Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Virol ; 98(6): e0050324, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38780245

RESUMEN

The henipaviruses, including Nipah virus (NiV) and Hendra virus (HeV), are biosafety level 4 (BSL-4) zoonotic pathogens that cause severe neurological and respiratory disease in humans. To study the replication machinery of these viruses, we developed robust minigenome systems that can be safely used in BSL-2 conditions. The nucleocapsid (N), phosphoprotein (P), and large protein (L) of henipaviruses are critical elements of their replication machinery and thus essential support components of the minigenome systems. Here, we tested the effects of diverse combinations of the replication support proteins on the replication capacity of the NiV and HeV minigenomes by exchanging the helper plasmids coding for these proteins among the two viruses. We demonstrate that all combinations including one or more heterologous proteins were capable of replicating both the NiV and HeV minigenomes. Sequence alignment showed identities of 92% for the N protein, 67% for P, and 87% for L. Notably, variations in amino acid residues were not concentrated in the N-P and P-L interacting regions implying that dissimilarities in amino acid composition among NiV and HeV polymerase complex proteins may not impact their interactions. The observed indiscriminate activity of NiV and HeV polymerase complex proteins is different from related viruses, which can support the replication of heterologous genomes only when the whole polymerase complex belongs to the same virus. This newly observed promiscuous property of the henipavirus polymerase complex proteins likely attributed to their conserved interaction regions could potentially be harnessed to develop universal anti-henipavirus antivirals.IMPORTANCEGiven the severity of disease induced by Hendra and Nipah viruses in humans and the continuous emergence of new henipaviruses as well as henipa-like viruses, it is necessary to conduct a more comprehensive investigation of the biology of henipaviruses and their interaction with the host. The replication of henipaviruses and the development of antiviral agents can be studied in systems that allow experiments to be performed under biosafety level 2 conditions. Here, we developed robust minigenome systems for the Nipah virus (NiV) and Hendra virus (HeV) that provide a convenient alternative for studying NiV and HeV replication. Using these systems, we demonstrate that any combination of the three polymerase complex proteins of NiV and HeV could effectively initiate the replication of both viral minigenomes, which suggests that the interaction regions of the polymerase complex proteins could be effective targets for universal and effective anti-henipavirus interventions.


Asunto(s)
Genoma Viral , Virus Nipah , Replicación Viral , Virus Nipah/genética , Virus Nipah/fisiología , Humanos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Virus Hendra/genética , Virus Hendra/metabolismo , Virus Hendra/fisiología , Animales , Henipavirus/genética , Henipavirus/metabolismo , Infecciones por Henipavirus/virología , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas de la Nucleocápside/metabolismo , Proteínas de la Nucleocápside/genética , Línea Celular
2.
Virulence ; 14(1): 2273684, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37948320

RESUMEN

Paramyxoviruses are a family of single-stranded negative-sense RNA viruses, many of which are responsible for a range of respiratory and neurological diseases in humans and animals. Among the most notable are the henipaviruses, which include the deadly Nipah (NiV) and Hendra (HeV) viruses, the causative agents of outbreaks of severe disease and high case fatality rates in humans and animals. NiV and HeV are maintained in fruit bat reservoirs primarily in the family Pteropus and spillover into humans directly or by an intermediate amplifying host such as swine or horses. Recently, non-chiropteran associated Langya (LayV), Gamak (GAKV), and Mojiang (MojV) viruses have been discovered with confirmed or suspected ability to cause disease in humans or animals. These viruses are less genetically related to HeV and NiV yet share many features with their better-known counterparts. Recent advances in surveillance of wild animal reservoir viruses have revealed a high number of henipaviral genome sequences distributed across most continents, and mammalian orders previously unknown to harbour henipaviruses. In this review, we summarize the current knowledge on the range of pathogenesis observed for the henipaviruses as well as their replication cycle, epidemiology, genomics, and host responses. We focus on the most pathogenic viruses, including NiV, HeV, LayV, and GAKV, as well as the experimentally non-pathogenic CedV. We also highlight the emerging threats posed by these and potentially other closely related viruses.


Asunto(s)
Quirópteros , Virus Hendra , Infecciones por Henipavirus , Virus Nipah , Animales , Humanos , Porcinos , Caballos , Virulencia , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/veterinaria , Virus Nipah/genética , Virus Hendra/genética , Brotes de Enfermedades
3.
Viruses ; 15(5)2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37243163

RESUMEN

The henipaviruses, Nipah virus (NiV), and Hendra virus (HeV) can cause fatal diseases in humans and animals, whereas Cedar virus is a nonpathogenic henipavirus. Here, using a recombinant Cedar virus (rCedV) reverse genetics platform, the fusion (F) and attachment (G) glycoprotein genes of rCedV were replaced with those of NiV-Bangladesh (NiV-B) or HeV, generating replication-competent chimeric viruses (rCedV-NiV-B and rCedV-HeV), both with and without green fluorescent protein (GFP) or luciferase protein genes. The rCedV chimeras induced a Type I interferon response and utilized only ephrin-B2 and ephrin-B3 as entry receptors compared to rCedV. The neutralizing potencies of well-characterized cross-reactive NiV/HeV F and G specific monoclonal antibodies against rCedV-NiV-B-GFP and rCedV-HeV-GFP highly correlated with measurements obtained using authentic NiV-B and HeV when tested in parallel by plaque reduction neutralization tests (PRNT). A rapid, high-throughput, and quantitative fluorescence reduction neutralization test (FRNT) using the GFP-encoding chimeras was established, and monoclonal antibody neutralization data derived by FRNT highly correlated with data derived by PRNT. The FRNT assay could also measure serum neutralization titers from henipavirus G glycoprotein immunized animals. These rCedV chimeras are an authentic henipavirus-based surrogate neutralization assay that is rapid, cost-effective, and can be utilized outside high containment.


Asunto(s)
Virus Hendra , Infecciones por Henipavirus , Virus Nipah , Humanos , Animales , Proteínas del Envoltorio Viral/genética , Virus Hendra/genética , Virus Nipah/genética , Glicoproteínas/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo
4.
Adv Exp Med Biol ; 1407: 175-190, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36920697

RESUMEN

The genus Henipavirus (HNV) includes two virulent infectious viruses, Nipah virus (NiV) and Hendra virus (HeV), which are the focus of considerable public health research efforts and have been classified as priority infectious diseases by the World Health Organization. Both viruses are high risk and should be handled in biosafety level 4 laboratories. Pseudotyped viruses containing the envelope proteins of HNV viruses have the same envelope protein structure as the authentic viruses; thus, they can mimic the receptor-binding and membrane fusion processes of authentic viruses with host cells and can be handled in biosafety level 2 laboratories. These characteristics enable pseudotyped viruses to be widely used in studies of viral infection mechanisms (packaging, budding, virus attachment, membrane fusion, viral entry, and glycosylation), inhibitory drug screening assays, and monoclonal antibody neutralization characteristics. This review will provide an overview of the progress of research concerning pseudotyped virus packaging systems for NiV and HeV.


Asunto(s)
Virus Hendra , Virus Nipah , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Pseudotipado Viral , Virus Hendra/genética , Virus Hendra/metabolismo , Virus Nipah/genética , Virus Nipah/metabolismo , Internalización del Virus
5.
Traffic ; 24(3): 146-157, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36479968

RESUMEN

The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.


Asunto(s)
Virus Hendra , Lyssavirus , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Ribosómico , Lyssavirus/genética , Lyssavirus/metabolismo , Ribosomas/metabolismo , Virus Hendra/genética , Virus Hendra/metabolismo , Factores de Transcripción
6.
Essays Biochem ; 66(7): 915-934, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36148633

RESUMEN

Measles, Nipah and Hendra viruses are severe human pathogens within the Paramyxoviridae family. Their non-segmented, single-stranded, negative-sense RNA genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that is the substrate used by the viral RNA-dependent-RNA-polymerase (RpRd) for transcription and replication. The RpRd is a complex made of the large protein (L) and of the phosphoprotein (P), the latter serving as an obligate polymerase cofactor and as a chaperon for N. Both the N and P proteins are enriched in intrinsically disordered regions (IDRs), i.e. regions devoid of stable secondary and tertiary structure. N possesses a C-terminal IDR (NTAIL), while P consists of a large, intrinsically disordered N-terminal domain (NTD) and a C-terminal domain (CTD) encompassing alternating disordered and ordered regions. The V and W proteins, two non-structural proteins that are encoded by the P gene via a mechanism of co-transcriptional edition of the P mRNA, are prevalently disordered too, sharing with P the disordered NTD. They are key players in the evasion of the host antiviral response and were shown to phase separate and to form amyloid-like fibrils in vitro. In this review, we summarize the available information on IDRs within the N, P, V and W proteins from these three model paramyxoviruses and describe their molecular partnership. We discuss the functional benefit of disorder to virus replication in light of the critical role of IDRs in affording promiscuity, multifunctionality, fine regulation of interaction strength, scaffolding functions and in promoting liquid-liquid phase separation and fibrillation.


Asunto(s)
Virus Hendra , Virus del Sarampión , Virus Nipah , Replicación Viral , Virus Hendra/genética , Virus Hendra/fisiología , Nucleoproteínas/química , Nucleoproteínas/genética , ARN , Virus del Sarampión/genética , Virus del Sarampión/fisiología , Virus Nipah/genética , Virus Nipah/fisiología
7.
Cell ; 185(14): 2523-2541.e30, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35738284

RESUMEN

Stem cell research endeavors to generate specific subtypes of classically defined "cell types." Here, we generate >90% pure human artery or vein endothelial cells from pluripotent stem cells within 3-4 days. We specified artery cells by inhibiting vein-specifying signals and vice versa. These cells modeled viral infection of human vasculature by Nipah and Hendra viruses, which are extraordinarily deadly (∼57%-59% fatality rate) and require biosafety-level-4 containment. Generating pure populations of artery and vein cells highlighted that Nipah and Hendra viruses preferentially infected arteries; arteries expressed higher levels of their viral-entry receptor. Virally infected artery cells fused into syncytia containing up to 23 nuclei, which rapidly died. Despite infecting arteries and occupying ∼6%-17% of their transcriptome, Nipah and Hendra largely eluded innate immune detection, minimally eliciting interferon signaling. We thus efficiently generate artery and vein cells, introduce stem-cell-based toolkits for biosafety-level-4 virology, and explore the arterial tropism and cellular effects of Nipah and Hendra viruses.


Asunto(s)
Virus Hendra , Virus Nipah , Células Madre Pluripotentes , Arterias , Células Endoteliales , Virus Hendra/genética , Humanos , Tropismo
8.
Proc Natl Acad Sci U S A ; 119(22): e2122769119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35617431

RESUMEN

Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic Henipaviruses (HNVs) responsible for recurrent outbreaks in humans and domestic species of highly fatal (50 to 95%) disease. A HeV variant (HeV-g2) of unprecedented genetic divergence has been identified in two fatally diseased horses, and in two flying fox species in regions of Australia not previously considered at risk for HeV spillover. Given the HeV-g2 divergence from HeV while retaining equivalent pathogenicity and spillover potential, understanding receptor usage and antigenic properties is urgently required to guide One Health biosecurity. Here, we show that the HeV-g2 G glycoprotein shares a conserved receptor tropism with prototypic HeV and that a panel of monoclonal antibodies recognizing the G and F glycoproteins potently neutralizes HeV-g2­ and HeV G/F­mediated entry into cells. We determined a crystal structure of the Fab fragment of the hAH1.3 antibody bound to the HeV G head domain, revealing an antigenic site associated with potent cross-neutralization of both HeV-g2 and HeV. Structure-guided formulation of a tetravalent monoclonal antibody (mAb) mixture, targeting four distinct G head antigenic sites, results in potent neutralization of HeV and HeV-g2 and delineates a path forward for implementing multivalent mAb combinations for postexposure treatment of HNV infections.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Virus Hendra , Fragmentos Fab de Inmunoglobulinas , Proteínas del Envoltorio Viral , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Cristalografía por Rayos X , Epítopos/química , Epítopos/genética , Virus Hendra/genética , Virus Hendra/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Pruebas de Neutralización , Profilaxis Posexposición , Dominios Proteicos , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología
9.
Emerg Infect Dis ; 28(5): 1043-1047, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35447052

RESUMEN

A novel Hendra virus variant, genotype 2, was recently discovered in a horse that died after acute illness and in Pteropus flying fox tissues in Australia. We detected the variant in flying fox urine, the pathway relevant for spillover, supporting an expanded geographic range of Hendra virus risk to horses and humans.


Asunto(s)
Quirópteros , Virus Hendra , Infecciones por Henipavirus , Animales , Australia/epidemiología , Virus Hendra/genética , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/veterinaria , Caballos
10.
J Mol Biol ; 434(10): 167551, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35317998

RESUMEN

To understand the dynamic interactions between the phosphoprotein (P) and the nucleoprotein (N) within the transcription/replication complex of the Paramyxoviridae and to decipher their roles in regulating viral multiplication, we characterized the structural properties of the C-terminal X domain (PXD) of Nipah (NiV) and Hendra virus (HeV) P protein. In crystals, isolated NiV PXD adopted a two-helix dimeric conformation, which was incompetent for binding its partners, but in complex with the C-terminal intrinsically disordered tail of the N protein (NTAIL), it folded into a canonical 3H bundle conformation. In solution, SEC-MALLS, SAXS and NMR spectroscopy experiments indicated that both NiV and HeV PXD were larger in size than expected for compact proteins of the same molecular mass and were in conformational exchange between a compact three-helix (3H) bundle and partially unfolded conformations, where helix α3 is detached from the other two. Some measurements also provided strong evidence for dimerization of NiV PXD in solution but not for HeV PXD. Ensemble modeling of experimental SAXS data and statistical-dynamical modeling reconciled all these data, yielding a model where NiV and HeV PXD exchanged between different conformations, and where NiV but not HeV PXD formed dimers. Finally, recombinant NiV comprising a chimeric P carrying HeV PXD was rescued and compared with parental NiV. Experiments carried out in cellula demonstrated that the replacement of PXD did not significantly affect the replication dynamics while caused a slight virus attenuation, suggesting a possible role of the dimerization of NiV PXD in viral replication.


Asunto(s)
Virus Hendra , Virus Nipah , Proteínas de la Nucleocápside , Fosfoproteínas , Proteínas Virales , Replicación Viral , Virus Hendra/genética , Virus Hendra/fisiología , Humanos , Virus Nipah/genética , Virus Nipah/fisiología , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Proteínas Virales/química , Proteínas Virales/genética , Difracción de Rayos X
11.
Emerg Infect Dis ; 28(3): 693-704, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35202527

RESUMEN

We identified and isolated a novel Hendra virus (HeV) variant not detected by routine testing from a horse in Queensland, Australia, that died from acute illness with signs consistent with HeV infection. Using whole-genome sequencing and phylogenetic analysis, we determined the variant had ≈83% nt identity with prototypic HeV. In silico and in vitro comparisons of the receptor-binding protein with prototypic HeV support that the human monoclonal antibody m102.4 used for postexposure prophylaxis and current equine vaccine will be effective against this variant. An updated quantitative PCR developed for routine surveillance resulted in subsequent case detection. Genetic sequence consistency with virus detected in grey-headed flying foxes suggests the variant circulates at least among this species. Studies are needed to determine infection kinetics, pathogenicity, reservoir-species associations, viral-host coevolution, and spillover dynamics for this virus. Surveillance and biosecurity practices should be updated to acknowledge HeV spillover risk across all regions frequented by flying foxes.


Asunto(s)
Quirópteros , Virus Hendra , Infecciones por Henipavirus , Enfermedades de los Caballos , Animales , Australia/epidemiología , Virus Hendra/genética , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/veterinaria , Enfermedades de los Caballos/epidemiología , Caballos , Filogenia , Vigilancia de Guardia
12.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36613842

RESUMEN

The Nipah and Hendra viruses (NiV and HeV) are biosafety level 4 human pathogens classified within the Henipavirus genus of the Paramyxoviridae family. In both NiV and HeV, the gene encoding the Phosphoprotein (P protein), an essential polymerase cofactor, also encodes the V and W proteins. These three proteins, which share an intrinsically disordered N-terminal domain (NTD) and have unique C-terminal domains (CTD), are all known to counteract the host innate immune response, with V and W acting by either counteracting or inhibiting Interferon (IFN) signaling. Recently, the ability of a short region within the shared NTD (i.e., PNT3) to form amyloid-like structures was reported. Here, we evaluated the relevance of each of three contiguous tyrosine residues located in a previously identified amyloidogenic motif (EYYY) within HeV PNT3 to the fibrillation process. Our results indicate that removal of a single tyrosine in this motif significantly decreases the ability to form fibrils independently of position, mainly affecting the elongation phase. In addition, we show that the C-terminal half of PNT3 has an inhibitory effect on fibril formation that may act as a molecular shield and could thus be a key domain in the regulation of PNT3 fibrillation. Finally, the kinetics of fibril formation for the two PNT3 variants with the highest and the lowest fibrillation propensity were studied by Taylor Dispersion Analysis (TDA). The results herein presented shed light onto the molecular mechanisms involved in fibril formation.


Asunto(s)
Virus Hendra , Infecciones por Henipavirus , Virus Nipah , Humanos , Virus Hendra/genética , Interferones/metabolismo , Inmunidad Innata
13.
Viruses ; 13(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34960622

RESUMEN

Hendra virus (HeV) is a zoonotic enveloped member of the family Paramyoxviridae. To successfully infect a host cell, HeV utilizes two surface glycoproteins: the attachment (G) protein to bind, and the trimeric fusion (F) protein to merge the viral envelope with the membrane of the host cell. The transmembrane (TM) region of HeV F has been shown to have roles in F protein stability and the overall trimeric association of F. Previously, alanine scanning mutagenesis has been performed on the C-terminal end of the protein, revealing the importance of ß-branched residues in this region. Additionally, residues S490 and Y498 have been demonstrated to be important for F protein endocytosis, needed for the proteolytic processing of F required for fusion. To complete the analysis of the HeV F TM, we performed alanine scanning mutagenesis to explore the residues in the N-terminus of this region (residues 487-506). In addition to confirming the critical roles for S490 and Y498, we demonstrate that mutations at residues M491 and L492 alter F protein function, suggesting a role for these residues in the fusion process.


Asunto(s)
Virus Hendra/genética , Infecciones por Henipavirus/virología , Fusión de Membrana , Proteínas Virales de Fusión/metabolismo , Alanina/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Membrana Celular/metabolismo , Chlorocebus aethiops , Endocitosis , Endosomas/metabolismo , Genes Reporteros , Virus Hendra/fisiología , Humanos , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Estabilidad Proteica , Células Vero , Proteínas Virales de Fusión/genética
14.
Virol J ; 18(1): 197, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34641882

RESUMEN

BACKGROUND: Hendra virus (HeV) has caused lethal disease outbreaks in humans and horses in Australia. Flying foxes are the wildlife reservoir from which the virus was first isolated in 1996. Following a heat stress mortality event in Australian flying foxes in 2013, a novel HeV variant was discovered. This study describes the subsequent surveillance of Australian flying foxes for this novel virus over a nine year period using qRT-PCR testing of tissues from flying foxes submitted primarily for Australian bat lyssavirus diagnosis. Genome sequencing and characterisation of the novel HeV variant was also undertaken. METHODS: Spleen and kidney samples harvested from flying fox carcasses were initially screened with two real-time qRT-PCR assays specific for the prototype HeV. Two additional qRT-PCR assays were developed specific for the HeV variant first detected in samples from a flying fox in 2013. Next-generation sequencing and virus isolation was attempted from selected samples to further characterise the new virus. RESULTS: Since 2013, 98 flying foxes were tested and 11 were positive for the new HeV variant. No samples were positive for the original HeV. Ten of the positive samples were from grey-headed flying foxes (GHFF, Pteropus poliocephalus), however this species was over-represented in the opportunistic sampling (83% of bats tested were GHFF). The positive GHFF samples were collected from Victoria and South Australia and one positive Little red flying fox (LRFF, Pteropus scapulatus) was collected from Western Australia. Immunohistochemistry confirmed the presence of henipavirus antigen, associated with an inflammatory lesion in cardiac blood vessels of one GHFF. Positive samples were sequenced and the complete genome was obtained from three samples. When compared to published HeV genomes, there was 84% sequence identity at the nucleotide level. Based on phylogenetic analyses, the newly detected HeV belongs to the HeV species but occupies a distinct lineage. We have therefore designated this virus HeV genotype 2 (HeV-g2). Attempts to isolate virus from PCR positive samples have not been successful. CONCLUSIONS: A novel HeV genotype (HeV-g2) has been identified in two flying fox species submitted from three states in Australia, indicating that the level of genetic diversity for HeV is broader than first recognised. Given its high genetic relatedness to HeV, HeV-g2 is a zoonotic pathogen.


Asunto(s)
Quirópteros , Virus Hendra , Infecciones por Henipavirus , Animales , Australia/epidemiología , Genotipo , Virus Hendra/genética , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/veterinaria , Caballos , Filogenia
15.
J Virol ; 94(14)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32321809

RESUMEN

Nipah virus (NiV) and Hendra virus (HeV), members of the Henipavirus genus in the Paramyxoviridae family, are recently emerged, highly lethal zoonotic pathogens. The NiV and HeV nonsegmented, negative-sense RNA genomes encode nine proteins, including the W protein. Expressed from the P gene through mRNA editing, W shares a common N-terminus with P and V but has a unique C-terminus. Expressed alone, W modulates innate immune responses by several mechanisms, and elimination of W from NiV alters the course of infection in experimentally infected ferrets. However, the specific host interactions that allow W to modulate innate immunity are incompletely understood. This study demonstrates that the NiV and HeV W proteins interact with all seven isoforms of the 14-3-3 family, regulatory molecules that preferentially bind phosphorylated target proteins to regulate a wide range of cellular functions. The interaction is dependent on the penultimate amino acid residue in the W sequence, a conserved, phosphorylated serine. The cocrystal structure of the W C-terminal binding motif with 14-3-3 provides only the second structure of a complex containing a mode III interactor, which is defined as a 14-3-3 interaction with a phosphoserine/phosphothreonine at the C-termini of the target protein. Transcriptomic analysis of inducible cell lines infected with an RNA virus and expressing either wild-type W or W lacking 14-3-3 binding, identifies new functions for W. These include the regulation of cellular metabolic processes, extracellular matrix organization, and apoptosis.IMPORTANCE Nipah virus (NiV) and Hendra virus (HeV), members of the Henipavirus genus, are recently emerged, highly lethal zoonotic pathogens that cause yearly outbreaks. NiV and HeV each encode a W protein that has roles in regulating host signaling pathways, including antagonism of the innate immune response. However, the mechanisms used by W to regulate these host responses are not clear. Here, characterization of the interaction of NiV and HeV W with 14-3-3 identifies modulation of 14-3-3-regulated host signaling pathways not previously associated with W, suggesting new avenues of research. The cocrystal structure of the NiV W:14-3-3 complex, as only the second structure of a 14-3-3 mode III interactor, provides further insight into this less-well-understood 14-3-3 binding motif.


Asunto(s)
Proteínas 14-3-3/metabolismo , Regulación de la Expresión Génica , Virus Hendra/metabolismo , Infecciones por Henipavirus/metabolismo , Virus Nipah/metabolismo , Proteínas Virales/metabolismo , Proteínas 14-3-3/genética , Células HEK293 , Virus Hendra/genética , Infecciones por Henipavirus/genética , Humanos , Virus Nipah/genética , Proteínas Virales/genética
16.
PLoS Pathog ; 16(3): e1008412, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32226041

RESUMEN

Bats are the natural reservoir host for a number of zoonotic viruses, including Hendra virus (HeV) which causes severe clinical disease in humans and other susceptible hosts. Our understanding of the ability of bats to avoid clinical disease following infection with viruses such as HeV has come predominantly from in vitro studies focusing on innate immunity. Information on the early host response to infection in vivo is lacking and there is no comparative data on responses in bats compared with animals that succumb to disease. In this study, we examined the sites of HeV replication and the immune response of infected Australian black flying foxes and ferrets at 12, 36 and 60 hours post exposure (hpe). Viral antigen was detected at 60 hpe in bats and was confined to the lungs whereas in ferrets there was evidence of widespread viral RNA and antigen by 60 hpe. The mRNA expression of IFNs revealed antagonism of type I and III IFNs and a significant increase in the chemokine, CXCL10, in bat lung and spleen following infection. In ferrets, there was an increase in the transcription of IFN in the spleen following infection. Liquid chromatography tandem mass spectrometry (LC-MS/MS) on lung tissue from bats and ferrets was performed at 0 and 60 hpe to obtain a global overview of viral and host protein expression. Gene Ontology (GO) enrichment analysis of immune pathways revealed that six pathways, including a number involved in cell mediated immunity were more likely to be upregulated in bat lung compared to ferrets. GO analysis also revealed enrichment of the type I IFN signaling pathway in bats and ferrets. This study contributes important comparative data on differences in the dissemination of HeV and the first to provide comparative data on the activation of immune pathways in bats and ferrets in vivo following infection.


Asunto(s)
Antígenos Virales/inmunología , Virus Hendra/inmunología , Infecciones por Henipavirus/inmunología , Inmunidad Celular , Inmunidad Innata , Pulmón/inmunología , Modelos Inmunológicos , Animales , Antígenos Virales/genética , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Quirópteros , Hurones , Virus Hendra/genética , Infecciones por Henipavirus/genética , Infecciones por Henipavirus/patología , Interferones/genética , Interferones/inmunología , Pulmón/patología , Pulmón/virología , Especificidad de la Especie
17.
Curr Mol Pharmacol ; 13(2): 108-125, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31657692

RESUMEN

BACKGROUND: Nipah virus (NiV) and Hendra virus (HeV) of genus Henipavirus are the deadliest zoonotic viruses, which cause severe respiratory ailments and fatal encephalitis in humans and other susceptible animals. The fatality rate for these infections had been alarmingly high with no approved treatment available to date. Viral attachment and fusion with host cell membrane is essential for viral entry and is the most essential event of viral infection. Viral attachment is mediated by interaction of Henipavirus attachment glycoprotein (G) with the host cell receptor: Ephrin B2/B3, while viral fusion and endocytosis are mediated by the combined action of both viral glycoprotein (G) and fusion protein (F). CONCLUSION: This review highlights the mechanism of viral attachment, fusion and also explains the basic mechanism and pathobiology of this infection in humans. The drugs and therapeutics used either experimentally or clinically against NiV and HeV infection have been documented and classified in detail. Some amino acid residues essential for the functionality of G and F proteins were also emphasized. Therapeutic designing to target and block these residues can serve as a promising approach in future drug development against NiV and HeV.


Asunto(s)
Antivirales/farmacología , Diseño de Fármacos , Virus Hendra/efectos de los fármacos , Virus Nipah/efectos de los fármacos , Animales , Virus Hendra/genética , Infecciones por Henipavirus/fisiopatología , Humanos , Virus Nipah/genética , Internalización del Virus/efectos de los fármacos
18.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31462574

RESUMEN

Hendra virus (HeV) is a zoonotic paramyxovirus that utilizes a trimeric fusion (F) protein within its lipid bilayer to mediate membrane merger with a cell membrane for entry. Previous HeV F studies showed that transmembrane domain (TMD) interactions are important for stabilizing the prefusion conformation of the protein prior to triggering. Thus, the current model for HeV F fusion suggests that modulation of TMD interactions is critical for initiation and completion of conformational changes that drive membrane fusion. HeV F constructs (T483C/V484C, V484C/N485C, and N485C/P486C) were generated with double cysteine substitutions near the N-terminal region of the TMD to study the effect of altered flexibility in this region. Oligomeric analysis showed that the double cysteine substitutions successfully promoted intersubunit disulfide bond formation in HeV F. Subsequent fusion assays indicated that the introduction of disulfide bonds in the mutants prohibited fusion events. Further testing confirmed that T483C/V484C and V484C/N485C were expressed at the cell surface at levels that would allow for fusion. Attempts to restore fusion with a reducing agent were unsuccessful, suggesting that the introduced disulfide bonds were likely buried in the membrane. Conformational analysis showed that T483C/V484C and V484C/N485C were able to bind a prefusion conformation-specific antibody prior to cell disruption, indicating that the introduced disulfide bonds did not significantly affect protein folding. This study is the first to report that TMD dissociation is required for HeV F fusogenic activity and strengthens our model for HeV fusion.IMPORTANCE The paramyxovirus Hendra virus (HeV) causes severe respiratory illness and encephalitis in humans. To develop therapeutics for HeV and related viral infections, further studies are needed to understand the mechanisms underlying paramyxovirus fusion events. Knowledge gained in studies of the HeV fusion (F) protein may be applicable to a broad span of enveloped viruses. In this study, we demonstrate that disulfide bonds introduced between the HeV F transmembrane domains (TMDs) block fusion. Depending on the location of these disulfide bonds, HeV F can still fold properly and bind a prefusion conformation-specific antibody prior to cell disruption. These findings support our current model for HeV membrane fusion and expand our knowledge of the TMD and its role in HeV F stability and fusion promotion.


Asunto(s)
Virus Hendra/metabolismo , Infecciones por Henipavirus/metabolismo , Proteínas Virales de Fusión/metabolismo , Secuencia de Aminoácidos/genética , Animales , Línea Celular , Chlorocebus aethiops , Virus Hendra/genética , Humanos , Fusión de Membrana/fisiología , Paramyxovirinae/metabolismo , Dominios Proteicos/genética , Pliegue de Proteína , Células Vero , Proteínas Virales de Fusión/genética , Internalización del Virus
19.
J Virol ; 93(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31217248

RESUMEN

Enveloped viruses utilize surface glycoproteins to bind and fuse with a target cell membrane. The zoonotic Hendra virus (HeV), a member of the family Paramyxoviridae, utilizes the attachment protein (G) and the fusion protein (F) to perform these critical functions. Upon triggering, the trimeric F protein undergoes a large, irreversible conformation change to drive membrane fusion. Previously, we have shown that the transmembrane (TM) domain of the F protein, separate from the rest of the protein, is present in a monomer-trimer equilibrium. This TM-TM association contributes to the stability of the prefusion form of the protein, supporting a role for TM-TM interactions in the control of F protein conformational changes. To determine the impact of disrupting TM-TM interactions, constructs expressing the HeV F TM with limited flanking sequences were synthesized. Coexpression of these constructs with HeV F resulted in dramatic reductions in the stability of F protein expression and fusion activity. In contrast, no effects were observed when the HeV F TM constructs were coexpressed with the nonhomologous parainfluenza virus 5 (PIV5) fusion protein, indicating a requirement for specific interactions. To further examine this, a TM peptide homologous to the PIV5 F TM domain was synthesized. Addition of the peptide prior to infection inhibited infection with PIV5 but did not significantly affect infection with human metapneumovirus, a related virus. These results indicate that targeted disruption of TM-TM interactions significantly impact viral fusion protein stability and function, presenting these interactions as a novel target for antiviral development.IMPORTANCE Enveloped viruses require virus-cell membrane fusion to release the viral genome and replicate. The viral fusion protein triggers from the pre- to the postfusion conformation, an essentially irreversible change, to drive membrane fusion. We found that small proteins containing the TM and a limited flanking region homologous to the fusion protein of the zoonotic Hendra virus reduced protein expression and fusion activity. The introduction of exogenous TM peptides may displace a TM domain, disrupting native TM-TM interactions and globally destabilizing the fusion protein. Supporting this hypothesis, we showed that a sequence-specific transmembrane peptide dramatically reduced viral infection in another enveloped virus model, suggesting a broader inhibitory mechanism. Viral fusion protein TM-TM interactions are important for protein function, and disruption of these interactions dramatically reduces protein stability.


Asunto(s)
Paramyxovirinae/metabolismo , Péptidos/farmacología , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética , Animales , Sitios de Unión/efectos de los fármacos , Chlorocebus aethiops , Virus Hendra/química , Virus Hendra/genética , Virus Hendra/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Virus de la Parainfluenza 5/química , Virus de la Parainfluenza 5/genética , Virus de la Parainfluenza 5/metabolismo , Paramyxovirinae/química , Paramyxovirinae/genética , Conformación Proteica/efectos de los fármacos , Dominios Proteicos/efectos de los fármacos , Estabilidad Proteica , Células Vero , Proteínas Virales de Fusión/efectos de los fármacos
20.
J Virol ; 93(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30971473

RESUMEN

Nipah and Hendra viruses (NiV and HeV) exhibit high lethality in humans and are biosafety level 4 (BSL-4) paramyxoviruses in the growing genus Henipavirus The attachment (G) and fusion (F) envelope glycoproteins are both required for viral entry into cells and for cell-cell fusion, which is pathognomonic of henipaviral infections. Here, we compared the fusogenic capacities between homologous and heterologous pairs of NiV and HeV glycoproteins. Importantly, to accurately measure their fusogenic capacities, as these depend on glycoprotein cell surface expression (CSE) levels, we inserted identical extracellular tags to both fusion (FLAG tags) or both attachment (hemagglutinin [HA] tags) glycoproteins. Importantly, these tags were placed in extracellular sites where they did not affect glycoprotein expression or function. NiV and HeV glycoproteins induced comparable levels of homologous HEK293T cell-cell fusion. Surprisingly, however, while the heterologous NiV F/HeV G (NF/HG) combination yielded a hypofusogenic phenotype, the heterologous HeV F/NiV G (HF/NG) combination yielded a hyperfusogenic phenotype. Pseudotyped viral entry levels primarily corroborated the fusogenic phenotypes of the glycoprotein pairs analyzed. Furthermore, we constructed G and F chimeras that allowed us to map the overall regions in G and F that contributed to these hyperfusogenic or hypofusogenic phenotypes. Importantly, the fusogenic phenotypes of the glycoprotein combinations negatively correlated with the avidities of F-G interactions, supporting the F/G dissociation model of henipavirus-induced membrane fusion, even in the context of heterologous glycoprotein pairs.IMPORTANCE The NiV and HeV henipaviruses are BSL-4 pathogens transmitted from bats. NiV and HeV often lead to human death and animal diseases. The formation of multinucleated cells (syncytia) is a hallmark of henipaviral infections and is caused by fusion of cells coordinated by interactions of the viral attachment (G) and fusion (F) glycoproteins. We found via various assays that viral entry and syncytium formation depend on the viral origin of the glycoproteins, with HeV F and NiV G promoting higher membrane fusion levels than their counterparts. This is important knowledge, since both viruses use the same bat vector species and potential coinfections of these or subsequent hosts may alter the outcome of disease.


Asunto(s)
Glicoproteínas/metabolismo , Virus Hendra/fisiología , Infecciones por Henipavirus/virología , Virus Nipah/fisiología , Fenotipo , Proteínas Virales de Fusión/fisiología , Células Gigantes/metabolismo , Glicoproteínas/genética , Células HEK293 , Virus Hendra/genética , Humanos , Fusión de Membrana , Virus Nipah/genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/fisiología , Proteínas Virales de Fusión/genética , Acoplamiento Viral , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...