species. Challenges include the rigorous purification methods required to isolate OMVs from complex biofluids and the additional need to separate OMVs from similarly sized extracellular vesicles, which can share physical properties with OMVs.


Asunto(s)
Biomarcadores , Bacterias Gramnegativas , Sepsis , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas de la Membrana Bacteriana Externa , Vesículas Extracelulares , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Gramnegativas/metabolismo , Sepsis/diagnóstico , Sepsis/microbiología , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo
15.
Cells ; 11(16)2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-36010634

RESUMEN

Endocytosis is a fundamental mechanism by which cells perform housekeeping functions. It occurs via a variety of mechanisms and involves many regulatory proteins. The GTPase dynamin acts as a "molecular scissor" to form endocytic vesicles and is a critical regulator among the proteins involved in endocytosis. Some GTPases (e.g., Cdc42, arf6, RhoA), membrane proteins (e.g., flotillins, tetraspanins), and secondary messengers (e.g., calcium) mediate dynamin-independent endocytosis. These pathways may be convergent, as multiple pathways exist in a single cell. However, what determines the specific path of endocytosis is complex and challenging to comprehend. This review summarizes the mechanisms of dynamin-independent endocytosis, the involvement of microRNAs, and factors that contribute to the cellular decision about the specific route of endocytosis.


Asunto(s)
Dinaminas , Endocitosis , Dinaminas/metabolismo , Endocitosis/fisiología , Vesículas Transportadoras/metabolismo
16.
Elife ; 112022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36044021

RESUMEN

Membrane lipids, and especially phosphoinositides, are differentially enriched within the eukaryotic endomembrane system. This generates a landmark code by modulating the properties of each membrane. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] specifically accumulates at the plasma membrane in yeast, animal, and plant cells, where it regulates a wide range of cellular processes including endocytic trafficking. However, the functional consequences of mispatterning PI(4,5)P2 in plants are unknown. Here, we functionally characterized the putative phosphoinositide phosphatase SUPPRESSOR OF ACTIN9 (SAC9) in Arabidopsis thaliana (Arabidopsis). We found that SAC9 depletion led to the ectopic localization of PI(4,5)P2 on cortical intracellular compartments, which depends on PI4P and PI(4,5)P2 production at the plasma membrane. SAC9 localizes to a subpopulation of trans-Golgi Network/early endosomes that are enriched in a region close to the cell cortex and that are coated with clathrin. Furthermore, it interacts and colocalizes with Src Homology 3 Domain Protein 2 (SH3P2), a protein involved in endocytic trafficking. In the absence of SAC9, SH3P2 localization is altered and the clathrin-mediated endocytosis rate is reduced. Together, our results highlight the importance of restricting PI(4,5)P2 at the plasma membrane and illustrate that one of the consequences of PI(4,5)P2 misspatterning in plants is to impact the endocytic trafficking.


Asunto(s)
Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitosis , Endosomas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/metabolismo , Vesículas Transportadoras/metabolismo
17.
J Biol Chem ; 298(9): 102281, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35863437

RESUMEN

Rab22 and Rab31 belong to the Rab5 subfamily of GTPases that regulates endocytic traffic and endosomal sorting. Rab22 and Rab31 (a.k.a. Rab22b) are closely related and share 87% amino acid sequence similarity, but they show distinct intracellular localization and function in the cell. Rab22 is localized to early endosomes and regulates early endosomal recycling, while Rab31 is mostly localized to the Golgi complex with only a small fraction in the endosomes at steady state. The specific determinants that affect this differential localization, however, are unclear. In this study, we identify a novel membrane targeting domain (MTD) consisting of the C-terminal hypervariable domain (HVD), interswitch loop (ISL), and N-terminal domain as a major determinant of endosomal localization for Rab22 and Rab31, as well as Rab5. Rab22 and Rab31 share the same N-terminal domain, but we find Rab22 chimeras with Rab31 HVD exhibit phenotypic Rab31 localization to the Golgi complex, while Rab31 chimeras with the Rab22 HVD localize to early endosomes, similar to wildtype Rab22. We also find that the Rab22 HVD favors interaction with the early endosomal effector protein Rabenosyn-5, which may stabilize the Rab localization to the endosomes. The importance of effector interaction in endosomal localization is further demonstrated by the disruption of Rab22 endosomal localization in Rabenosyn-5 knockout cells and by the shift of Rab31 to the endosomes in Rabenosyn-5-overexpressing cells. Taken together, we have identified a novel MTD that mediates localization of Rab5 subfamily members to early endosomes via interaction with an effector such as Rabenosyn-5.


Asunto(s)
Endosomas , Aparato de Golgi , Proteínas de Unión al GTP rab , Animales , Cricetinae , Endosomas/enzimología , Aparato de Golgi/enzimología , Células HEK293 , Humanos , Células PC12 , Dominios Proteicos , Transporte de Proteínas , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Vesículas Transportadoras/metabolismo , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/metabolismo
18.
Cell Mol Life Sci ; 79(6): 335, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35657500

RESUMEN

Membrane traffic controls the movement of proteins and lipids from one cellular compartment to another using a system of transport vesicles. Intracellular nanovesicles (INVs) are a newly described class of transport vesicles. These vesicles are small, carry diverse cargo, and are involved in multiple trafficking steps including anterograde traffic and endosomal recycling. An example of a biological process that they control is cell migration and invasion, due to their role in integrin recycling. In this review, we describe what is known so far about these vesicles. We discuss how INVs may integrate into established membrane trafficking pathways using integrin recycling as an example. We speculate where in the cell INVs have the potential to operate and we identify key questions for future investigation.


Asunto(s)
Integrinas , Vesículas Transportadoras , Movimiento Celular , Endosomas/metabolismo , Integrinas/metabolismo , Transporte de Proteínas , Vesículas Transportadoras/metabolismo
19.
J Cell Biol ; 221(7)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35704021

RESUMEN

Cell biologists have long debated the role of clathrin in curving membranes during endocytosis. New findings from Cail et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202109013) take an innovative approach to directly demonstrate the indispensable functions of both clathrin and its adaptor network in shaping endocytic vesicles.


Asunto(s)
Clatrina , Endocitosis , Clatrina/metabolismo , Vesículas Transportadoras/metabolismo
20.
Biol Futur ; 73(4): 375-384, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35731422

RESUMEN

Autophagy is a highly conserved self-degradation process of eukaryotic cells which is required for the effective elimination of damaged and unnecessary cytosolic constituents. Defects in the process can cause the intracellular accumulation of such damages, thereby leading to the senescence and subsequent loss of the affected cell. Defective autophagy hence is implicated in the development of various degenerative processes, including cancer, neurodegenerative diseases, diabetes, tissue atrophy and fibrosis, and immune deficiency, as well as in accelerated aging. The autophagic process is mediated by numerous autophagy-related (ATG) proteins, among which the ATG8/LC3/GABARAP (Microtubule-associated protein 1A/1B-light chain 3/Gammaaminobutyric acid receptor-associated protein) superfamily has a pivotal role in the formation and maturation of autophagosome, a key (macro) autophagic structure (the autophagosome sequesters parts of the cytoplasm which are destined for breakdown). While in the unicellular yeast there is only a single ATG8 protein, metazoan systems usually contain more ATG8 paralogs. ATG8 paralogs generally display tissue-specific expression patterns and their functions are not strictly restricted to autophagy. For example, GABARAP proteins also play a role in intracellular vesicle transport, and, in addition to autophagosome formation, ATG8 also functions in selective autophagy. In this review, we summarize the functional diversity of ATG8/LC3/GABARAP proteins, using tractable genetic models applied in autophagy research.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia , Autofagia , Evolución Molecular , Animales , Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/clasificación , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Transporte Biológico , Vesículas Transportadoras/metabolismo , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...