Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 472
Filtrar
1.
Arch Virol ; 169(6): 126, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753067

RESUMEN

A novel mitovirus was identified in Fusarium oxysporum f. sp. melonis strain T-SD3 and designated as "Fusarium oxysporum mitovirus 3" (FoMV3). The virus was isolated from diseased muskmelon plants with the typical symptom of fusarium wilt. The complete genome of FoMV3 is 2269 nt in length with a predicted AU content of 61.40% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a polypeptide of 679 amino acids (aa) containing a conserved RNA-dependent RNA polymerase (RdRp) domain with a molecular mass of 77.39 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5'-untranslated region (UTR) and 3'-UTR of FoMV3 were predicted to fold into stem-loop structures. BLASTp analysis revealed that the RdRp of FoMV3 shared the highest aa sequence identity (83.85%) with that of Fusarium asiaticum mitovirus 5 (FaMV5, a member of the family Mitoviridae) infecting F. asiaticum, the causal agent of wheat fusarium head blight. Phylogenetic analysis further suggested that FoMV3 is a new member of the genus Unuamitovirus within the family Mitoviridae. This is the first report of a new mitovirus associated with F. oxysporum f. sp. melonis.


Asunto(s)
Virus Fúngicos , Fusarium , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , Fusarium/virología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Virus Fúngicos/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , Virus ARN/clasificación , Secuenciación Completa del Genoma , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Cucumis melo/virología , Cucumis melo/microbiología , Secuencia de Aminoácidos , Regiones no Traducidas 5' , Regiones no Traducidas 3' , Secuencia de Bases
2.
Arch Virol ; 169(5): 105, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637359

RESUMEN

In this study, we identified a novel double-strand RNA (dsRNA) mycovirus in Pyricularia oryzae, designated "Magnaporthe oryzae partitivirus 4" (MoPV4). The genome of MoPV4 consists of a dsRNA-1 segment encoding an RNA-dependent RNA polymerase (RdRP) and a dsRNA-2 segment encoding a capsid protein (CP). Phylogenetic analysis indicated that MoPV4 belongs to the genus Gammapartitivirus within family Partitiviridae. The particles of MoPV4 are isometric with a diameter of about 32.4 nm. Three-dimensional structure predictions indicated that the RdRP of MoPV4 forms a classical right-handed conformation, while the CP has a reclining-V shape.


Asunto(s)
Ascomicetos , Virus Fúngicos , Virus ARN , ARN Viral/genética , Filogenia , Virus ARN/genética , Proteínas de la Cápside/genética , ARN Polimerasa Dependiente del ARN/genética , Genoma Viral , Virus Fúngicos/genética , ARN Bicatenario/genética , Sistemas de Lectura Abierta
3.
Arch Virol ; 169(5): 110, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664287

RESUMEN

Advancements in high-throughput sequencing and the development of new bioinformatics tools for large-scale data analysis play a crucial role in uncovering virus diversity and enhancing our understanding of virus evolution. The discovery of the ormycovirus clades, a group of RNA viruses that are phylogenetically distinct from all known Riboviria members and are found in fungi, highlights the value of these tools for the discovery of novel viruses. The aim of this study was to examine viral populations in fungal hosts to gain insights into the diversity, evolution, and classification of these viruses. Here, we report the molecular characterization of a newly discovered ormycovirus, which we have named "Hortiboletus rubellus ormycovirus 1" (HrOMV1), that was found in the ectomycorrhizal fungus Hortiboletus rubellus. The bipartite genome of HrOMV1, whose nucleotide sequence was determined by HTS and RLM-RACE, consists of two RNA segments (RNA1 and RNA2) that exhibit similarity to those of previously studied ormycoviruses in their organization and the proteins they encode. The presence of upstream, in-frame AUG triplets in the 5' termini of both RNA segments suggests that HrOMV1, like certain other ormycoviruses, employs a non-canonical translation initiation strategy. Phylogenetic analysis showed that HrOMV1 is positioned within the gammaormycovirus clade. Its putative RNA-dependent RNA polymerase (RdRp) exhibits sequence similarity to those of other gammaormycovirus members, the most similarity to that of Termitomyces ormycovirus 1, with 33.05% sequence identity. This protein was found to contain conserved motifs that are crucial for RNA replication, including the distinctive GDQ catalytic triad observed in gammaormycovirus RdRps. The results of this study underscore the significance of investigating the ecological role of mycoviruses in mycorrhizal fungi. This is the first report of an ormycovirus infecting a member of the ectomycorrhizal genus Hortiboletus.


Asunto(s)
Genoma Viral , Micorrizas , Filogenia , Virus ARN , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Micorrizas/genética , Micorrizas/virología , Virus Fúngicos/genética , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , ARN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas Virales/genética , Sistemas de Lectura Abierta , Secuencia de Bases
4.
Viruses ; 16(4)2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675938

RESUMEN

Macrofungi play important roles in the soil elemental cycle of terrestrial ecosystems. Fungal viruses are common in filamentous fungi, and some of them can affect the growth and development of hosts. However, the composition and evolution of macrofungal viruses are understudied. In this study, ninety strains of Trametes versicolor, Coprinellus micaceus, Amanita strobiliformis, and Trametes hirsuta were collected in China. Four mixed pools were generated by combining equal quantities of total RNA from each strain, according to the fungal species, and then subjected to RNA sequencing. The sequences were assembled, annotated, and then used for phylogenetic analysis. Twenty novel viruses or viral fragments were characterized from the four species of macrofungi. Based on the phylogenetic analysis, most of the viral contigs were classified into ten viral families or orders: Barnaviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Fusariviridae, Hypoviridae, Totiviridae, Mitoviridae, Mymonaviridae, and Bunyavirales. Of these, ambi-like viruses with circular genomes were widely distributed among the studied species. Furthermore, the number and overall abundance of viruses in these four species of macrofungi (Basidiomycota) were found to be much lower than those in broad-host phytopathogenic fungi (Ascomycota: Sclerotinia sclerotiorum, and Botrytis cinerea). By employing metatranscriptomic analysis in this study, for the first time, we demonstrated the presence of multiple mycoviruses in Amanita strobiliformis, Coprinellus micaceus, Trametes hirsute, and Trametes versicolor, significantly contributing to research on mycoviruses in macrofungi.


Asunto(s)
Virus Fúngicos , Filogenia , Viroma , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Genoma Viral , China , Trametes/genética , Trametes/clasificación , Trametes/virología
5.
Viruses ; 16(4)2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38675949

RESUMEN

In a survey of mycoviruses in Fusarium species that cause sugarcane Pokkah boeng disease, twelve Fusarium strains from three Fusarium species (F. sacchari, F. andiyazi, and F. solani) were found to contain Fusarium sacchari hypovirus 1 (FsHV1), which we reported previously. The genomes of these variants range from 13,966 to 13,983 nucleotides, with 98.6% to 99.9% nucleotide sequence identity and 98.70% to 99.9% protein sequence similarity. Phylogenetic analysis placed these FsHV1 variants within the Alphahypovirus cluster of Hypoviridae. Intriguingly, no clear correlation was found between the geographic origin and host specificity of these viral variants. Additionally, six out of the twelve variants displayed segmental deletions of 1.5 to 1.8 kilobases, suggesting the existence of defective viral dsRNA. The presence of defective viral dsRNA led to a two-thirds reduction in the dsRNA of the wild-type viral genome, yet a tenfold increase in the total viral dsRNA content. To standardize virulence across natural strains, all FsHV1 strains were transferred into a single, virus-free Fusarium recipient strain, FZ06-VF, via mycelial fusion. Strains of Fusarium carrying FsHV1 exhibited suppressed pigment synthesis, diminished microspore production, and a marked decrease in virulence. Inoculation tests revealed varying capacities among different FsHV1 variants to modulate fungal virulence, with the strain harboring the FsHV1-FSA1 showing the lowest virulence, with a disease severity index (DSI) of 3.33, and the FsHV1-FS1 the highest (DSI = 17.66). The identification of highly virulent FsHV1 variants holds promise for the development of biocontrol agents for Pokkah boeng management.


Asunto(s)
Virus Fúngicos , Fusarium , Genoma Viral , Filogenia , Enfermedades de las Plantas , Fusarium/patogenicidad , Fusarium/genética , Fusarium/virología , Virulencia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Virus Fúngicos/genética , Virus Fúngicos/clasificación , Saccharum/virología , Saccharum/microbiología , ARN Viral/genética , Especificidad del Huésped
6.
Viruses ; 16(4)2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38675951

RESUMEN

Members of the genus Armillaria are widespread forest pathogens against which effective protection has not yet been developed. Due to their longevity and the creation of large-scale cloning of Armillaria individuals, the use of mycoviruses as biocontrol agents (BCAs) against these pathogens could be an effective alternative. This work describes the detection and characterization of viruses in Armillaria spp. collected in the Czech Republic through the application of stranded total RNA sequencing. A total of five single-stranded RNA viruses were detected in Armillaria ostoyae and A. cepistipes, including viruses of the family Tymoviridae and four viruses belonging to the recently described "ambivirus" group with a circular ambisense genome arrangement. Both hammerhead (HHRz) and hairpin (HpRz) ribozymes were detected in all the ambiviricot sequences. Armillaria viruses were compared through phylogenetic analysis and confirmed their specific host by direct RT-PCR. One virus appears to infect both Armillaria species, suggesting the occurrence of interspecies transmission in nature.


Asunto(s)
Armillaria , Virus Fúngicos , Genoma Viral , Filogenia , ARN Viral , República Checa , Armillaria/genética , Armillaria/virología , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , ARN Viral/genética , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ARN
7.
Arch Virol ; 169(4): 75, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38492088

RESUMEN

Fusarium oxysporum is a widespread plant pathogen that causes fusarium wilt and fusarium root rot in many economically significant crops. Here, a novel dsRNA virus tentatively named "Fusarium oxysporum virus 1" (FoV1) was identified in F. oxysporum strain 3S-18. The genome of FoV1 is 2,944 nucleotides (nt) in length and contains two non-overlapping open reading frames (ORF1 and 2). The larger of these, ORF2, encodes an RNA-dependent RNA polymerase (RdRp) of 590 amino acids with a molecular mass of 67.52 kDa. ORF1 encodes a putative nucleocapsid protein consisting of 134 amino acids with a molecular mass of 34.25 kDa. The RdRp domain of FoV1 shares 60.00% to 84.24% sequence identity with non-segmented dsRNA viruses. Phylogenetic analysis further suggested that FoV1 is a new member of the proposed genus "Unirnavirus" accommodating unclassified monopartite dsRNA viruses.


Asunto(s)
Virus Fúngicos , Fusarium , Virus ARN , Fusarium/genética , Virus ARN Bicatenario/genética , Filogenia , Genoma Viral , Virus Fúngicos/genética , ARN Polimerasa Dependiente del ARN/genética , Sistemas de Lectura Abierta , Hongos , Aminoácidos/genética , Virus ARN/genética , ARN Bicatenario/genética , ARN Viral/genética
8.
Arch Virol ; 169(4): 78, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517587

RESUMEN

Mycoviruses are viruses that infect fungi and oomycetes. They are widespread in all major groups of plant-pathogenic fungi and oomycetes. To date, only the full genome of dsRNA mycoviruses and the contigs of positive-sense single-stranded RNA (+ssRNA) mycoviruses have been reported in Ustilaginoidea virens, which is the notorious causal agent of rice false smut (RFS). Here, we report the molecular characterization of a novel +ssRNA mycovirus, Ustilaginoidea virens narnavirus 4 (UvNV4), isolated from U. virens strain Uv418. UvNV4 has a genome of 3,131 nucleotides (nt) and possesses an open reading frame (ORF) predicted to encode an RNA-dependent RNA polymerase (RdRp) of 1,017 amino acids (aa) sequence with a molecular mass of 116.6 kDa. BLASTp analysis revealed that the RdRp showed 50.34% aa sequence identity to that of the previously described Zhangzhou Narna tick virus 1. Phylogenetic analysis indicated that UvNV4 is closely related to members of the family Narnaviridae. Taken together, these results clearly demonstrate that UvNV4 is a novel +ssRNA virus infecting U. virens.


Asunto(s)
Virus Fúngicos , Hypocreales , Virus ARN , Filogenia , Genoma Viral , Hypocreales/genética , ARN Polimerasa Dependiente del ARN/genética , Sistemas de Lectura Abierta , ARN Viral/genética , Enfermedades de las Plantas/microbiología
9.
Arch Virol ; 169(4): 79, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519762

RESUMEN

A novel double-strand RNA (dsRNA) mycovirus, named "Colletotrichum fioriniae alternavirus1" (CfAV1), was isolated from the strain CX7 of Colletotrichum fioriniae, the causal agent of walnut anthracnose. The complete genome of CfAV1 is composed of three dsRNA segments: dsRNA1 (3528 bp), dsRNA2 (2485 bp), and dsRNA3 (2481 bp). The RNA-dependent RNA polymerase (RdRp) is encoded by dsRNA1, while both dsRNA2 and dsRNA3 encode hypothetical proteins. Based on multiple sequence alignments and phylogenetic analysis, CfAV1 is identified as a new member of the family Alternaviridae. This is the first report of an alternavirus that infects the phytopathogenic fungus C. fioriniae.


Asunto(s)
Colletotrichum , Virus Fúngicos , Virus ARN , Filogenia , Genoma Viral , Colletotrichum/genética , Alineación de Secuencia , ARN Bicatenario/genética , ARN Viral/genética , Sistemas de Lectura Abierta
10.
Toxins (Basel) ; 16(3)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38535797

RESUMEN

RNA viruses of the genera Ambivirus, Mitovirus, Sclerotimonavirus, and Partitivirus were found in a single isolate of Fusarium graminearum. The genomes of the mitovirus, sclerotimonavirus, and partitivirus were assigned to previously described viruses, whereas the ambivirus genome putatively represents a new species, named Fusarium graminearum ambivirus 1 (FgAV1). To investigate the effect of mycoviruses on the fungal phenotype, the spontaneous loss of mycoviruses during meiosis and the transmission of mycoviruses into a new strain via anastomosis were used to obtain isogenic F. graminearum strains both with and without mycoviruses. Notable effects observed in mycovirus-harboring strains were (i) the suppression of the synthesis of trichothecene mycotoxins and their precursor trichodiene, (ii) the suppression of the synthesis of the defense compound aurofusarin, (iii) the stimulation of the emission of 2-methyl-1-butanol and 3-methyl-1-butanol, and (iv) the increased attractiveness of fungal mycelia for fungivorous collembolans. The increased attractiveness of mycovirus-infected filamentous fungi to animal predators opens new perspectives on the ecological implications of the infection of fungi with viruses.


Asunto(s)
Virus Fúngicos , Fusarium , Micotoxinas , Tricotecenos , Animales
11.
Proc Natl Acad Sci U S A ; 121(12): e2319582121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483998

RESUMEN

The presence of viruses that spread to both plant and fungal populations in nature has posed intriguingly scientific question. We found a negative-strand RNA virus related to members of the family Phenuiviridae, named Valsa mali negative-strand RNA virus 1 (VmNSRV1), which induced strong hypovirulence and was prevalent in a population of the phytopathogenic fungus of apple Valsa canker (Valsa mali) infecting apple orchards in the Shaanxi Province of China. Intriguingly, VmNSRV1 encodes a protein with a viral cell-to-cell movement function in plant tissue. Mechanical leaf inoculation showed that VmNSRV1 could systemically infect plants. Moreover, VmNSRV1 was detected in 24 out of 139 apple trees tested in orchards in Shaanxi Province. Fungal inoculation experiments showed that VmNSRV1 could be bidirectionally transmitted between apple plants and V. mali, and VmNSRV1 infection in plants reduced the development of fungal lesions on leaves. Additionally, the nucleocapsid protein encoded by VmNSRV1 is associated with and rearranged lipid droplets in both fungal and plant cells. VmNSRV1 represents a virus that has adapted and spread to both plant and fungal hosts and shuttles between these two organisms in nature (phyto-mycovirus) and is potential to be utilized for the biocontrol method against plant fungal diseases. This finding presents further insights into the virus evolution and adaptation encompassing both plant and fungal hosts.


Asunto(s)
Ascomicetos , Virus Fúngicos , Malus , Micosis , Virus ARN , Ascomicetos/genética , Virus ARN/genética , Enfermedades de las Plantas/microbiología , Malus/metabolismo
12.
Virology ; 594: 110057, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38527381

RESUMEN

Gnomoniopsis castaneae is an ascomycetous fungus mainly known as a major pathogen of chestnut causing nut rots, although it is often found as an endophyte in chestnut tissues. To date, no virus has been reported as associated with to this fungus. Here, a collection of G. castaneae isolates from several European countries was screened to detect mycoviruses infecting the fungus: for the first time we report the identification and prevalence of mitovirus Gnomoniopsis castaneae mitovirus 1 (GcMV1) and the chrysovirus Gnomoniopsis castaneae chrysovirus 1 (GcCV1). Interestingly, we provide evidence supporting a putative horizontal gene transfer between members of the phyla Negarnaviricota and Duplornaviricota: a small putative protein of unknown function encoded on the RNA3 of GcCV1 (Chrysoviridae) has homologs in the genome of viruses of the family Mymonaviridae.


Asunto(s)
Ascomicetos , Virus Fúngicos , Virus ARN , Virus , Virus Fúngicos/genética , Virus ARN Bicatenario/genética , Transferencia de Gen Horizontal , Genoma Viral , Enfermedades de las Plantas , Filogenia , Virus ARN/genética , Virus/genética , ARN Viral/genética , ARN Bicatenario/genética
13.
Viruses ; 16(3)2024 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-38543721

RESUMEN

As a common disease, canker seriously affects the yield and quality of fragrant pear due to the lack of effective control measures. Some fungi have been reported to harbor rich reservoirs of viral resources, and some mycoviruses can be used as biocontrol agents against plant diseases. In this study, 199 isolates were obtained from diseased branches of fragrant pear in the main production areas of Xinjiang. Among them, 134 belonged to Valsa spp., identified using morphological and molecular biological techniques, in which V. mali was the dominant species. The mycoviruses in Valsa spp. were further identified using metatranscriptomic sequencing and RT-PCR. The results revealed that a total of seven mycoviruses were identified, belonging to Botourmiaviridae, Endornaviridae, Fusariviridae, Hypoviridae, Mitoviridae, and Narnaviridae, among which Phomopsis longicolla hypovirus (PlHV) was dominant in all the sample collection regions. The Cryphonectria hypovirus 3-XJ1 (CHV3-XJ1), Botourmiaviridae sp.-XJ1 (BVsp-XJ1), and Fusariviridae sp.-XJ1 (Fvsp-XJ1) were new mycoviruses discovered within the Valsa spp. More importantly, compared with those in the virus-free Valsa spp. strain, the growth rate and virulence of the VN-5 strain co-infected with PlHV and CHV3-XJ1 were reduced by 59% and 75%, respectively, and the growth rate and virulence of the VN-34 strain infected with PlHV were reduced by 42% and 55%, respectively. On the other hand, the horizontal transmission efficiency of PlHV decreased when PlHV was co-infected with CHV3-XJ1, indicating that PlHV and CHV3-XJ1 were antagonistic. In summary, the mycoviruses in Valsa spp. were identified in Xinjiang for the first time, and three of them were newly discovered mycoviruses, with two strains yielding good results. These results will offer potential biocontrol resources for managing pear canker disease and provide a theoretical basis for the control of fruit tree Valsa canker disease.


Asunto(s)
Ascomicetos , Virus Fúngicos , Phomopsis , Pyrus , Virus ARN , Virus Fúngicos/genética , Virus ARN/genética , Enfermedades de las Plantas/microbiología
14.
Viruses ; 16(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38543758

RESUMEN

Botryosphaeriaceae are fungi involved in the decay of various woody species, including the grapevine, leading to significant production losses. This fungal family is largely ubiquitous, and seven species of Botryosphaeriaceae have been identified in French vineyards, with variable levels of aggressiveness, both in vitro and in planta. Mycoviruses can impact the life traits of their fungal hosts, including aggressiveness, and are one of the factors influencing fungal pathogenicity. In this study, the RNA mycovirome of fifteen Botryosphaeriaceae isolates was characterized through the high-throughput sequencing of double-stranded RNA preparations from the respective samples. Eight mycoviruses were detected, including three potential novel species in the Narnaviridae family, as well as in the proposed Mycobunyaviridae and Fusagraviridae families. A large collection of Botryosphaeriaceae isolates was screened using RT-PCR assays specific for 20 Botryosphaeriaceae-infecting mycoviruses. Among the mycoviruses detected, some appeared to be specialists within a single host species, while others infected isolates belonging to multiple Botryosphaeriaceae species. This screening allowed us to conclude that one-third of the Botryosphaeriaceae isolates were infected by at least one mycovirus, and a significant proportion of isolates (43.5%) were found to be coinfected by several viruses, with very complex RNA mycoviromes for some N. parvum isolates.


Asunto(s)
Ascomicetos , Virus Fúngicos , Virus ARN , Humanos , Virus Fúngicos/genética , Enfermedades de las Plantas/microbiología , Filogenia , Virus ARN/genética , ARN Bicatenario/genética
15.
Virus Res ; 343: 199351, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38453057

RESUMEN

Talaromyces spp. have a worldwide distribution, are ecologically diverse and have been isolated from numerous different substrates. Talaromyces spp. are considered biotechnologically important due to their ability to produce a range of enzymes and pigments. Talaromyces pinophilus, belonging to genus Talaromyces and family Trichocomaceae, is known for producing several important bioactive metabolites. Here we report the isolation and characterisation of a partitivirus from T. pinophilus which we have nominated Talaromyces pinophilus partitivirus-1 (TpPV-1). TpPV-1 possesses a genome consisting of three double stranded (ds) RNA segments i.e., dsRNAs1-3, 1824 bp, 1638 bp and 1451 bp respectively, which are encapsidated in icosahedral particles 35 nm in diameter. Both dsRNA1 and dsRNA2 contain a single open reading frame (ORF) encoding respectively a 572 amino acid (aa) protein of 65 kDa and a 504 aa protein of 50 kDa. The third segment (dsRNA3) is potentially a satellite RNA. Phylogenetic analysis revealed that the TpPV-1 belongs to the family Partitiviridae in the proposed genus Zetapartitivirus. TpPV-1 infection decreases the mycelial growth rate of the host fungus and alters pigmentation as indicated by time course experiments performed on a range of different solid media comparing virus-infected and virus-free isogenic lines. This is the first report of mycovirus infection in T. pinophilus and may provide insights into understanding the effect of the mycovirus on the production of enzymes and pigments by the host fungus.


Asunto(s)
Virus Fúngicos , Virus ARN , Talaromyces , Talaromyces/genética , Talaromyces/metabolismo , Filogenia , ARN Bicatenario/metabolismo , Genoma Viral , ARN Viral/genética , ARN Viral/metabolismo , Sistemas de Lectura Abierta
16.
Viruses ; 16(2)2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38400029

RESUMEN

Chrysoviruses are isometric virus particles (35-50 nm in diameter) with a genome composed of double-stranded RNAs (dsRNA). These viruses belonged to the Chrysoviridae family, named after the first member isolated from Penicillium chrysogenum. Phylogenetic classification has divided the chrysoviruses into Alphachrysovirus and Betachrysovirus genera. Currently, these chrysoviruses have been found to infect many fungi, including Fusarium species, and cause changes in the phenotype and decline in the pathogenicity of the host. Thus, it is a microbial resource with great biocontrol potential against Fusarium species, causing destructive plant diseases and substantial economic losses. This review provides a comprehensive overview of three chrysovirus isolates (Fusarium graminearum virus 2 (FgV2), Fusarium graminearum virus-ch9 (FgV-ch9), and Fusarium oxysporum f. sp. dianthi mycovirus 1 (FodV1)) reported to decline the pathogenicity of Fusarium hosts. It also summarizes the recent studies on host response regulation, host RNA interference, and chrysovirus transmission. The information provided in the review will be a reference for analyzing the interaction of Fusarium species with chrysovirus and proposing opportunities for research on the biocontrol of Fusarium diseases. Finally, we present reasons for conducting further studies on exploring the interaction between chrysoviruses and Fusarium and improving the accumulation and transmission efficiency of these chrysoviruses.


Asunto(s)
Virus Fúngicos , Fusarium , Virus ARN , Filogenia , Hongos , Enfermedades de las Plantas/microbiología
17.
Arch Virol ; 169(3): 48, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365997

RESUMEN

Penicillium oxalicum, an important biocontrol fungus in China, has been a subject of extensive study due to its role in combating various pathogenic fungi. Despite the prevalence of mycoviruses with double-stranded (ds) RNA genomes in filamentous fungi, there has been no screening of mycoviruses in P. oxalicum. In this report, we describe the identification and characterization of a novel dsRNA virus isolated from P. oxalicum, designated as "Penicillium oxalicum partitivirus 1" (PoPV1). The genome of PoPV1 consists of two dsRNA segments, dsRNA1 (1,770 bp) and dsRNA2 (1,584 bp), each containing a single open reading frame (ORF): ORF1 and ORF2. Comparative analysis revealed that the RdRp and CP amino acid sequences of PoPV1 share the highest identity (89.18% and 73.97%, respectively) with those of Penicillium aurantiogriseum partitivirus 1 (PaPV1). Motif analysis based on RdRp amino acid sequences places PoPV1 in the genus Gammapartitivirus within the family Partitiviridae, with a distinctive motif VI (R/KV/ILGDD). Phylogenetic analysis further established a close relationship of PoPV1 to PaPV1, forming a unique clade among the gammapartitiviruses. Consequently, we propose that Penicillium oxalicum partitivirus 1 represents a new species in the genus Gammapartitivirus. This is the first report of a dsRNA virus in P. oxalicum.


Asunto(s)
Virus Fúngicos , Penicillium , Virus ARN , ARN Viral/genética , Filogenia , Genoma Viral , ARN Polimerasa Dependiente del ARN/genética , ARN Bicatenario/genética , Sistemas de Lectura Abierta
18.
Arch Virol ; 169(3): 42, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332318

RESUMEN

Beauveria bassiana Vuillemin is an entomopathogenic fungus that has been developed as a biological insecticide. B. bassiana can be infected by single or multiple mycoviruses, most of which are double-stranded RNA (dsRNA) viruses, while infections with single-stranded RNA (ssRNA) viruses, especially negative single-stranded RNA (-ssRNA) viruses, have been observed less frequently. In the present study, we sequenced and analyzed the complete genomes of two new different mycoviruses coinfecting a single B. bassiana strain: a -ssRNA virus which we have named "Beauveria bassiana negative-strand RNA virus 1" (BbNSRV1), and a dsRNA virus, which we have named "Beauveria bassiana orthocurvulavirus 1" (BbOCuV1). The genome of BbNSRV1 consists of a single segment of negative-sense, single-stranded RNA with a length of 6169 nt, containing a single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) with 1949 aa (220.1 kDa). BLASTx analysis showed that the RdRp had the highest sequence similarity (59.79%) to that of Plasmopara viticola lesion associated mononegaambi virus 2, a member of the family Mymonaviridae. This is the first report of a -ssRNA mycovirus infecting B. bassiana. The genome of BbOCuV1 consists of two dsRNA segments, 2164 bp and 1765 bp in length, respectively, with dsRNA1 encoding a protein with conserved RdRp motifs and 70.75% sequence identity to the putative RdRp of the taxonomically unassigned mycovirus Fusarium graminearum virus 5 (FgV5), and the dsRNA2 encoding a putative coat protein with sequence identity 64.26% to the corresponding protein of the FgV5. Phylogenetic analysis indicated that BbOCuV1 belongs to a taxonomically unassigned group of dsRNA mycoviruses related to members of the families Curvulaviridae and Partitiviridae. Hence, it might be the member of a new family that remains to be named and formally recognized.


Asunto(s)
Beauveria , Virus Fúngicos , Virus ARN , Virus , Humanos , Beauveria/genética , ARN Bicatenario/genética , Filogenia , Genoma Viral , Virus ARN/genética , Virus/genética , Virus ARN Bicatenario/genética , Virus Fúngicos/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Viral/genética , Sistemas de Lectura Abierta
19.
Methods Mol Biol ; 2771: 111-118, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285397

RESUMEN

Mycoviruses exist in all major groups of fungi. With the continuous development of science and technology, the methods of studying viruses are constantly updated, and progressively mycoviruses have been discovered where most of these viruses are RNA viruses. Therefore, double-stranded RNA has traditionally been used as the hallmark of RNA mycovirus detection. This report describes in detail the method of mycovirus identification using extraction of dsRNA. Besides, extraction of viral dsRNA, and the assembly methods of viral genome and identification of virus type are presented.


Asunto(s)
Virus Fúngicos , Virus Fúngicos/genética , ARN Bicatenario , Genoma Viral , Tecnología
20.
Methods Mol Biol ; 2751: 47-68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38265709

RESUMEN

The most important advances in our understanding of the viral life cycle, such as genome replication, packaging, transmission, and host interactions, have been made via the development of viral infectious full-length clones. Here, we describe the detailed protocols for the construction of an infectious clone derived from Botrytis virus F (BVF), a mycoflexivirus infecting the plant pathogenic fungus Botrytis cinerea, the determination of the complete sequence of the cloned mycovirus, the preparation of fungal protoplasts, and the transfection of protoplasts using transcripts derived from the BVF infectious clone.


Asunto(s)
Enfermedades Transmisibles , Virus Fúngicos , Botrytis , Genética Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...