Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 824
Filtrar
1.
Arch Virol ; 168(9): 223, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37561218

RESUMEN

The phylum Cressdnaviricota comprises viruses with single-stranded, circular DNA genomes that encode an HUH-type endonuclease (known as Rep). The phylum includes two classes, eight orders, and 11 families. Here, we report the creation of a twelfth family in the order Mulpavirales, class Arfiviricetes of the phylum Cressdnaviricota. The family Amesuviridae comprises viruses that infect plants and is divided into two genera: Temfrudevirus, including the species Temfrudevirus temperatum (with temperate fruit decay-associated virus as a member), and Yermavirus, including the species Yermavirus ilicis (with yerba mate-associated circular DNA virus as a member). Both viruses encode Rep proteins with HUH endonuclease and SH3 superfamily helicase domains. Phylogenetic analysis indicates that the replicative module of amesuviruses constitutes a well-supported monophyletic clade related to Rep proteins from viruses in the order Mulpavirales. Furthermore, both viruses encode a single capsid protein (CP) related to geminivirus CPs. Phylogenetic incongruence between the replicative and structural modules of amesuviruses suggests a chimeric origin resulting from remote recombination events between ancestral mulpavirales and geminivirids. The creation of the family Amesuviridae has been ratified by the International Committee on Taxonomy of Viruses (ICTV).


Asunto(s)
Virus ADN , Virus de Plantas , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , ADN Circular/genética , ADN de Cadena Simple/genética , Endonucleasas/genética , Geminiviridae/genética , Genoma Viral/genética , Filogenia , Virus de Plantas/genética
2.
Nature ; 617(7960): 409-416, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37138077

RESUMEN

CrAssphage and related viruses of the order Crassvirales (hereafter referred to as crassviruses) were originally discovered by cross-assembly of metagenomic sequences. They are the most abundant viruses in the human gut, are found in the majority of individual gut viromes, and account for up to 95% of the viral sequences in some individuals1-4. Crassviruses are likely to have major roles in shaping the composition and functionality of the human microbiome, but the structures and roles of most of the virally encoded proteins are unknown, with only generic predictions resulting from bioinformatic analyses4,5. Here we present a cryo-electron microscopy reconstruction of Bacteroides intestinalis virus ΦcrAss0016, providing the structural basis for the functional assignment of most of its virion proteins. The muzzle protein forms an assembly about 1 MDa in size at the end of the tail and exhibits a previously unknown fold that we designate the 'crass fold', that is likely to serve as a gatekeeper that controls the ejection of cargos. In addition to packing the approximately 103 kb of virus DNA, the ΦcrAss001 virion has extensive storage space for virally encoded cargo proteins in the capsid and, unusually, within the tail. One of the cargo proteins is present in both the capsid and the tail, suggesting a general mechanism for protein ejection, which involves partial unfolding of proteins during their extrusion through the tail. These findings provide a structural basis for understanding the mechanisms of assembly and infection of these highly abundant crassviruses.


Asunto(s)
Virus ADN , Intestinos , Proteínas Virales , Virión , Humanos , Cápside/química , Cápside/metabolismo , Cápside/ultraestructura , Microscopía por Crioelectrón , Virus ADN/química , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Virus ADN/metabolismo , Virus ADN/ultraestructura , Virión/química , Virión/metabolismo , Virión/ultraestructura , Ensamble de Virus , Intestinos/microbiología , Intestinos/virología , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura , Desplegamiento Proteico , Pliegue de Proteína
3.
Virology ; 565: 38-51, 2022 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-34715607

RESUMEN

The South Island robin (Petroica australis) is a small passerine bird endemic to New Zealand (Aotearoa). Although its population has declined recently and it is considered 'at risk,' little research has been done to identify viruses in this species. This study aimed to survey the diversity of single-stranded DNA viruses associated with South Island robins in a small, isolated population on Nukuwaiata Island. In total, 108 DNA viruses were identified from pooled fecal samples collected from 38 individual robins sampled. These viruses belong to the Circoviridae (n = 10), Genomoviridae (n = 12), and Microviridae (n = 73) families. A number of genomes that belong to the phylum Cressdnaviricota but are otherwise unclassified (n = 13) were also identified. These results greatly expand the known viral diversity associated with South Island robins, and we identify a novel group of viruses most closely related genomoviruses.


Asunto(s)
Virus ADN/clasificación , Heces/virología , Pájaros Cantores/virología , Animales , Virus ADN/genética , Virus ADN/aislamiento & purificación , ADN de Cadena Simple , ADN Viral , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota , Nueva Zelanda , Filogenia , Análisis de Secuencia de ADN
4.
Viruses ; 13(12)2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34960693

RESUMEN

Bovine serum has been widely used as a universal supplement in culture media and other applications, including the manufacture of biological products and the production of synthetic meat. Currently, commercial bovine serum is tested for possible viral contaminants following regional guidelines. Regulatory agencies' established tests focused on detecting selected animal origin viruses and are based on virus isolation, immunofluorescence, and hemadsorption assays. However, these tests may fail to detect new or emerging viruses in biological products. High-throughput sequencing is a powerful option since no prior knowledge of the viral targets is required. In the present study, we evaluate the virome of seven commercial batches of bovine serum from Mexico (one batch), New Zealand (two batches), and the United States (four batches) using a specific preparation and enrichment method for pooled samples and sequencing using an Illumina platform. A variety of circular replicase-encoding single-stranded (CRESS) DNA families (Genomoviridae, Circoviridae, and Smacoviridae) was identified. Additionally, CrAssphage, a recently discovered group of bacteriophage correlated with fecal contamination, was identified in 85% of the tested batches. Furthermore, sequences representing viral families with single-stranded DNA (Parvoviridae), double-stranded DNA (Polyomaviridae and Adenoviridae), single-stranded RNA (Flaviviridae, Picornaviridae, and Retroviridae), and double-stranded RNA (Reoviridae) were identified. These results support that high-throughput sequencing associated with viral enrichment is a robust tool and should be considered an additional layer of safety when testing pooled biologicals to detect viral contaminants overlooked by the current testing protocols.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Productos Biológicos , Bovinos/sangre , Virus ADN/aislamiento & purificación , Virus ARN/aislamiento & purificación , Suero/virología , Viroma , Animales , Bacteriófagos/genética , Virus ADN/genética , Contaminación de Medicamentos , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Virus ARN/genética
5.
Viruses ; 13(11)2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34834931

RESUMEN

Metagenomic next-generation sequencing has transformed the discovery and diagnosis of infectious disease, with the power to characterise the complete 'infectome' (bacteria, viruses, fungi, parasites) of an individual host organism. However, the identification of novel pathogens has been complicated by widespread microbial contamination in commonly used laboratory reagents. Using total RNA sequencing ("metatranscriptomics") we documented the presence of contaminant viral sequences in multiple 'blank' negative control sequencing libraries that comprise a sterile water and reagent mix. Accordingly, we identified 14 viral sequences in 7 negative control sequencing libraries. As in previous studies, several circular replication-associated protein encoding (CRESS) DNA virus-like sequences were recovered in the blank control libraries, as well as contaminating sequences from the Totiviridae, Tombusviridae and Lentiviridae families of RNA virus. These data suggest that viral contamination of common laboratory reagents is likely commonplace and can comprise a wide variety of viruses.


Asunto(s)
Virus ADN/genética , Contaminación de Equipos/estadística & datos numéricos , Indicadores y Reactivos/análisis , Laboratorios/estadística & datos numéricos , Virus/aislamiento & purificación , Virus ADN/aislamiento & purificación , Metagenoma , Virus/clasificación , Virus/genética
6.
J Gen Virol ; 102(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34723784

RESUMEN

It is widely recognized that pathogens can be transmitted across the placenta from mother to foetus. Recent re-evaluation of metagenomic studies indicates that the placenta has no unique microbiome of commensal bacteria. However, viral transmission across the placenta, including transmission of DNA viruses such as the human herpesviruses, is possible. A fuller understanding of which DNA virus sequence can be found in the placenta is required. We employed a metagenomic analysis to identify viral DNA sequences in placental metagenomes from full-term births (20 births), pre-term births (13 births), births from pregnancies associated with antenatal infections (12 births) or pre-term births with antenatal infections (three births). Our analysis found only a small number of DNA sequences corresponding to the genomes of human herpesviruses in four of the 48 metagenomes analysed. Therefore, our data suggest that DNA virus infection of the placenta is rare and support the concept that the placenta is largely free of pathogen infection.


Asunto(s)
Infecciones por Virus ADN/virología , Virus ADN/genética , Metagenoma , Placenta/virología , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Femenino , Genoma Viral , Humanos , Recién Nacido , Masculino , Embarazo , Complicaciones del Embarazo/virología , Nacimiento Prematuro , Nacimiento a Término
7.
J Gen Virol ; 102(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34726588

RESUMEN

Viral metagenomic studies have enabled the discovery of many unknown viruses and revealed that viral communities are much more diverse and ubiquitous than previously thought. Some viruses have multiple genome components that are encapsidated either in separate virions (multipartite viruses) or in the same virion (segmented viruses). In this study, we identify what is possibly a novel bipartite plant-associated circular single-stranded DNA virus in a wild prickly pear cactus, Opuntia discolor, that is endemic to the Chaco ecoregion in South America. Two ~1.8 kb virus-like circular DNA components were recovered, one encoding a replication-associated protein (Rep) and the other a capsid protein (CP). Both of the inferred protein sequences of the Rep and CP are homologous to those encoded by members of the family Geminiviridae. These two putatively cognate components each have a nonanucleotide sequence within a likely hairpin structure that is homologous to the origins of rolling-circle replication (RCR), found in diverse circular single-stranded DNA viruses. In addition, the two components share similar putative replication-associated iterative sequences (iterons), which in circular single-stranded DNA viruses are important for Rep binding during the initiation of RCR. Such molecular features provide support for the possible bipartite nature of this virus, which we named utkilio virus (common name of the Opuntia discolor in South America) components A and B. In the infectivity assays conducted in Nicotiana benthamiana plants, only the A component of utkilio virus, which encodes the Rep protein, was found to move and replicate systemically in N. benthamiana. This was not true for component B, for which we did not detect replication, which may have been due to this being a defective molecule or because of the model plants (N. benthamiana) used for the infection assays. Future experiments need to be conducted with other plants, including O. discolor, to understand more about the biology of these viral components.


Asunto(s)
Virus ADN/aislamiento & purificación , ADN Circular/genética , ADN Viral/genética , Geminiviridae/genética , Opuntia/virología , Enfermedades de las Plantas/virología , Proteínas Virales/genética , Secuencia de Aminoácidos , Secuencia de Bases , Virus ADN/clasificación , Virus ADN/genética , Geminiviridae/clasificación , Geminiviridae/aislamiento & purificación , Genoma Viral , Filogenia
8.
J Gen Virol ; 102(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714225

RESUMEN

Calf diarrhoea has been a major cause of economic losses in the global dairy industry. Many factors, including multiple pathogen infections, can directly or indirectly cause calf diarrhoea. This study compared the faecal virome between 15 healthy calves and 15 calves with diarrhoea. Significantly lower diversity of viruses was found in samples from animals with diarrhoea than those in the healthy ones, and this feature may also be related to the age of the calves. Viruses belonging to the families Astroviridae and Caliciviridae that may cause diarrhoea in dairy calves have been characterized, which revealed that reads of caliciviruses and astroviruses in diarrhoea calves were much higher than those in healthy calves. Five complete genomic sequences closely related to Smacoviridae have been identified, which may participate in the regulation of the gut virus community ecology of healthy hosts together with bacteriophages. This research provides a theoretical basis for further understanding of known or potential enteric pathogens related to calf diarrhoea.


Asunto(s)
Enfermedades de los Bovinos/virología , Bovinos/virología , Diarrea/veterinaria , Intestinos/virología , Viroma , Animales , Caliciviridae/clasificación , Caliciviridae/genética , Caliciviridae/aislamiento & purificación , Virus ADN/clasificación , Virus ADN/genética , Virus ADN/aislamiento & purificación , Industria Lechera , Diarrea/virología , Heces/virología , Genoma Viral , Mamastrovirus/clasificación , Mamastrovirus/genética , Mamastrovirus/aislamiento & purificación , Metagenómica , Filogenia
9.
Viruses ; 13(7)2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34372522

RESUMEN

Eukaryotic circular single-stranded DNA (ssDNA) viruses were known only to infect plants and vertebrates until the discovery of the isolated DNA mycovirus from the fungus Sclerotinia sclerotiorum. Similar viral sequences were reported from several other sources and classified in ten genera within the Genomoviridae family. The current study reports two circular ssDNA mycoviruses isolated from the phytopathogen Botrytis cinerea, and their assignment to a newly created genus tentatively named Gemydayirivirus. The mycoviruses, tentatively named botrytis gemydayirivirus 1 (BGDaV1) and BGDaV2, are 1701 and 1693 nt long and encode three and two open reading frames (ORFs), respectively. Of the predicted ORFs, only ORF I, which codes for a replication initiation protein (Rep), shared identity with other proteins in GenBank. BGDaV1 is infective as cell-free purified particles and confers hypovirulence on its natural host. Investigation revealed that BGDaV1 is a target for RNA silencing and genomic DNA methylation, keeping the virus at very low titre. The discovery of BGDaV1 expands our knowledge of the diversity of genomoviruses and their interaction with fungal hosts.


Asunto(s)
Botrytis/genética , Botrytis/virología , Virus ADN/genética , Virus ADN/aislamiento & purificación , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Sistemas de Lectura Abierta/genética , Botrytis/patogenicidad , Virus ADN/clasificación , Virus ADN/patogenicidad , Virus Fúngicos/clasificación , Virus Fúngicos/patogenicidad , Genoma Viral , Interacciones Microbiota-Huesped , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN , Proteínas Virales/genética , Virulencia
10.
Commun Biol ; 4(1): 992, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446837

RESUMEN

Soil is known to harbor viruses, but the majority are uncharacterized and their responses to environmental changes are unknown. Here, we used a multi-omics approach (metagenomics, metatranscriptomics and metaproteomics) to detect active DNA viruses and RNA viruses in a native prairie soil and to determine their responses to extremes in soil moisture. The majority of transcribed DNA viruses were bacteriophage, but some were assigned to eukaryotic hosts, mainly insects. We also demonstrated that higher soil moisture increased transcription of a subset of DNA viruses. Metaproteome data validated that the specific viral transcripts were translated into proteins, including chaperonins known to be essential for virion replication and assembly. The soil viral chaperonins were phylogenetically distinct from previously described marine viral chaperonins. The soil also had a high abundance of RNA viruses, with highest representation of Reoviridae. Leviviridae were the most diverse RNA viruses in the samples, with higher amounts in wet soil. This study demonstrates that extreme shifts in soil moisture have dramatic impacts on the composition, activity and potential functions of both DNA and RNA soil viruses.


Asunto(s)
Virus ADN/aislamiento & purificación , Metagenoma , Virus ARN/aislamiento & purificación , Microbiología del Suelo , Suelo/química , Kansas , Metagenómica , Proteoma , Transcriptoma
11.
Viruses ; 13(8)2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34452472

RESUMEN

Diarrhoea and poor growth among growing pigs is responsible for significant economic losses in pig herds globally and can have a wide range of possible aetiologies. Next generation sequencing (NGS) technologies are useful for the detection and characterisation of diverse groups of viruses and bacteria and can thereby provide a better understanding of complex interactions among microorganisms potentially causing clinical disease. Here, we used a metagenomics approach to identify and characterise the possible pathogens in colon and lung samples from pigs with diarrhoea and poor growth in an Australian pig herd. We identified and characterized a wide diversity of porcine viruses including RNA viruses, in particular several picornaviruses-porcine sapelovirus (PSV), enterovirus G (EV-G), and porcine teschovirus (PTV), and a porcine astrovirus (PAstV). Single stranded DNA viruses were also detected and included parvoviruses like porcine bocavirus (PBoV) and porcine parvovirus 2 (PPV2), porcine parvovirus 7 (PPV7), porcine bufa virus (PBuV), and porcine adeno-associated virus (AAV). We also detected single stranded circular DNA viruses such as porcine circovirus type 2 (PCV2) at very low abundance and torque teno sus viruses (TTSuVk2a and TTSuVk2b). Some of the viruses detected here may have had an evolutionary past including recombination events, which may be of importance and potential involvement in clinical disease in the pigs. In addition, our metagenomics data found evidence of the presence of the bacteria Lawsonia intracellularis, Brachyspira spp., and Campylobacter spp. that may, together with these viruses, have contributed to the development of clinical disease and poor growth.


Asunto(s)
Infecciones Bacterianas/veterinaria , Coinfección/veterinaria , Virus ADN/genética , Diarrea/veterinaria , Diarrea/virología , Metagenómica/métodos , Virus ARN/genética , Porcinos/crecimiento & desarrollo , Virosis/veterinaria , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Infecciones Bacterianas/diagnóstico , Coinfección/microbiología , Coinfección/virología , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Metagenoma , Filogenia , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Porcinos/virología , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/virología , Virosis/diagnóstico
12.
J Fish Dis ; 44(11): 1811-1818, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34324718

RESUMEN

Recently, the culture of American eels (Anguilla rostrate) in China has been impacted by emergence of a disease with signs of haemorrhagic gill necrosis. The gills of diseased eels are covered with petecchia and they bleed when the operculum is pressed. In this study, a novel American eel adomavirus (AEAdoV) was isolated from the diseased eels using the eel ovary cell line (EO). The virus proliferated in the EO cells with a maximum TCID50 /ml of 106.29 ± 0.23 at 6 days post-infection. The virions were non-enveloped with a diameter of 75-85 nm and shown to be a DNA virus upon 5-iodo-2'-deoxyuridine (IDU) treatment. PCR assays showed that AEAdoV encodes a superfamily 3 helicases (S3H) replicase and shared high similarities with Anguilla marmorata adomavirus (MEAdoV). Although no clinical signs or mortality was observed among the eels injected with AEAdoV, the virus was reisolated from livers, kidneys and gills of injected eels at 35 days post-injection. Our results suggested that AEAdoV exhibited a latent infection in A. rostrata. The pathogenicity of the AEAdoV needs to be confirmed further.


Asunto(s)
Anguilla/virología , Virus ADN/clasificación , Enfermedades de los Peces/virología , Necrosis/veterinaria , Animales , Acuicultura , China , Virus ADN/aislamiento & purificación , Virus ADN/patogenicidad , Branquias/patología , Branquias/virología , Necrosis/virología , Filogenia
13.
J Invertebr Pathol ; 184: 107636, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34116033

RESUMEN

The spread, emergence, and adaptation of pathogens causing marine disease has been problematic to fisheries and aquaculture industries for the last several decades creating the need for strategic management and biosecurity practices. The Pacific oyster (Crassostrea gigas), a highly productive species globally, has been a target of disease and mortality caused by a viral pathogen, the Ostreid herpesvirus 1 (OsHV-1) and its microvariants (OsHV-1 µvars). During routine surveillance to establish health history at a shellfish aquaculture nursery system in San Diego, California, the presence of OsHV-1 in Pacific oyster juveniles was detected. Quantification of OsHV-1 in tissues of oysters revealed OsHV-1 viral loads > 106 copies/mg. We characterized and identified the OsHV-1 variant by sequencing of ORFs 4 (C2/C6) and 43 (IA1/IA2), which demonstrated that this variant is a novel OsHV-1 microvariant: OsHV-1 µvar SD. A pilot transmission study indicates that OsHV-1 µvar SD is infectious with high viral loads ~ 7.57 × 106 copies/mg detected in dead individuals. The detection of OsHV-1 µvar SD in a large port mirrors previous studies conducted in Australia where aquaculture farms and feral populations near port locations may be at a higher risk of OsHV-1 emergence. Further research is needed to understand the impacts of OsHV-1 µvar SD, such as transmission studies focusing on potential vectors and characterization of virulence as compared to other OsHV-1 µvars. To increase biosecurity of the global aquaculture industry, active and passive surveillance may be necessary to reduce spread of pathogens and make appropriate management decisions.


Asunto(s)
Crassostrea/virología , Virus ADN/aislamiento & purificación , Animales , California , Virus ADN/genética , Virus ADN/patogenicidad , Carga Viral , Virulencia
14.
Viruses ; 13(5)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065570

RESUMEN

Microvariant genotypes of Ostreid herpesvirus 1 (OsHV-1) are associated with mass mortality events of Pacific oysters in many countries. The OsHV-1 microvariant (µVar) emerged in France 2008 and caused significant economic losses as it became endemic and displaced the previously dominant OsHV-1 reference genotype. Recently, considerable genotypic variation has been described for OsHV-1 microvariants, however, less is known about variation in viral phenotype. This study used an in vivo laboratory infection model to assess differences in total cumulative mortality, peak viral load, transmissibility, and dose-response for three OsHV-1 isolates obtained between 2011 and 2015 from endemic waterways in Australia. This followed field observations of apparent reductions in the severity of mass mortalities over this time. Significantly higher hazard of death and cumulative mortality were observed for an isolate obtained in 2011 compared to isolates from 2014-2015. In keeping with other studies, the hazard of death was higher in oysters challenged by injection compared to challenge by cohabitation and the mortality was higher when the initial dose was 1 × 104 OsHV-1 DNA copies per oyster injection compared to 1 × 102 DNA copies. There was no difference in the quantity of OsHV-1 DNA at time of death that could be related to isolate or dose, suggesting similar pathogenetic processes in the individual oysters that succumbed to end-stage disease. While the isolates examined in this study were biased towards pathogenic types of OsHV-1, as they were collected during disease outbreaks, the variation in virulence that was observed, when combined with prior data on subclinical infections, suggests that surveillance for low virulence genotypes of OsHV-1 would be rewarding. This may lead to new approaches to disease management which utilize controlled exposure to attenuated strains of OsHV-1.


Asunto(s)
Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/virología , Infecciones por Virus ADN/veterinaria , Virus ADN/genética , Virus ADN/patogenicidad , Variación Genética , Ostreidae/virología , Enfermedades de los Animales/historia , Animales , Australia/epidemiología , Virus ADN/aislamiento & purificación , Historia del Siglo XXI , Estimación de Kaplan-Meier , Mortalidad , Modelos de Riesgos Proporcionales , Vigilancia en Salud Pública , Virulencia
15.
J Invertebr Pathol ; 183: 107601, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33964304

RESUMEN

French commercial hatcheries are massively producing Crassostrea gigas selected for their higher resistance to OsHV-1, and soon should also implement selection for increasing resistance to Vibrio aestuarianus. The first objective of this study was to optimize the breeding programs for dual resistance to OsHV-1 and V. aestuarianus to determine the earliest life stage for which oysters are able to develop disease resistance. Wild stocks and selected families were tested using experimental infections by both pathogens at the larval, spat and juvenile stages. Oyster families could be evaluated for OsHV-1 as soon as the larval stage by a bath method, but this only highlighted the most resistant families; those that showed the highest resistance to V. aestuarianus could be determined using the cohabitation method at the juvenile stage. The second objective of this study was to determine if selection to increase/decrease the resistance to OsHV-1 and V. aestuarianus could have an impact on other major pathogens currently detected in hatchery at the larval stage, and in nursery and field at the spat/juveniles stages (V. coralliilyticus, V. crassostreae, V. tasmaniensis, V. neptunius, V. europaeus, V. harveyi, V. chagasi). No relationship was found between mortality caused by V. aestuarianus/OsHV-1 and the mortality caused by the other virulent bacterial strains tested regardless the stages, except between OsHV-1 and V. tasmaniensis at the juvenile stage. Finally, miscellaneous findings were evidenced such as (1) bath for bacterial challenges was not adapted for spat, (2) the main pathogens at the larval stage were OsHV-1 and V. coralliilyticus using bath, while it was V. coralliilyticus, V. europaeus, and V. neptunius at the juvenile stage by injection, and (4) variation in mortality was observed among families/wild controls for all pathogens at larval and juvenile stages, except for V. harveyi for larvae.


Asunto(s)
Crassostrea/microbiología , Virus ADN/aislamiento & purificación , Vibrio/aislamiento & purificación , Animales , Acuicultura , Crassostrea/crecimiento & desarrollo , Crassostrea/virología , Larva/crecimiento & desarrollo , Larva/microbiología , Larva/virología
16.
Virology ; 559: 156-164, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33892449

RESUMEN

Members of the Delphinidae family are widely distributed across the world's oceans. We used a viral metagenomic approach to identify viruses in orca (Orcinus orca) and short-finned pilot whale (Globicephala macrorhynchus) muscle, kidney, and liver samples from deceased animals. From orca tissue samples (muscle, kidney, and liver), we identified a novel polyomavirus (Polyomaviridae), three cressdnaviruses, and two genomoviruses (Genomoviridae). In the short-finned pilot whale we were able to identify one genomovirus in a kidney sample. The presence of unclassified cressdnavirus within two samples (muscle and kidney) of the same animal supports the possibility these viruses might be widespread within the animal. The orca polyomavirus identified here is the first of its species and is not closely related to the only other dolphin polyomavirus previously discovered. The identification and verification of these viruses expands the current knowledge of viruses that are associated with the Delphinidae family.


Asunto(s)
Virus ADN/genética , ADN Circular , Metagenoma , Poliomavirus/genética , Orca/virología , Calderón/virología , Animales , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Riñón/virología , Metagenómica , Músculos/virología , Poliomavirus/clasificación , Poliomavirus/aislamiento & purificación
17.
PLoS One ; 16(4): e0240958, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33852569

RESUMEN

In this work, we determined the diversity and dynamics of the gut virome of infants during the first year of life. Fecal samples were collected monthly, from birth to one year of age, from three healthy children living in a semi-rural village in Mexico. Most of the viral reads were classified into six families of bacteriophages including five dsDNA virus families of the order Caudovirales, with Siphoviridae and Podoviridae being the most abundant. Eukaryotic viruses were detected as early as two weeks after birth and remained present all along the first year of life. Thirty-four different eukaryotic virus families were found, where eight of these families accounted for 98% of all eukaryotic viral reads: Anelloviridae, Astroviridae, Caliciviridae, Genomoviridae, Parvoviridae, Picornaviridae, Reoviridae and the plant-infecting viruses of the Virgaviridae family. Some viruses in these families are known human pathogens, and it is surprising that they were found during the first year of life in infants without gastrointestinal symptoms. The eukaryotic virus species richness found in this work was higher than that observed in previous studies; on average between 7 and 24 virus species were identified per sample. The richness and abundance of the eukaryotic virome significantly increased during the second semester of life, probably because of an increased environmental exposure of infants with age. Our findings suggest an early and permanent contact of infants with a diverse array of bacteriophages and eukaryotic viruses, whose composition changes over time. The bacteriophages and eukaryotic viruses found in these children could represent a metastable virome, whose potential influence on the development of the infant's immune system or on the health of the infants later in life, remains to be investigated.


Asunto(s)
Virus ADN/aislamiento & purificación , Tracto Gastrointestinal/virología , Viroma/genética , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Virus ADN/genética , Heces/virología , Enfermedades Gastrointestinales/virología , Humanos , Lactante , Recién Nacido , México
18.
Viruses ; 13(3)2021 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-33799428

RESUMEN

Aeromonas hydrophila is an opportunistic pathogen that infects fish, amphibians, mammals, and humans. This study isolated a myophage, vB_AhyM_Ahp2 (Ahp2), that lytically infects A. hydrophila. We observed that 96% of the Ahp2 particles adsorbed to A. hydrophila within 18 min. Ahp2 also showed a latent period of 15 min with a burst size of 142 PFU/cell. This phage has a linear double-stranded DNA genome of 47,331 bp with a GC content of 57%. At least 20 Ahp2 proteins were detected by SDS-polyacrylamide gel electrophoresis; among them, a 40-kDa protein was predicted as the major capsid protein. Sequence analysis showed that Ahp2 has a genome organization closely related to a group of Aeromonas phages (13AhydR10RR, 14AhydR10RR, 85AhydR10RR, phage 3, 32 Asp37, 59.1), which infect Aeromonas hydrophila and Aeromonas salmonicida. The tail module encompassing ORF27-29 in the Ahp2 genome was present in all Aeromonas phages analyzed in this study and likely determines the host range of the virus. This study found that Ahp2 completely lyses A. hydrophila AH300206 in 3.5 h at a MOI of 0.0001 and does not lysogenize its host. Altogether, these findings show that Ahp2 is a lytic Aeromonas phage and could be a candidate for therapeutic phage cocktails.


Asunto(s)
Aeromonas hydrophila/virología , Bacteriófagos , Virus ADN , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Virus ADN/genética , Virus ADN/aislamiento & purificación , Genoma Viral , Especificidad del Huésped
19.
Front Immunol ; 12: 630343, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679773

RESUMEN

The Pacific oyster (Crassostreae gigas) has been introduced from Asia to numerous countries around the world during the 20th century. C. gigas is the main oyster species farmed worldwide and represents more than 98% of oyster production. The severity of disease outbreaks that affect C. gigas, which primarily impact juvenile oysters, has increased dramatically since 2008. The most prevalent disease, Pacific oyster mortality syndrome (POMS), has become panzootic and represents a threat to the oyster industry. Recently, major steps towards understanding POMS have been achieved through integrative molecular approaches. These studies demonstrated that infection by Ostreid herpesvirus type 1 µVar (OsHV-1 µvar) is the first critical step in the infectious process and leads to an immunocompromised state by altering hemocyte physiology. This is followed by dysbiosis of the microbiota, which leads to a secondary colonization by opportunistic bacterial pathogens, which in turn results in oyster death. Host and environmental factors (e.g. oyster genetics and age, temperature, food availability, and microbiota) have been shown to influence POMS permissiveness. However, we still do not understand the mechanisms by which these different factors control disease expression. The present review discusses current knowledge of this polymicrobial and multifactorial disease process and explores the research avenues that must be investigated to fully elucidate the complexity of POMS. These discoveries will help in decision-making and will facilitate the development of tools and applied innovations for the sustainable and integrated management of oyster aquaculture.


Asunto(s)
Crassostrea/microbiología , Crassostrea/virología , Virus ADN/aislamiento & purificación , Infecciones por Herpesviridae/veterinaria , Factores de Edad , Animales , Crassostrea/genética , Infecciones por Herpesviridae/mortalidad , Microbiota , Temperatura , Vibrio/aislamiento & purificación
20.
Sci Rep ; 11(1): 5025, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658544

RESUMEN

Bioconversion of organic materials is the foundation of many applications in chemical engineering, microbiology and biochemistry. Herein, we introduce a new methodology to quantitatively determine conversion of biomass in viral infections while simultaneously imaging morphological changes of the host cell. As proof of concept, the viral replication of an unidentified giant DNA virus and the cellular response of an amoebal host are studied using soft X-ray microscopy, titration dilution measurements and thermal gravimetric analysis. We find that virions produced inside the cell are visible from 18 h post infection and their numbers increase gradually to a burst size of 280-660 virions. Due to the large size of the virion and its strong X-ray absorption contrast, we estimate that the burst size corresponds to a conversion of 6-12% of carbonaceous biomass from amoebal host to virus. The occurrence of virion production correlates with the appearance of a possible viral factory and morphological changes in the phagosomes and contractile vacuole complex of the amoeba, whereas the nucleus and nucleolus appear unaffected throughout most of the replication cycle.


Asunto(s)
Acanthamoeba/virología , Virus ADN/ultraestructura , ADN Viral/genética , Genoma Viral , Virus Gigantes/ultraestructura , Virión/ultraestructura , Acanthamoeba/ultraestructura , Biomasa , Virus ADN/genética , Virus ADN/crecimiento & desarrollo , Virus ADN/aislamiento & purificación , ADN Viral/biosíntesis , Virus Gigantes/genética , Virus Gigantes/crecimiento & desarrollo , Virus Gigantes/aislamiento & purificación , Interacciones Huésped-Patógeno/genética , Fagosomas/ultraestructura , Fagosomas/virología , Microbiología del Suelo , Termogravimetría , Vacuolas/ultraestructura , Vacuolas/virología , Virión/genética , Virión/crecimiento & desarrollo , Replicación Viral , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...