Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Sci Rep ; 14(1): 10540, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719945

RESUMEN

Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.


Asunto(s)
Bacteriófagos , Bivalvos , Branquias , Metagenómica , Animales , Metagenómica/métodos , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Branquias/microbiología , Branquias/virología , Branquias/metabolismo , Bivalvos/microbiología , Bivalvos/virología , Bivalvos/genética , Perfilación de la Expresión Génica , Transcriptoma , Viroma/genética , Bacterias/genética , Bacterias/clasificación , Simbiosis/genética , Metagenoma
2.
Microb Genom ; 10(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683195

RESUMEN

The advent of viral metagenomics, or viromics, has improved our knowledge and understanding of global viral diversity. High-throughput sequencing technologies enable explorations of the ecological roles, contributions to host metabolism, and the influence of viruses in various environments, including the human intestinal microbiome. However, bacterial metagenomic studies frequently have the advantage. The adoption of advanced technologies like long-read sequencing has the potential to be transformative in refining viromics and metagenomics. Here, we examined the effectiveness of long-read and hybrid sequencing by comparing Illumina short-read and Oxford Nanopore Technology (ONT) long-read sequencing technologies and different assembly strategies on recovering viral genomes from human faecal samples. Our findings showed that if a single sequencing technology is to be chosen for virome analysis, Illumina is preferable due to its superior ability to recover fully resolved viral genomes and minimise erroneous genomes. While ONT assemblies were effective in recovering viral diversity, the challenges related to input requirements and the necessity for amplification made it less ideal as a standalone solution. However, using a combined, hybrid approach enabled a more authentic representation of viral diversity to be obtained within samples.


Asunto(s)
Heces , Microbioma Gastrointestinal , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica/métodos , Microbioma Gastrointestinal/genética , Heces/virología , Heces/microbiología , Nanoporos , Secuenciación de Nanoporos/métodos , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Viroma/genética , Análisis de Secuencia de ADN/métodos
3.
Proc Natl Acad Sci U S A ; 121(19): e2319400121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687787

RESUMEN

During their blood-feeding process, ticks are known to transmit various viruses to vertebrates, including humans. Recent viral metagenomic analyses using next-generation sequencing (NGS) have revealed that blood-feeding arthropods like ticks harbor a large diversity of viruses. However, many of these viruses have not been isolated or cultured, and their basic characteristics remain unknown. This study aimed to present the identification of a difficult-to-culture virus in ticks using NGS and to understand its epidemic dynamics using molecular biology techniques. During routine tick-borne virus surveillance in Japan, an unknown flaviviral sequence was detected via virome analysis of host-questing ticks. Similar viral sequences have been detected in the sera of sika deer and wild boars in Japan, and this virus was tentatively named the Saruyama virus (SAYAV). Because SAYAV did not propagate in any cultured cells tested, single-round infectious virus particles (SRIP) were generated based on its structural protein gene sequence utilizing a yellow fever virus-based replicon system to understand its nationwide endemic status. Seroepidemiological studies using SRIP as antigens have demonstrated the presence of neutralizing antibodies against SAYAV in sika deer and wild boar captured at several locations in Japan, suggesting that SAYAV is endemic throughout Japan. Phylogenetic analyses have revealed that SAYAV forms a sister clade with the Orthoflavivirus genus, which includes important mosquito- and tick-borne pathogenic viruses. This shows that SAYAV evolved into a lineage independent of the known orthoflaviviruses. This study demonstrates a unique approach for understanding the epidemiology of uncultured viruses by combining viral metagenomics and pseudoinfectious viral particles.


Asunto(s)
Ciervos , Flavivirus , Metagenómica , Garrapatas , Animales , Metagenómica/métodos , Japón/epidemiología , Ciervos/virología , Flavivirus/genética , Flavivirus/aislamiento & purificación , Flavivirus/clasificación , Garrapatas/virología , Filogenia , Viroma/genética , Virión/genética , Sus scrofa/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estudios Seroepidemiológicos , Genoma Viral
4.
J Invertebr Pathol ; 204: 108117, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679365

RESUMEN

Insects have a rich diversity of RNA viruses that can either cause acute infections or persist in host populations without visible symptoms. The melon fly, Zeugodacus cucurbitae (Tephritidae) causes substantial economic losses through infestation of diverse cucurbit and other crops. Of Indomalayan origin, it is now established in many tropical regions of the world. The virome diversity of Z. cucurbitae is largely unknown across large parts of its distribution, including the Indian subcontinent. We have analysed three transcriptomes each of one field-collected and one laboratory-reared Z. cucurbitae population from Bangalore (India) and discovered genomes of ten putative RNA viruses: two sigmaviruses, one chimbavirus, one cripavirus, one noda-like virus, one nora virus, one orbivirus, one partiti-like virus, one sobemovirus and one toti-like virus. Analysis of the only available host genome of a Hawaiian Z. cucurbitae population did not detect host genome integration of the detected viruses. While all ten viruses were found in the Bangalore field population only seven were detected in the laboratory population, indicating that these seven may cause persistent covert infections. Using virus-specific RNA-dependent RNA polymerase gene primers, we detected nine of the RNA viruses with an overall low variant diversity in some but not all individual flies from four out of five Indian regions. We then screened 39 transcriptomes of Z. cucurbitae laboratory populations from eastern Asia (Guangdong, Hainan, Taiwan) and the Pacific region (Hawaii), and detected seven of the ten virus genomes. We found additional genomes of a picorna-like virus and a negev-like virus. Hawaii as the only tested population from the fly's invasive range only had one virus. Our study provides evidence of new and high RNA virus diversity in Indian populations within the original range of Z. cucurbitae, as well as the presence of persistent covert infections in laboratory populations. It builds the basis for future research of tephritid-associated RNA viruses, including their host effects, epidemiology and application potential in biological control.


Asunto(s)
Virus ARN , Tephritidae , Animales , Virus ARN/genética , Tephritidae/virología , Tephritidae/genética , India , Genoma Viral , Transcriptoma , Viroma/genética
5.
Viruses ; 16(4)2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38675877

RESUMEN

The concentration of viruses in sewage sludge is significantly higher (10-1000-fold) than that found in natural environments, posing a potential risk for human and animal health. However, the composition of these viruses and their role in the transfer of pathogenic factors, as well as their role in the carbon, nitrogen, and phosphorus cycles remain poorly understood. In this study, we employed a shotgun metagenomic approach to investigate the pathogenic bacteria and viral composition and function in two wastewater treatment plants located on a campus. Our analysis revealed the presence of 1334 amplicon sequence variants (ASVs) across six sludge samples, with 242 ASVs (41.22% of total reads) identified as pathogenic bacteria. Arcobacter was found to be the most dominant pathogen accounting for 6.79% of total reads. The virome analysis identified 613 viral genera with Aorunvirus being the most abundant genus at 41.85%. Approximately 0.66% of these viruses were associated with human and animal diseases. More than 60% of the virome consisted of lytic phages. Host prediction analysis revealed that the phages primarily infected Lactobacillus (37.11%), Streptococcus (21.11%), and Staphylococcus (7.11%). Furthermore, our investigation revealed an abundance of auxiliary metabolic genes (AMGs) involved in carbon, nitrogen, and phosphorus cycling within the virome. We also detected a total of 113 antibiotic resistance genes (ARGs), covering major classes of antibiotics across all samples analyzed. Additionally, our findings indicated the presence of virulence factors including the clpP gene accounting for approximately 4.78%, along with toxin genes such as the RecT gene representing approximately 73.48% of all detected virulence factors and toxin genes among all samples analyzed. This study expands our understanding regarding both pathogenic bacteria and viruses present within sewage sludge while providing valuable insights into their ecological functions.


Asunto(s)
Bacterias , Metagenómica , Aguas del Alcantarillado , Virus , Aguas Residuales , Aguas Residuales/virología , Aguas Residuales/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Aguas del Alcantarillado/virología , Aguas del Alcantarillado/microbiología , Humanos , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Metagenoma , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/clasificación , Viroma/genética , Purificación del Agua , Animales
6.
mSystems ; 9(5): e0012424, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38651902

RESUMEN

Invertebrates constitute the majority of animal species on Earth, including most disease-causing agents or vectors, with more diverse viromes when compared to vertebrates. Recent advancements in high-throughput sequencing have significantly expanded our understanding of invertebrate viruses, yet this knowledge remains biased toward a few well-studied animal lineages. In this study, we analyze invertebrate DNA and RNA viromes for 31 phyla using 417 publicly available RNA-Seq data sets from diverse environments in the marine-terrestrial and marine-freshwater gradients. This study aims to (i) estimate virome compositions at the family level for the first time across the animal tree of life, including the first exploration of the virome in several phyla, (ii) quantify the diversity of invertebrate viromes and characterize the structure of invertebrate-virus infection networks, and (iii) investigate host phylum and habitat influence on virome differences. Results showed that a set of few viral families of eukaryotes, comprising Retroviridae, Flaviviridae, and several families of giant DNA viruses, were ubiquitous and highly abundant. Nevertheless, some differences emerged between phyla, revealing for instance a less diverse virome in Ctenophora compared to the other animal phyla. Compositional analysis of the viromes showed that the host phylum explained over five times more variance in composition than its habitat. Moreover, significant similarities were observed between the viromes of some phylogenetically related phyla, which could highlight the influence of co-evolution in shaping invertebrate viromes.IMPORTANCEThis study significantly enhances our understanding of the global animal virome by characterizing the viromes of previously unexamined invertebrate lineages from a large number of animal phyla. It showcases the great diversity of viromes within each phylum and investigates the role of habitat shaping animal viral communities. Furthermore, our research identifies dominant virus families in invertebrates and distinguishes phyla with analogous viromes. This study sets the road toward a deeper understanding of the virome across the animal tree of life.


Asunto(s)
Invertebrados , Viroma , Animales , Viroma/genética , Invertebrados/virología , Invertebrados/genética , Filogenia , Virus/genética , Virus/clasificación
7.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38649300

RESUMEN

BACKGROUND: The virome obtained through virus-like particle enrichment contains a mixture of prokaryotic and eukaryotic virus-derived fragments. Accurate identification and classification of these elements are crucial to understanding their roles and functions in microbial communities. However, the rapid mutation rates of viral genomes pose challenges in developing high-performance tools for classification, potentially limiting downstream analyses. FINDINGS: We present IPEV, a novel method to distinguish prokaryotic and eukaryotic viruses in viromes, with a 2-dimensional convolutional neural network combining trinucleotide pair relative distance and frequency. Cross-validation assessments of IPEV demonstrate its state-of-the-art precision, significantly improving the F1-score by approximately 22% on an independent test set compared to existing methods when query viruses share less than 30% sequence similarity with known viruses. Furthermore, IPEV outperforms other methods in accuracy on marine and gut virome samples based on annotations by sequence alignments. IPEV reduces runtime by at most 1,225 times compared to existing methods under the same computing configuration. We also utilized IPEV to analyze longitudinal samples and found that the gut virome exhibits a higher degree of temporal stability than previously observed in persistent personal viromes, providing novel insights into the resilience of the gut virome in individuals. CONCLUSIONS: IPEV is a high-performance, user-friendly tool that assists biologists in identifying and classifying prokaryotic and eukaryotic viruses within viromes. The tool is available at https://github.com/basehc/IPEV.


Asunto(s)
Aprendizaje Profundo , Viroma , Virus , Viroma/genética , Virus/genética , Virus/clasificación , Células Procariotas/virología , Genoma Viral , Eucariontes/genética , Eucariontes/virología , Biología Computacional/métodos , Programas Informáticos , Humanos
8.
PLoS One ; 19(4): e0300915, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38687731

RESUMEN

Mosquitoes harbor a large diversity of eukaryotic viruses. Those viromes probably influence mosquito physiology and the transmission of human pathogens. Nevertheless, their ecology remains largely unstudied. Here, we address two key questions in virome ecology. First, we assessed the influence of mosquito species on virome taxonomic diversity and relative abundance. Contrary to most previous studies, the potential effect of the habitat was explicitly included. Thousands of individuals of Culex poicilipes and Culex tritaeniorhynchus, two vectors of viral diseases, were concomitantly sampled in three habitats over two years. A total of 95 viral taxa from 25 families were identified with meta-transcriptomics, with 75% of taxa shared by both mosquitoes. Viromes significantly differed by mosquito species but not by habitat. Differences were largely due to changes in relative abundance of shared taxa. Then, we studied the diversity of viruses with a broad host range. We searched for viral taxa shared by the two Culex species and Aedes vexans, another disease vector, present in one of the habitats. Twenty-six out of the 163 viral taxa were found in the three mosquitoes. These taxa encompassed 14 families. A database analysis supported broad host ranges for many of those viruses, as well as a widespread geographical distribution. Thus, the viromes of mosquitoes from the same genera mainly differed in the relative abundance of shared taxa, whereas differences in viral diversity dominated between mosquito genera. Whether this new model of virome diversity and structure applies to other mosquito communities remains to be determined.


Asunto(s)
Culex , Especificidad del Huésped , Mosquitos Vectores , Viroma , Animales , Viroma/genética , Culex/virología , Mosquitos Vectores/virología , Aedes/virología , Culicidae/virología , Ecosistema , Simpatría , Virus/clasificación , Virus/genética , Virus/aislamiento & purificación
9.
Viruses ; 16(4)2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675918

RESUMEN

Cell cultures derived from ticks have become a commonly used tool for the isolation and study of tick-borne pathogens and tick biology. The IRE/CTVM19 cell line, originating from embryos of Ixodes ricinus, is one such line. Previously, reovirus-like particles, as well as sequences with similarity to rhabdoviruses and iflaviruses, were detected in the IRE/CTVM19 cell line, suggesting the presence of multiple persisting viruses. Subsequently, the full genome of an IRE/CTVM19-associated rhabdovirus was recovered from a cell culture during the isolation of the Alongshan virus. In the current work, we used high-throughput sequencing to describe a virome of the IRE/CTVM19 cell line. In addition to the previously detected IRE/CTVM19-associated rhabdovirus, two rhabdoviruses were detected: Chimay rhabdovirus and Norway mononegavirus 1. In the follow-up experiments, we were able to detect both positive and negative RNA strands of the IRE/CTVM19-associated rhabdovirus and Norway mononegavirus 1 in the IRE/CTVM19 cells, suggesting their active replication in the cell line. Passaging attempts in cell lines of mammalian origin failed for all three discovered rhabdoviruses.


Asunto(s)
Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Rhabdoviridae , Rhabdoviridae/genética , Rhabdoviridae/aislamiento & purificación , Rhabdoviridae/clasificación , Animales , Línea Celular , Filogenia , Replicación Viral , ARN Viral/genética , Viroma/genética , Infecciones por Rhabdoviridae/virología , Infecciones por Rhabdoviridae/veterinaria
10.
Viruses ; 16(4)2024 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-38675947

RESUMEN

Tibetan pig is a geographically isolated pig breed that inhabits high-altitude areas of the Qinghai-Tibetan plateau. At present, there is limited research on viral diseases in Tibetan pigs. This study provides a novel metagenomic exploration of the gut virome in Tibetan pigs (altitude ≈ 3000 m) across three critical developmental stages, including lactation, nursery, and fattening. The composition of viral communities in the Tibetan pig intestine, with a dominant presence of Microviridae phages observed across all stages of development, in combination with the previous literature, suggest that it may be associated with geographical locations with high altitude. Functional annotation of viral operational taxonomic units (vOTUs) highlights that, among the constantly increasing vOTUs groups, the adaptability of viruses to environmental stressors such as salt and heat indicates an evolutionary response to high-altitude conditions. It shows that the lactation group has more abundant viral auxiliary metabolic genes (vAMGs) than the nursery and fattening groups. During the nursery and fattening stages, this leaves only DNMT1 at a high level. which may be a contributing factor in promoting gut health. The study found that viruses preferentially adopt lytic lifestyles at all three developmental stages. These findings not only elucidate the dynamic interplay between the gut virome and host development, offering novel insights into the virome ecology of Tibetan pigs and their adaptation to high-altitude environments, but also provide a theoretical basis for further studies on pig production and epidemic prevention under extreme environmental conditions.


Asunto(s)
Altitud , Microbioma Gastrointestinal , Metagenómica , Viroma , Animales , Porcinos , Viroma/genética , Microbioma Gastrointestinal/genética , Tibet , Virus/genética , Virus/clasificación , Metagenoma , Femenino , Genoma Viral
11.
mSphere ; 9(4): e0067623, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38506520

RESUMEN

Preeclampsia (PE), a pregnancy-specific syndrome, has been associated with the gut bacteriome. Here, to investigate the impact of the gut virome on the development of PE, we identified over 8,000 nonredundant viruses from the fecal metagenomes of 40 early-onset PE and 37 healthy pregnant women and profiled their abundances. Comparison and correlation analysis showed that PE-enriched viruses frequently connected to Blautia species enriched in PE. By contrast, bacteria linked to PE-depleted viruses were often the Bacteroidaceae members such as Bacteroides spp., Phocaeicola spp., Parabacteroides spp., and Alistipes shahii. In terms of viral function, PE-depleted viruses had auxiliary metabolic genes that participated in the metabolism of simple and complex polysaccharides, sulfur metabolism, lipopolysaccharide biosynthesis, and peptidoglycan biosynthesis, while PE-enriched viruses had a gene encoding cyclic pyranopterin monophosphate synthase, which seemed to be special, that participates in the biosynthesis of the molybdenum cofactor. Furthermore, the classification model based on gut viral signatures was developed to discriminate PE patients from healthy controls and showed an area under the receiver operating characteristic curve of 0.922 that was better than that of the bacterium-based model. This study opens up new avenues for further research, providing valuable insights into the PE gut virome and offering potential directions for future mechanistic and therapeutic investigations, with the ultimate goal of improving the diagnosis and management of PE.IMPORTANCEThe importance of this study lies in its exploration of the previously overlooked but potentially critical role of the gut virome in preeclampsia (PE). While the association between PE and the gut bacteriome has been recognized, this research takes a pioneering step into understanding how the gut virome, represented by over 8,000 nonredundant viruses, contributes to this condition. The findings reveal intriguing connections between PE-enriched viruses and specific gut bacteria, such as the prevalence of Blautia species in individuals with PE, contrasting with bacteria linked to PE-depleted viruses, including members of the Bacteroidaceae family. These viral interactions and associations provide a deeper understanding of the complex dynamics at play in PE.


Asunto(s)
Bacterias , Heces , Microbioma Gastrointestinal , Metagenómica , Preeclampsia , Viroma , Humanos , Femenino , Preeclampsia/virología , Preeclampsia/microbiología , Embarazo , Microbioma Gastrointestinal/genética , Viroma/genética , Adulto , Heces/virología , Heces/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Metagenoma
12.
mSystems ; 9(4): e0008824, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38441971

RESUMEN

To date, many viruses have been discovered to infect honey bees. In this study, we used high-throughput sequencing to expand the known virome of the honey bee, Apis mellifera, by identifying several novel DNA viruses. While the majority of previously identified bee viruses are RNA, our study reveals nine new genomes from the Parvoviridae family, tentatively named Bee densoviruses 1 to 9. In addition, we characterized a large DNA virus, Apis mellifera filamentous-like virus (AmFLV), which shares limited protein identities with the known Apis mellifera filamentous virus. The complete sequence of AmFLV, obtained by a combination of laboratory techniques and bioinformatics, spans 152,678 bp. Linear dsDNA genome encodes for 112 proteins, of which 49 are annotated. Another large virus we discovered is Apis mellifera nudivirus, which belongs to a group of Alphanudivirus. The virus has a length of 129,467 bp and a circular dsDNA genome, and has 106 protein encoding genes. The virus contains most of the core genes of the family Nudiviridae. This research demonstrates the effectiveness of viral binning in identifying viruses in honey bee virology, showcasing its initial application in this field.IMPORTANCEHoney bees contribute significantly to food security by providing pollination services. Understanding the virome of honey bees is crucial for the health and conservation of bee populations and also for the stability of the ecosystems and economies for which they are indispensable. This study unveils previously unknown DNA viruses in the honey bee virome, expanding our knowledge of potential threats to bee health. The use of the viral binning approach we employed in this study offers a promising method to uncovering and understanding the vast viral diversity in these essential pollinators.


Asunto(s)
Nudiviridae , Virus , Abejas , Animales , Viroma/genética , Ecosistema , Virus ADN/genética , Metagenoma/genética
13.
Eur J Med Res ; 29(1): 157, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454476

RESUMEN

The vaginal microbiota plays an important role in the health of the female reproductive tract and is closely associated with various pregnancy outcomes and sexually transmitted diseases. Plenty of internal and external factors have strong influence on the changes in a woman's vaginal microbiome. However, the effect of a high-altitude on female vaginal microbiota has not been described. In this study, we characterized the vaginal bacteriome and virome of 13 and 34 healthy women living in high-altitude and sea-level areas, using whole-metagenome shotgun sequencing of their vaginal mucus samples. The results revealed that the vaginal bacteriomes of high-altitude individuals are featured by a significant increase of species diversity, depletion of Lactobacillus crispatus, and more abundant of some anaerobic bacteria, such as Chlamydia trachomatis, Mageeibacillus indolicus, Dialister micraerophilus, and Sneathia amnii). In addition, the vagina samples of sea-level subjects harbor more Lactobacillus strains, whereas the anaerobic bacteroidetes strains mostly appeared in high-altitude subjects. Identified and assembled 191 virus operational taxonomic units (vOTUs), there were significant differences in the abundance of 107 vOTUs between the two groups. Together, the results of this study raised the understanding of bacteriome and virome in the vagina of women at different elevations, and demonstrated that the vaginal microbiome is related to the high-altitude geographic adaptation.


Asunto(s)
Microbiota , Enfermedades de Transmisión Sexual , Virus , Embarazo , Femenino , Humanos , Viroma/genética , Altitud , Vagina/microbiología
14.
Nat Commun ; 15(1): 1864, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424077

RESUMEN

Early-life human gut microbiome is a pivotal driver of gut homeostasis and infant health. However, the viral component (known as "virome") remains mostly unexplored. Here, we establish the Early-Life Gut Virome (ELGV), a catalog of 160,478 non-redundant DNA and RNA viral sequences from 8130 gut virus-like particles (VLPs) enriched or bulk metagenomes in the first three years of life. By clustering, 82,141 viral species are identified, 68.3% of which are absent in existing databases built mainly from adults, and 64 and 8 viral species based on VLPs-enriched and bulk metagenomes, respectively, exhibit potentials as biomarkers to distinguish infants from adults. With the largest longitudinal population of infants profiled by either VLPs-enriched or bulk metagenomic sequencing, we track the inherent instability and temporal development of the early-life human gut virome, and identify differential viruses associated with multiple clinical factors. The mother-infant shared virome and interactions between gut virome and bacteriome early in life are further expanded. Together, the ELGV catalog provides the most comprehensive and complete metagenomic blueprint of the early-life human gut virome, facilitating the discovery of pediatric disease-virome associations in future.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Virus , Adulto , Lactante , Niño , Humanos , Metagenoma/genética , Viroma/genética , Virus/genética , Microbioma Gastrointestinal/genética
15.
Environ Microbiol ; 26(2): e16583, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38350655

RESUMEN

The globally distributed basidiomycete genus Armillaria includes wood decomposers that can act as opportunistic parasites, causing deadly root rot on woody plants. To test whether RNA viruses are involved in this opportunistic behaviour, a large isolate collection of five Armillaria species collected over 40 years in Switzerland from trees, dead wood and soil was analysed. De novo assembly of RNA-Seq data revealed 21 viruses, 14 of which belong to putative new species. Two dsRNA viruses and an unclassified Tymovirales are formally described for the first time for Armillaria. One mitovirus occurred with a high prevalence of 71.1%, while all other viruses were much less prevalent (0.6%-16.9%). About half of all viruses were found only in one fungal species, others occurred in 2-6 fungal species. Co-infections of 2-7 viruses per isolate were not uncommon (34.9%), and most viruses persisted circulating within fungal populations for decades. Some viruses were related to viruses associated with other Armillaria species, supporting the hypothesis that virus transmission can occur between different fungal species. Although no specific correlation between viruses and the fungal trophic strategy was found, this study opens new insights into viral diversity hidden in the soil microbiome.


Asunto(s)
Armillaria , Parásitos , Virus ARN , Animales , Armillaria/genética , Árboles , Parásitos/genética , ARN , Suelo , Viroma/genética , Virus ARN/genética , ARN Viral/genética
16.
Virol Sin ; 39(2): 194-204, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360150

RESUMEN

Haemaphysalis longicornis ticks, commonly found in East Asia, can transmit various pathogenic viruses, including the severe fever with thrombocytopenia syndrome virus (SFTSV) that has caused febrile diseases among humans in Hubei Province. However, understanding of the viromes of H. longicornis was limited, and the prevalence of viruses among H. longicornis ticks in Hubei was not well clarified. This study investigates the viromes of both engorged (fed) and free (unfed) H. longicornis ticks across three mountainous regions in Hubei Province from 2019 to 2020. RNA-sequencing analysis identified viral sequences that were related to 39 reference viruses belonging to unclassified viruses and seven RNA viral families, namely Chuviridae, Nairoviridae, Orthomyxoviridae, Parvoviridae, Phenuiviridae, Rhabdoviridae, and Totiviridae. Viral abundance and diversity in these ticks were analysed, and phylogenetic characteristics of the Henan tick virus (HNTV), Dabieshan tick virus (DBSTV), Okutama tick virus (OKTV), and Jingmen tick virus (JMTV) were elucidated based on their full genomic sequences. Prevalence analysis demonstrated that DBSTV was the most common virus found in individual H. longicornis ticks (12.59%), followed by HNTV (0.35%), whereas JMTV and OKTV were not detected. These results improve our understanding of H. longicornis tick viromes in central China and highlight the role of tick feeding status and geography in shaping the viral community. The findings of new viral strains and their potential impact on public health raise the need to strengthen surveillance efforts for comprehensively assessing their spillover potentials.


Asunto(s)
Ixodidae , Filogenia , Viroma , Animales , Viroma/genética , China , Ixodidae/virología , Genoma Viral , Virus ARN/genética , Virus ARN/aislamiento & purificación , Virus ARN/clasificación , Garrapatas/virología , ARN Viral/genética , Análisis de Secuencia de ARN , Haemaphysalis longicornis
17.
Hum Genomics ; 18(1): 10, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38303015

RESUMEN

BACKGROUND: Human viruses released into the environment can be detected and characterized in wastewater. The study of wastewater virome offers a consolidated perspective on the circulation of viruses within a population. Because the occurrence and severity of viral infections can vary across a person's lifetime, studying the virome in wastewater samples contributed by various demographic segments can provide valuable insights into the prevalence of viral infections within these segments. In our study, targeted enrichment sequencing was employed to characterize the human virome in wastewater at a building-level scale. This was accomplished through passive sampling of wastewater in schools, university settings, and nursing homes in two cities in Catalonia. Additionally, sewage from a large urban wastewater treatment plant was analysed to serve as a reference for examining the collective excreted human virome. RESULTS: The virome obtained from influent wastewater treatment plant samples showcased the combined viral presence from individuals of varying ages, with astroviruses and human bocaviruses being the most prevalent, followed by human adenoviruses, polyomaviruses, and papillomaviruses. Significant variations in the viral profiles were observed among the different types of buildings studied. Mamastrovirus 1 was predominant in school samples, salivirus and human polyomaviruses JC and BK in the university settings while nursing homes showed a more balanced distribution of viral families presenting papillomavirus and picornaviruses and, interestingly, some viruses linked to immunosuppression. CONCLUSIONS: This study shows the utility of building-level wastewater-based epidemiology as an effective tool for monitoring the presence of viruses circulating within specific age groups. It provides valuable insights for public health monitoring and epidemiological studies.


Asunto(s)
Virosis , Virus , Humanos , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Viroma/genética , Virus/genética
18.
Microbiome ; 12(1): 35, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38378577

RESUMEN

BACKGROUND: Haemaphysalis longicornis is drawing attentions for its geographic invasion, extending population, and emerging disease threat. However, there are still substantial gaps in our knowledge of viral composition in relation to genetic diversity of H. longicornis and ecological factors, which are important for us to understand interactions between virus and vector, as well as between vector and ecological elements. RESULTS: We conducted the meta-transcriptomic sequencing of 136 pools of H. longicornis and identified 508 RNA viruses of 48 viral species, 22 of which have never been reported. Phylogenetic analysis of mitochondrion sequences divided the ticks into two genetic clades, each of which was geographically clustered and significantly associated with ecological factors, including altitude, precipitation, and normalized difference vegetation index. The two clades showed significant difference in virome diversity and shared about one fifth number of viral species that might have evolved to "generalists." Notably, Bandavirus dabieense, the pathogen of severe fever with thrombocytopenia syndrome was only detected in ticks of clade 1, and half number of clade 2-specific viruses were aquatic-animal-associated. CONCLUSIONS: These findings highlight that the virome diversity is shaped by internal genetic evolution and external ecological landscape of H. longicornis and provide the new foundation for promoting the studies on virus-vector-ecology interaction and eventually for evaluating the risk of H. longicornis for transmitting the viruses to humans and animals. Video Abstract.


Asunto(s)
Ixodidae , Phlebovirus , Garrapatas , Animales , Humanos , Ixodidae/genética , Haemaphysalis longicornis , Viroma/genética , Filogenia , Phlebovirus/genética
19.
Acta Trop ; 253: 107158, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402921

RESUMEN

Tick-borne viruses (TBV) have gained public health relevance in recent years due to the recognition of human-associated fatal cases and the increase in tick-borne disease and transmission. However, many tick species have not been studied for their potential to transmit pathogenic viruses, especially those found in Latin America. To gain better understanding of the tick virome, we conducted targeted amplification using broadly-reactive consensus-degenerate pan-viral targeting viruses from the genera Flavivirus, Bandavirus, Uukuvirus, and Orthonairovirus genus. Additionally, we conducted unbiased metagenomic analyses to investigate the presence of viral RNA sequences in Amblyomma cajennense, A. patinoi and Rhipicephalus microplus ticks collected from a horse slaughter plant in Medellín, Colombia. While no viral products were detected by PCR, results of the metagenomic analyses revealed the presence of viral genomes belonging to the genera Phlebovirus, Bandavirus, and Uukuvirus, including Lihan Tick Virus (LTV), which was previously reported in Rhipicephalus microplus from Colombia. Overall, the results emphasized the enormous utility of the next-generation sequencing in identifying virus genetic diversity presents in ticks and other species of vectors and reservoirs.


Asunto(s)
Virus ARN , Rhipicephalus , Animales , Humanos , Caballos , Rhipicephalus/genética , Amblyomma , Colombia , Viroma/genética
20.
BMC Genomics ; 25(1): 34, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177994

RESUMEN

BACKGROUND: Bats are renowned for harboring a high viral diversity, their characteristics contribute to emerging infectious diseases. However, environmental and anthropic factors also play a significant role in the emergence of zoonotic viruses. Metagenomic is an important tool for investigating the virome of bats and discovering new viruses. RESULTS: Twenty-four families of virus were detected in lung samples by sequencing and bioinfomatic analysis, the largest amount of reads was focused on the Retroviridae and contigs assembled to Desmodus rotundus endogenous retrovirus, which was feasible to acquire complete sequences. The reads were also abundant for phages. CONCLUSION: This lung virome of D. rotundus contributes valuable information regarding the viral diversity found in bats, which is useful for understanding the drivers of viral cycles and their ecology in this species. The identification and taxonomic categorization of viruses hosted by bats carry epidemiological significance due to the potential for viral adaptation to other animals and humans, which can have severe repercussions for public health. Furthermore, the characterization of endogenized viruses helps to understanding the host genome and the evolution of the species.


Asunto(s)
Bacteriófagos , Quirópteros , Virus , Animales , Quirópteros/virología , Ecología , Filogenia , Viroma/genética , Virus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...