Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
PLoS Pathog ; 20(6): e1012262, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38924060

RESUMEN

Viral haemorrhagic fevers (VHF) pose a significant threat to human health. In recent years, VHF outbreaks caused by Ebola, Marburg and Lassa viruses have caused substantial morbidity and mortality in West and Central Africa. In 2022, an Ebola disease outbreak in Uganda caused by Sudan virus resulted in 164 cases with 55 deaths. In 2023, a Marburg disease outbreak was confirmed in Equatorial Guinea and Tanzania resulting in over 49 confirmed or suspected cases; 41 of which were fatal. There are no clearly defined correlates of protection against these VHF, impeding targeted vaccine development. Any vaccine developed should therefore induce strong and preferably long-lasting humoral and cellular immunity against these viruses. Ideally this immunity should also cross-protect against viral variants, which are known to circulate in animal reservoirs and cause human disease. We have utilized two viral vectored vaccine platforms, an adenovirus (ChAdOx1) and Modified Vaccinia Ankara (MVA), to develop a multi-pathogen vaccine regime against three filoviruses (Ebola virus, Sudan virus, Marburg virus) and an arenavirus (Lassa virus). These platform technologies have consistently demonstrated the capability to induce robust cellular and humoral antigen-specific immunity in humans, most recently in the rollout of the licensed ChAdOx1-nCoV19/AZD1222. Here, we show that our multi-pathogen vaccines elicit strong cellular and humoral immunity, induce a diverse range of chemokines and cytokines, and most importantly, confers protection after lethal Ebola virus, Sudan virus and Marburg virus challenges in a small animal model.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Fiebre de Lassa , Virus Lassa , Enfermedad del Virus de Marburg , Marburgvirus , Animales , Ratones , Ebolavirus/inmunología , Virus Lassa/inmunología , Marburgvirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/inmunología , Fiebre de Lassa/inmunología , Fiebre de Lassa/prevención & control , Enfermedad del Virus de Marburg/inmunología , Enfermedad del Virus de Marburg/prevención & control , Vacunas Virales/inmunología , Humanos , Vacunación , Femenino , Anticuerpos Antivirales/inmunología , Inmunogenicidad Vacunal , Vacunas contra el Virus del Ébola/inmunología
2.
J Virol ; 98(6): e0057824, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38767352

RESUMEN

The mammarenavirus Lassa virus (LASV) causes the life-threatening hemorrhagic fever disease, Lassa fever. The lack of licensed medical countermeasures against LASV underscores the urgent need for the development of novel LASV vaccines, which has been hampered by the requirement for a biosafety level 4 facility to handle live LASV. Here, we investigated the efficacy of mRNA-lipid nanoparticle (mRNA-LNP)-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in mice. Two doses of LASgpc- or LCMnp-mRNA-LNP administered intravenously (i.v.) protected C57BL/6 mice from a lethal challenge with a recombinant (r) LCMV expressing a modified LASgpc (rLCMV/LASgpc2m) inoculated intracranially. Intramuscular (i.m.) immunization with two doses of LASgpc- or LCMnp-mRNA-LNP significantly reduced the viral load in C57BL/6 mice inoculated i.v. with rLCMV/LASgpc2m. High levels of viremia and lethality were observed in CBA mice inoculated i.v. with rLCMV/LASgpc2m, which were abrogated by i.m. immunization with two doses of LASgpc-mRNA-LNP. The protective efficacy of two i.m. doses of LCMnp-mRNA-LNP was confirmed in a lethal hemorrhagic disease model of FVB mice i.v. inoculated with wild-type rLCMV. In all conditions tested, negligible and high levels of LASgpc- and LCMnp-specific antibodies were detected in mRNA-LNP-immunized mice, respectively, but robust LASgpc- and LCMnp-specific CD8+ T cell responses were induced. Accordingly, plasma from LASgpc-mRNA-LNP-immunized mice did not exhibit neutralizing activity. Our findings and surrogate mouse models of LASV infection, which can be studied at a reduced biocontainment level, provide a critical foundation for the rapid development of mRNA-LNP-based LASV vaccines.IMPORTANCELassa virus (LASV) is a highly pathogenic mammarenavirus responsible for several hundred thousand infections annually in West African countries, causing a high number of lethal Lassa fever (LF) cases. Despite its significant impact on human health, clinically approved, safe, and effective medical countermeasures against LF are not available. The requirement of a biosafety level 4 facility to handle live LASV has been one of the main obstacles to the research and development of LASV countermeasures. Here, we report that two doses of mRNA-lipid nanoparticle-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of lymphocytic choriomeningitis virus (LCMV), a mammarenavirus genetically closely related to LASV, conferred protection to recombinant LCMV-based surrogate mouse models of lethal LASV infection. Notably, robust LASgpc- and LCMnp-specific CD8+ T cell responses were detected in mRNA-LNP-immunized mice, whereas no virus-neutralizing activity was observed.


Asunto(s)
Fiebre de Lassa , Virus Lassa , Virus de la Coriomeningitis Linfocítica , Nanopartículas , Vacunas Virales , Animales , Femenino , Ratones , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Glicoproteínas/inmunología , Glicoproteínas/genética , Fiebre de Lassa/prevención & control , Fiebre de Lassa/inmunología , Virus Lassa/inmunología , Virus Lassa/genética , Liposomas , Virus de la Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/genética , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Nucleoproteínas/inmunología , Nucleoproteínas/genética , ARN Mensajero/genética , ARN Mensajero/inmunología , Carga Viral , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
5.
Artículo en Inglés | PAHO | ID: pah-4527

RESUMEN

Two «new» virus infections, Marburg and Lassa fever, now constitute diseases of public health importance in several countries of Africa, especially West Africa. Lassa fever has an insidious onset, is initially difficult to diagnose, has «nonspecific» clinical symptoms which have been confused with yellow fever and typhoid, shows evidence of persistent infection, is tremendously contagious, has a high mortality rate, and in particular exhibits unusual nosocomial propensity. It has also been shown to be the cause of premature births and spontaneous abortions in pregnant women. The virus is transmitted by the respiratory route and by direct contact with contaminated materials. Persistent complement-fixing antibodies have been demonstrated in patients recovered from the disease. The causative agent, a member of the arenavirus group, is known to be enzootic in rodents, especially Mastomys natalensis (Au)


Asunto(s)
Virus Lassa/inmunología , Virus Lassa/aislamiento & purificación , Nigeria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA