Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.052
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1366908, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725449

RESUMEN

Background: Metagenomic next-generation sequencing (mNGS) is a novel non-invasive and comprehensive technique for etiological diagnosis of infectious diseases. However, its practical significance has been seldom reported in the context of hematological patients with high-risk febrile neutropenia, a unique patient group characterized by neutropenia and compromised immune responses. Methods: This retrospective study evaluated the results of plasma cfDNA sequencing in 164 hematological patients with high-risk febrile neutropenia. We assessed the diagnostic efficacy and clinical impact of mNGS, comparing it with conventional microbiological tests. Results: mNGS identified 68 different pathogens in 111 patients, whereas conventional methods detected only 17 pathogen types in 36 patients. mNGS exhibited a significantly higher positive detection rate than conventional methods (67.7% vs. 22.0%, P < 0.001). This improvement was consistent across bacterial (30.5% vs. 9.1%), fungal (19.5% vs. 4.3%), and viral (37.2% vs. 9.1%) infections (P < 0.001 for all comparisons). The anti-infective treatment strategies were adjusted for 51.2% (84/164) of the patients based on the mNGS results. Conclusions: mNGS of plasma cfDNA offers substantial promise for the early detection of pathogens and the timely optimization of anti-infective therapies in hematological patients with high-risk febrile neutropenia.


Asunto(s)
Neutropenia Febril , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Humanos , Metagenómica/métodos , Masculino , Estudios Retrospectivos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Femenino , Persona de Mediana Edad , Neutropenia Febril/microbiología , Neutropenia Febril/sangre , Neutropenia Febril/diagnóstico , Adulto , Anciano , Adulto Joven , Adolescente , Anciano de 80 o más Años , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Micosis/diagnóstico , Micosis/microbiología , Virosis/diagnóstico , Virosis/virología
2.
J Med Virol ; 96(5): e29679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767190

RESUMEN

Acute gastroenteritis (AGE) represents a world public health relevant problem especially in children. Enteric viruses are the pathogens mainly involved in the episodes of AGE, causing about 70.00% of the cases. Apart from well-known rotavirus (RVA), adenovirus (AdV) and norovirus (NoV), there are various emerging viral pathogens potentially associated with AGE episodes. In this study, the presence of ten different enteric viruses was investigated in 152 fecal samples collected from children hospitalized for gastroenteritis. Real time PCR results showed that 49.3% of them were positive for viral detection with the following prevalence: norovirus GII 19.7%, AdV 15.8%, RVA 10.5%, human parechovirus (HPeV) 5.3%, enterovirus (EV) 3.3%, sapovirus (SaV) 2.6%. Salivirus (SalV), norovirus GI and astrovirus (AstV) 1.3% each, aichivirus (AiV) found in only one patient. In 38.2% of feces only one virus was detected, while co-infections were identified in 11.8% of the cases. Among young patients, 105 were ≤5 years old and 56.0% tested positive for viral detection, while 47 were >5 years old with 40.0% of them infected. Results obtained confirm a complex plethora of viruses potentially implicated in gastroenteritis in children, with some of them previously known for other etiologies but detectable in fecal samples. Subsequent studies should investigate the role of these viruses in causing gastroenteritis and explore the possibility that other symptoms may be ascribed to multiple infections.


Asunto(s)
COVID-19 , Coinfección , Heces , Gastroenteritis , Humanos , Gastroenteritis/virología , Gastroenteritis/epidemiología , Preescolar , Coinfección/virología , Coinfección/epidemiología , Heces/virología , Lactante , Italia/epidemiología , Niño , Masculino , Femenino , COVID-19/epidemiología , COVID-19/virología , Sapovirus/aislamiento & purificación , Sapovirus/genética , Virus/aislamiento & purificación , Virus/clasificación , Virus/genética , Prevalencia , Norovirus/aislamiento & purificación , Norovirus/genética , Adolescente , Virosis/epidemiología , Virosis/virología , Recién Nacido , SARS-CoV-2 , Rotavirus/aislamiento & purificación , Rotavirus/genética , Adenoviridae/aislamiento & purificación
3.
Nucleus ; 15(1): 2350178, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38717150

RESUMEN

Paraspeckles are non-membranous subnuclear bodies, formed through the interaction between the architectural long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) and specific RNA-binding proteins, including the three Drosophila Behavior/Human Splicing (DBHS) family members (PSPC1 (Paraspeckle Component 1), SFPQ (Splicing Factor Proline and Glutamine Rich) and NONO (Non-POU domain-containing octamer-binding protein)). Paraspeckle components were found to impact viral infections through various mechanisms, such as induction of antiviral gene expression, IRES-mediated translation, or viral mRNA polyadenylation. A complex involving NEAT1 RNA and paraspeckle proteins was also found to modulate interferon gene transcription after nuclear DNA sensing, through the activation of the cGAS-STING axis. This review aims to provide an overview on how these elements actively contribute to the dynamics of viral infections.


Asunto(s)
Virosis , Humanos , Virosis/metabolismo , Virosis/genética , Virosis/virología , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
4.
Influenza Other Respir Viruses ; 18(5): e13310, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725276

RESUMEN

BACKGROUND: A variety of viruses can cause acute respiratory infections (ARIs), resulting in a high disease burden worldwide. To explore the dominant viruses and their prevalence characteristics in children with ARIs, comprehensive surveillance was carried out in the Pudong New Area of Shanghai. METHODS: Between January 2013 and December 2022, the basic and clinical information, and respiratory tract specimens of 0-14 years old children with ARIs were collected in five sentinel hospitals in Shanghai Pudong. Each specimen was tested for eight respiratory viruses, and the positive rates of different age groups, case types (inpatient or outpatient) were analyzed. RESULTS: In our study, 30.67% (1294/4219) children with ARIs were positive for at least one virus. Influenza virus (IFV) was the most commonly detected respiratory virus (349/4219, 8.27%), followed by respiratory syncytial virus (RSV) (217/4219, 5.14%), para-influenza virus (PIV) (215/4219, 5.10%), and human coronavirus (HCoV, including 229E, OC43, NL63, and HKU1) (184/4219, 4.36%). IFV was the leading respiratory virus in outpatients aged 5-14 years (201/1673, 12.01%); RSV was the most prevalent respiratory virus in both inpatients (61/238, 25.63%) and outpatients (4/50, 8.00%) for ARI patients aged <6 months old. For PIV, HMPV, HCoV, and HRV, the risk of infection usually was higher among young children. Co-infection with more than two viruses was seen in 3.25% (137/4219). CONCLUSIONS: IFV and RSV played important roles in ARIs among children, but the risk populations were different. There are needs for targeted diagnosis and treatment and necessary immunization and non-pharmaceutical interventions.


Asunto(s)
Infecciones del Sistema Respiratorio , Humanos , China/epidemiología , Preescolar , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Niño , Lactante , Masculino , Adolescente , Femenino , Prevalencia , Recién Nacido , Virus/aislamiento & purificación , Virus/clasificación , Virosis/epidemiología , Virosis/virología , Coinfección/epidemiología , Coinfección/virología , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/virología , Enfermedad Aguda/epidemiología
5.
J Infect ; 88(6): 106169, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697269

RESUMEN

Gastroenteritis viruses are the leading etiologic agents of diarrhea in children worldwide. We present data from thirty-three (33) eligible studies published between 2003 and 2023 from African countries bearing the brunt of the virus-associated diarrheal mortality. Random effects meta-analysis with proportion, subgroups, and meta-regression analyses were employed. Overall, rotavirus with estimated pooled prevalence of 31.0 % (95 % CI 24.0-39.0) predominated in all primary care visits and hospitalizations, followed by norovirus, adenovirus, sapovirus, astrovirus, and aichivirus with pooled prevalence estimated at 15.0 % (95 % CI 12.0-20.0), 10 % (95 % CI 6-15), 4.0 % (95 % CI 2.0-6.0), 4 % (95 % CI 3-6), and 2.3 % (95 % CI 1-3), respectively. Predominant rotavirus genotype was G1P[8] (39 %), followed by G3P[8] (11.7 %), G9P[8] (8.7 %), and G2P[4] (7.1 %); although, unusual genotypes were also observed, including G3P[6] (2.7 %), G8P[6] (1.7 %), G1P[6] (1.5 %), G10P[8] (0.9 %), G8P[4] (0.5 %), and G4P[8] (0.4 %). The genogroup II norovirus predominated over the genogroup I-associated infections (84.6 %, 613/725 vs 14.9 %, 108/725), with the GII.4 (79.3 %) being the most prevalent circulating genotype. In conclusion, this review showed that rotavirus remains the leading driver of viral diarrhea requiring health care visits and hospitalization among under-five years children in Africa. Thus, improved rotavirus vaccination in the region and surveillance to determine the residual burden of rotavirus and the evolving trend of other enteric viruses are needed for effective control and management of cases.


Asunto(s)
Gastroenteritis , Humanos , Gastroenteritis/virología , Gastroenteritis/epidemiología , Preescolar , Lactante , África/epidemiología , Prevalencia , Diarrea/virología , Diarrea/epidemiología , Rotavirus/genética , Rotavirus/aislamiento & purificación , Rotavirus/clasificación , Recién Nacido , Genotipo , Virosis/epidemiología , Virosis/virología , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/virología , Virus/clasificación , Virus/genética , Virus/aislamiento & purificación
6.
New Microbiol ; 47(1): 28-32, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700880

RESUMEN

Acute respiratory tract infections (ARI) are common diseases in children and adults and could cause severe infections in high-risk patients, like the immunocompromised and elderly, and are the leading cause of morbidity, hospitalization and mortality. This study aimed to explore the prevalence of respiratory viruses and the clinical impact of single- and multi-infection among hospitalized patients in various age groups. 3578 nasopharyngeal swabs (NPS) were analyzed for pathogen detection of acute respiratory tract infections. 930 out of 3578 NPS were diagnosed positive for at least one respiratory virus. The distribution of viral infections, prevalence and pathogen, differed significantly among age groups. Most RTI are observed in the age group over 65 years (50.6%) with a high SARS-CoV2 prevalence, following by group <5 years (25.6%), where the most frequently detected viruses were RSV, Rhinovirus, FluA-H3, MPV, and AdV. The co-infection rate also varies according to age and, in some cases, especially in older adults, could have severe clinical impact. This study emphasizes that it is important to know and analyze, in all age groups of hospitalized patients, the epidemiology of respiratory viruses, the prevalence of coinfections, and the clinical impact of various pathogens. Furthermore, in a clinical setting, the rapid diagnosis of respiratory infections by means of molecular tests is crucial not only to avoid hospital outbreaks, but also to allow early and optimal treatment to reduce morbidity and mortality.


Asunto(s)
Coinfección , Infecciones del Sistema Respiratorio , Humanos , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Anciano , Adulto , Persona de Mediana Edad , Preescolar , Adolescente , Niño , Masculino , Adulto Joven , Femenino , Lactante , Coinfección/epidemiología , Coinfección/virología , Anciano de 80 o más Años , COVID-19/epidemiología , Prevalencia , Hospitalización , SARS-CoV-2 , Virosis/epidemiología , Virosis/virología , Recién Nacido , Pandemias , Virus/aislamiento & purificación , Virus/clasificación , Virus/genética
7.
Clin Exp Med ; 24(1): 91, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693436

RESUMEN

The ubiquitous RNA-processing molecule TDP-43 is involved in neuromuscular diseases such as inclusion body myositis, a late-onset acquired inflammatory myopathy. TDP-43 solubility and function are disrupted in certain viral infections. Certain viruses, high viremia, co-infections, reactivation of latent viruses, and post-acute expansion of cytotoxic T cells may all contribute to inclusion body myositis, mainly in an age-shaped immune landscape. The virally induced senescent, interferon gamma-producing cytotoxic CD8+ T cells with increased inflammatory, and cytotoxic features are involved in the occurrence of inclusion body myositis in most such cases, in a genetically predisposed host. We discuss the putative mechanisms linking inclusion body myositis, TDP-43, and viral infections untangling the links between viruses, interferon, and neuromuscular degeneration could shed a light on the pathogenesis of the inclusion body myositis and other TDP-43-related neuromuscular diseases, with possible therapeutic implications.


Asunto(s)
Proteínas de Unión al ADN , Miositis por Cuerpos de Inclusión , Virosis , Miositis por Cuerpos de Inclusión/virología , Humanos , Virosis/inmunología , Virosis/virología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
8.
Braz J Infect Dis ; 28(2): 103742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670166

RESUMEN

A substantial number of zoonotic diseases are caused by viral pathogens, representing a significant menace to public health, particularly to susceptible populations, such as pregnant women, the elderly, and immunocompromised individuals. Individuals who have undergone solid organ transplantation frequently experience immunosuppression, to prevent organ rejection, and, thus are more prone to opportunistic infections. Furthermore, the reactivation of dormant viruses can threaten transplant recipients and organ viability. This mini-review examines the up-to-date literature covering potential zoonotic and organ rejection-relevant viruses in solid organ transplant recipients. A comprehensive list of viruses with zoonotic potential is highlighted and the most important clinical outcomes in patients undergoing transplantation are described. Moreover, this mini-review calls attention to complex multifactorial events predisposing viral coinfections and the need for continuous health surveillance and research to understand better viral pathogens' transmission and pathophysiology dynamics in transplanted individuals.


Asunto(s)
Huésped Inmunocomprometido , Trasplante de Órganos , Receptores de Trasplantes , Humanos , Trasplante de Órganos/efectos adversos , Animales , Virosis/transmisión , Virosis/virología , Susceptibilidad a Enfermedades , Zoonosis/transmisión , Zoonosis/virología , Zoonosis Virales/transmisión , Zoonosis Virales/virología , Factores de Riesgo
9.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674036

RESUMEN

CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.


Asunto(s)
Quimiocina CX3CL1 , Virosis , Quimiocina CX3CL1/metabolismo , Humanos , Virosis/metabolismo , Virosis/inmunología , Virosis/virología , Animales , COVID-19/virología , COVID-19/metabolismo , COVID-19/inmunología , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Microglía/metabolismo , Microglía/virología , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética
10.
mBio ; 15(5): e0069224, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38567955

RESUMEN

Defective viral genomes (DVGs) are truncated derivatives of their parental viral genomes generated during an aberrant round of viral genomic replication. Distinct classes of DVGs have been identified in most families of both positive- and negative-sense RNA viruses. Importantly, DVGs have been detected in clinical samples from virally infected individuals and an emerging body of association studies implicates DVGs in shaping the severity of disease caused by viral infections in humans. Consequently, there is growing interest in understanding the molecular mechanisms of de novo DVG generation, how DVGs interact with the innate immune system, and harnessing DVGs as novel therapeutics and vaccine adjuvants to attenuate viral pathogenesis. This minireview focuses on single-stranded RNA viruses (excluding retroviridae), and summarizes the current knowledge of DVG generation, the functions and diversity of DVG species, the roles DVGs play in influencing disease progression, and their application as antivirals and vaccine adjuvants.


Asunto(s)
Virus Defectuosos , Genoma Viral , Humanos , Virus Defectuosos/genética , Replicación Viral , Animales , Virus ARN/genética , Inmunidad Innata , Virosis/virología , Virosis/genética , Virosis/inmunología
11.
J Biol Phys ; 50(2): 197-214, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641676

RESUMEN

Time of day affects how well the immune system responds to viral or bacterial infections. While it is well known that the immune system is regulated by the circadian clock, the dynamic origin of time-of-day-dependent immunity remains unclear. In this paper, we studied the circadian control of immune response upon infection of influenza A virus through mathematical modeling. Dynamic simulation analyses revealed that the time-of-day-dependent immunity was rooted in the relative phase between the circadian clock and the pulse of viral infection. The relative phase, which depends on the time the infection occurs, plays a crucial role in the immune response. It can drive the immune system to one of two distinct bistable states, a high inflammatory state with a higher mortality rate or a safe state characterized by low inflammation. The mechanism we found here also explained why the same species infected by different viruses has different time-of-day-dependent immunities. Further, the time-of-day-dependent immunity was found to be abolished when the immune system was regulated by an impaired circadian clock with decreased oscillation amplitude or without oscillations.


Asunto(s)
Relojes Circadianos , Relojes Circadianos/inmunología , Virosis/inmunología , Virosis/virología , Humanos , Virus de la Influenza A/inmunología , Modelos Biológicos , Animales
12.
Viruses ; 16(4)2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38675854

RESUMEN

In this study, we analyzed the potential of viral infections in the species Homo sapiens as environmental causes of orofacial clefts (OFCs). A scoring system was adapted for qualitatively assessing the potential of viruses to cause cleft lip and/or palate (CL/P). This assessment considered factors such as information from the literature, nucleotide and amino acid similarities, and the presence of Endogenous Viral Elements (EVEs). The analysis involved various algorithm packages within Basic Local Alignment Search Tool 2.13.0 software and databases from the National Center for Biotechnology Information and the International Committee on Taxonomy of Viruses. Twenty significant viral species using different biosynthesis strategies were identified: Human coronavirus NL63, Rio Negro virus, Alphatorquevirus homin9, Brisavirus, Cosavirus B, Torque teno mini virus 4, Bocaparvovirus primate2, Human coronavirus HKU1, Monkeypox virus, Mammarenavirus machupoense, Volepox virus, Souris mammarenavirus, Gammapapillomavirus 7, Betainfluenzavirus influenzae, Lymphocytic choriomeningitis mammarenavirus, Ledantevirus kern, Gammainfluenzavirus influenzae, Betapolyomavirus hominis, Vesiculovirus perinet, and Cytomegalovirus humanbeta5. The evident viral etiological potential in relation to CL/P varies depending on the Baltimore class to which the viral species belongs. Given the multifactorial nature of CL/P, this relationship appears to be dynamic.


Asunto(s)
Labio Leporino , Fisura del Paladar , Virus , Labio Leporino/virología , Humanos , Fisura del Paladar/virología , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Virosis/virología , Animales
13.
J Infect ; 88(5): 106148, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588959

RESUMEN

OBJECTIVES: In this study, we investigated the causes of measles-like illnesses (MLI) in the Uganda national surveillance program in order to inform diagnostic assay selection and vaccination strategies. METHODS: We used metagenomic next-generation sequencing (M-NGS) on the Illumina platform to identify viruses associated with MLI (defined as fever and rash in the presence of either cough, coryza or conjunctivitis) in patient samples that had tested IgM negative for measles between 2010 and 2019. RESULTS: Viral genomes were identified in 87/271 (32%) of samples, of which 44/271 (16%) contained 12 known viral pathogens. Expected viruses included rubella, human parvovirus B19, Epstein Barr virus, human herpesvirus 6B, human cytomegalovirus, varicella zoster virus and measles virus (detected within the seronegative window-period of infection) and the blood-borne hepatitis B virus. We also detected Saffold virus, human parvovirus type 4, the human adenovirus C2 and vaccine-associated poliovirus type 1. CONCLUSIONS: The study highlights the presence of undiagnosed viruses causing MLI in Uganda, including vaccine-preventable illnesses. NGS can be used to monitor common viral infections at a population level, especially in regions where such infections are prevalent, including low and middle income countries to guide vaccination policy and optimize diagnostic assays.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Sarampión , Humanos , Uganda/epidemiología , Preescolar , Sarampión/epidemiología , Sarampión/virología , Lactante , Niño , Masculino , Femenino , Adolescente , Virus/aislamiento & purificación , Virus/genética , Virus/clasificación , Genoma Viral , Adulto , Adulto Joven , Virosis/epidemiología , Virosis/virología , Metagenómica , Virus del Sarampión/genética , Virus del Sarampión/aislamiento & purificación , Virus del Sarampión/clasificación
14.
PLoS Comput Biol ; 20(4): e1011437, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626190

RESUMEN

Mathematical models of viral infection have been developed, fitted to data, and provide insight into disease pathogenesis for multiple agents that cause chronic infection, including HIV, hepatitis C, and B virus. However, for agents that cause acute infections or during the acute stage of agents that cause chronic infections, viral load data are often collected after symptoms develop, usually around or after the peak viral load. Consequently, we frequently lack data in the initial phase of viral growth, i.e., when pre-symptomatic transmission events occur. Missing data may make estimating the time of infection, the infectious period, and parameters in viral dynamic models, such as the cell infection rate, difficult. However, having extra information, such as the average time to peak viral load, may improve the robustness of the estimation. Here, we evaluated the robustness of estimates of key model parameters when viral load data prior to the viral load peak is missing, when we know the values of some parameters and/or the time from infection to peak viral load. Although estimates of the time of infection are sensitive to the quality and amount of available data, particularly pre-peak, other parameters important in understanding disease pathogenesis, such as the loss rate of infected cells, are less sensitive. Viral infectivity and the viral production rate are key parameters affecting the robustness of data fits. Fixing their values to literature values can help estimate the remaining model parameters when pre-peak data is missing or limited. We find a lack of data in the pre-peak growth phase underestimates the time to peak viral load by several days, leading to a shorter predicted growth phase. On the other hand, knowing the time of infection (e.g., from epidemiological data) and fixing it results in good estimates of dynamical parameters even in the absence of early data. While we provide ways to approximate model parameters in the absence of early viral load data, our results also suggest that these data, when available, are needed to estimate model parameters more precisely.


Asunto(s)
Modelos Biológicos , Carga Viral , Humanos , Virosis/virología , Biología Computacional/métodos , Simulación por Computador
15.
Exp Mol Med ; 56(4): 799-808, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658699

RESUMEN

The dynamic spatial organization of genomes across time, referred to as the four-dimensional nucleome (4DN), is a key component of gene regulation and biological fate. Viral infections can lead to a reconfiguration of viral and host genomes, impacting gene expression, replication, latency, and oncogenic transformation. This review provides a summary of recent research employing three-dimensional genomic methods such as Hi-C, 4C, ChIA-PET, and HiChIP in virology. We review how viruses induce changes in gene loop formation between regulatory elements, modify chromatin accessibility, and trigger shifts between A and B compartments in the host genome. We highlight the central role of cellular chromatin organizing factors, such as CTCF and cohesin, that reshape the 3D structure of both viral and cellular genomes. We consider how viral episomes, viral proteins, and viral integration sites can alter the host epigenome and how host cell type and conditions determine viral epigenomes. This review consolidates current knowledge of the diverse host-viral interactions that impact the 4DN.


Asunto(s)
Genoma Viral , Humanos , Animales , Interacciones Huésped-Patógeno , Virus/metabolismo , Virus/genética , Cromatina/metabolismo , Virosis/virología , Virosis/metabolismo
16.
Vet Res ; 55(1): 54, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671518

RESUMEN

This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek's disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.


Asunto(s)
Enfermedades de las Aves de Corral , Virosis , Animales , Aves de Corral/virología , Enfermedades de las Aves de Corral/virología , Piel/virología , Virosis/veterinaria , Virosis/virología
17.
Viruses ; 16(4)2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675930

RESUMEN

Inflammation is a protective host response essential for controlling viral replication and promoting tissue repair [...].


Asunto(s)
Inflamación , Virosis , Inflamación/virología , Humanos , Virosis/inmunología , Virosis/virología , Animales , Virus/inmunología , Virus/patogenicidad , Replicación Viral , Interacciones Huésped-Patógeno/inmunología
18.
Viruses ; 16(4)2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675927

RESUMEN

Located 50 miles west of Fort Collins, Colorado, Colorado State University's Mountain Campus in Pingree Park hosted the 23rd annual Rocky Mountain Virology Association meeting in 2023 with 116 participants. The 3-day event at the end of September consisted of 28 talks and 43 posters that covered the topics of viral evolution and surveillance, developments in prion research, arboviruses and vector biology, host-virus interactions, and viral immunity and vaccines. This year's Randall Jay Cohrs keynote presentation covered the topic of One Health and emerging coronaviruses. This timely discussion covered the importance of global disease surveillance, international collaboration, and trans-disciplinary research teams to prevent and control future pandemics. Peak fall colors flanked the campus and glowed along the multiple mountain peaks, allowing for pristine views while discussing science and networking, or engaging in mountain activities like fly fishing and hiking. On behalf of the Rocky Mountain Virology Association, this report summarizes select presentations from the 23rd annual meeting.


Asunto(s)
Virología , Humanos , Colorado , Animales , Virosis/virología , Virus/genética , Virus/clasificación , Priones , Arbovirus , Salud Única
19.
Viruses ; 16(4)2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38675942

RESUMEN

The epitranscriptomic modification m6A is a prevalent RNA modification that plays a crucial role in the regulation of various aspects of RNA metabolism. It has been found to be involved in a wide range of physiological processes and disease states. Of particular interest is the role of m6A machinery and modifications in viral infections, serving as an evolutionary marker for distinguishing between self and non-self entities. In this review article, we present a comprehensive overview of the epitranscriptomic modification m6A and its implications for the interplay between viruses and their host, focusing on immune responses and viral replication. We outline future research directions that highlight the role of m6A in viral nucleic acid recognition, initiation of antiviral immune responses, and modulation of antiviral signaling pathways. Additionally, we discuss the potential of m6A as a prognostic biomarker and a target for therapeutic interventions in viral infections.


Asunto(s)
Inmunidad Innata , Virosis , Humanos , Virosis/inmunología , Virosis/virología , Metilación , Replicación Viral , Virus/inmunología , Virus/genética , Animales , ARN Viral/genética , ARN Viral/inmunología , Transducción de Señal , Interacciones Huésped-Patógeno/inmunología
20.
Eur J Clin Microbiol Infect Dis ; 43(5): 979-989, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38517571

RESUMEN

PURPOSE: This study aimed to investigate the prevalence and viral reactivations of clinical interest in the immunocompromised patient with particular focus on hematologic and solid organ transplant recipients. METHODS: Molecular screening data of CMV, EBV, JCV and BKV from 2011 to 2023 were analyzed. This extensive time span allowed the access to more than 100,000 samples from over 20,000 patients treated at Policlinico Umberto I. It was possible to temporally investigate patient attendance patterns, average age distribution, seasonality of infections, and positivity rates of the analyzed viruses. RESULTS: Between 2019 and 2022 a significant reduction in organ transplants performed and in the positive molecular detection of EBV, JCV and BKV was observed. Additionally, there has been a noteworthy decrease in CMV reactivations, with a reduction of up to 50% starting in 2019. A remarkable reduction of 39% in the rate of CMV viral reactivation has been also achieved in SOT between 2016 and 2023. CONCLUSION: The years following 2019 were profoundly impacted by the COVID-19 pandemic era. This period resulted in a substantial reduction in healthcare services and hospital visits. Furthermore, the introduction of the drug Letermovir in Italy in 2019 demonstrated remarkable efficacy, evidenced by a reduction in CMV reactivations. Additionally, the adoption of a novel clinical approach centered on personalized therapy facilitated improved management of immunocompromised patients.


Asunto(s)
Hospitales Universitarios , Huésped Inmunocomprometido , Humanos , Italia/epidemiología , Hospitales Universitarios/estadística & datos numéricos , Masculino , Persona de Mediana Edad , COVID-19/epidemiología , COVID-19/virología , Femenino , Activación Viral , Virosis/epidemiología , Virosis/virología , Anciano , Adulto , Virus JC/genética , Virus JC/aislamiento & purificación , Virus JC/inmunología , Virus BK/genética , Virus BK/aislamiento & purificación , Infecciones por Citomegalovirus/epidemiología , Infecciones por Citomegalovirus/tratamiento farmacológico , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/inmunología , Prevalencia , Trasplante de Órganos/efectos adversos , Receptores de Trasplantes/estadística & datos numéricos , Citomegalovirus/genética , Citomegalovirus/inmunología , Infecciones por Polyomavirus/epidemiología , Infecciones por Polyomavirus/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...