Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Viruses ; 16(9)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39339896

RESUMEN

Begomoviruses, transmitted by the whitefly Bemisia tabaci, pose significant threats to global agriculture due to their severe impact on various crops. Among the satellite molecules associated with begomoviruses, betasatellites play a crucial role in enhancing disease severity and yield losses. The spread and association of these molecules with helper viruses in host plants are thus matters of concern. Here, we focus on the propagation of betasatellites and, more specifically, on their transfer between different helper viruses and hosts through vector transmission. Our results show that the cotton leaf curl Gezira betasatellite (CLCuGeB), initially acquired with its helper virus cotton leaf curl Gezira virus (CLCuGeV) from an okra plant, can be transmitted and assisted by a different helper virus, tomato yellow leaf curl virus (TYLCV), in a different host plant (tomato plant). The new association can be formed whether TYLCV and CLCuGeB encounter each other in a host plant previously infected with TYLCV or in whiteflies having acquired the different components separately. Our findings reveal two pathways by which betasatellites can be transferred between helper viruses and host plants and highlight the ability of betasatellites to spread in begomovirus-infected environments.


Asunto(s)
Begomovirus , ADN Satélite , Virus Helper , Hemípteros , Insectos Vectores , Enfermedades de las Plantas , Animales , Begomovirus/genética , Hemípteros/virología , Insectos Vectores/virología , Virus Helper/genética , Virus Helper/fisiología , Enfermedades de las Plantas/virología , ADN Satélite/genética , Solanum lycopersicum/virología , Abelmoschus/virología , Virus Satélites/genética
2.
Arch Virol ; 169(8): 162, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985350

RESUMEN

Using a high-throughput sequencing (HTS) approach, we report the discovery of a new alphasatellite identified in a winter barley plant collected in France in 2022 that was also infected by wheat dwarf virus (WDV). The presence of the satellite and of WDV was confirmed by several independent PCR assays, and the complete genome sequence was determined. The circular satellite genome is 1424 nt long and shows typical hallmarks of members of the subfamily Geminialphasatellitinae, including a replication-associated hairpin with a CAGTATTAC sequence and a Rep-encoding open reading frame (ORF). It also possesses a second ORF, embedded in a different frame within the Rep ORF, which is also observed in clecrusatellites and a few other members of the family Alphasatellitidae. Pairwise sequence comparisons and phylogenetic analysis showed that this satellite represents a novel species. Its closest relatives are in the genus Colecusatellite, but it likely represents a new genus given its divergence from other genera of the subfamily Geminialphasatellitinae. Given that WDV was the only virus observed in coinfection with the satellite, the name "wheat dwarf virus-associated alphasatellite" is proposed for this novel agent.


Asunto(s)
Genoma Viral , Hordeum , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , Francia , Hordeum/virología , Enfermedades de las Plantas/virología , Genoma Viral/genética , Geminiviridae/genética , Geminiviridae/clasificación , Geminiviridae/aislamiento & purificación , Virus Satélites/genética , Virus Satélites/clasificación , Virus Satélites/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892066

RESUMEN

In this paper, the characteristics of 40 so far described virophages-parasites of giant viruses-are given, and the similarities and differences between virophages and satellite viruses, which also, like virophages, require helper viruses for replication, are described. The replication of virophages taking place at a specific site-the viral particle factory of giant viruses-and its consequences are presented, and the defence mechanisms of virophages for giant virus hosts, as a protective action for giant virus hosts-protozoa and algae-are approximated. The defence systems of giant viruses against virophages were also presented, which are similar to the CRISPR/Cas defence system found in bacteria and in Archea. These facts, and related to the very specific biological features of virophages (specific site of replication, specific mechanisms of their defensive effects for giant virus hosts, defence systems in giant viruses against virophages), indicate that virophages, and their host giant viruses, are biological objects, forming a 'novelty' in biology.


Asunto(s)
Virus Gigantes , Virus Satélites , Virófagos , Replicación Viral , Virus Gigantes/genética , Virus Gigantes/fisiología , Virus Satélites/genética , Virófagos/genética , Silenciador del Gen
4.
Viruses ; 16(6)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38932261

RESUMEN

Begomoviruses have emerged as destructive pathogens of crops, particularly in the tropics and subtropics, causing enormous economic losses and threatening food security. Epidemics caused by begomoviruses have even spread in regions and crops that were previously free from these viruses. The most seriously affected crops include cassava; cotton; grain legumes; and cucurbitaceous, malvaceous, and solanaceous vegetables. Alphasatellites, betasatellites, and deltasatellites are associated with the diseases caused by begomoviruses, but begomovirus-betasatellite complexes have played significant roles in the evolution of begomoviruses, causing widespread epidemics in many economically important crops throughout the world. This article provides an overview of the evolution, distribution, and approaches used by betasatellites in the suppression of host plant defense responses and increasing disease severity.


Asunto(s)
Begomovirus , Productos Agrícolas , Enfermedades de las Plantas , Begomovirus/genética , Begomovirus/fisiología , Enfermedades de las Plantas/virología , Productos Agrícolas/virología , Virus Satélites/genética , Virus Satélites/fisiología , Virus Satélites/clasificación , Evolución Molecular , ADN Satélite/genética , Filogenia
5.
Appl Environ Microbiol ; 90(5): e0024624, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38597658

RESUMEN

Bacterial viruses (phages) are potent agents of lateral gene transfer and thus are important drivers of evolution. A group of mobile genetic elements, referred to as phage satellites, exploits phages to disseminate their own genetic material. Here, we isolated a novel member of the family Inoviridae, Shewanella phage Dolos, along with an autonomously replicating plasmid, pDolos. Dolos causes a chronic infection in its host Shewanella oneidensis by phage production with only minor effects on the host cell proliferation. When present, plasmid pDolos hijacks Dolos functions to be predominantly packaged into phage virions and released into the environment and, thus, acts as a phage satellite. pDolos can disseminate further genetic material encoding, e.g., resistances or fluorophores to host cells sensitive to Dolos infection. Given the rather simple requirements of a plasmid for takeover of an inovirus and the wide distribution of phages of this group, we speculate that similar phage-satellite systems are common among bacteria.IMPORTANCEPhage satellites are mobile genetic elements, which hijack phages to be transferred to other host cells. The vast majority of these phage satellites integrate within the host's chromosome, and they all carry remaining phage genes. Here, we identified a novel phage satellite, pDolos, which uses an inovirus for dissemination. pDolos (i) remains as an autonomously replicating plasmid within its host, (ii) does not carry recognizable phage genes, and (iii) is smaller than any other phage satellites identified so far. Thus, pDolos is the first member of a new class of phage satellites, which resemble natural versions of phagemids.


Asunto(s)
Plásmidos , Shewanella , Plásmidos/genética , Shewanella/virología , Shewanella/genética , Inovirus/genética , Virus Satélites/genética , Genoma Viral , Bacteriófagos/genética , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación
6.
Phytopathology ; 114(5): 1126-1136, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38451582

RESUMEN

Sugar beet (Beta vulgaris) is grown in temperate regions around the world as a source of sucrose used for natural sweetening. Sugar beet is susceptible to a number of viral diseases, but identification of the causal agent(s) under field conditions is often difficult due to mixtures of viruses that may be responsible for disease symptoms. In this study, the application of RNAseq to RNA extracted from diseased sugar beet roots obtained from the field and from greenhouse-reared plants grown in soil infested with the virus disease rhizomania (causal agent beet necrotic yellow vein virus; BNYVV) yielded genome-length sequences from BNYVV, as well as beet soil-borne virus (BSBV). The nucleotide identities of the derived consensus sequence of BSBV RNAs ranged from 99.4 to 96.7% (RNA1), 99.3 to 95.3% (RNA2), and 98.3 to 95.9% (RNA3) compared with published BSBV sequences. Based on the BSBV genome consensus sequence, clones of the genomic RNAs 1, 2, and 3 were obtained to produce RNA copies of the genome through in vitro transcription. Capped RNA produced from the clones was infectious when inoculated into leaves of Chenopodium quinoa and B. vulgaris, and extracts from transcript-infected C. quinoa leaves could infect sugar beet seedling roots through a vortex inoculation method. Subsequent exposure of these infected sugar beet seedling roots to aviruliferous Polymyxa betae, the protist vector of both BNYVV and BSBV, confirmed that BSBV derived from the infectious clones could be transmitted by the vector. Co-inoculation of BSBV synthetic transcripts with transcripts of a cloned putative satellite virus designated Beta vulgaris satellite virus 1A (BvSat1A) resulted in the production of lesions on leaves of C. quinoa similar to those produced by inoculation with BSBV alone. Nevertheless, accumulation of genomic RNA and the encoded protein of the satellite virus in co-inoculated leaves was readily detected on Northern and Western blots, respectively, whereas no accumulation of satellite virus products occurred when satellite virus RNA was inoculated alone. The predicted sequence of the detected protein encoded by BvSat1A bears hallmarks of coat proteins of other satellite viruses, and virions of a size consistent with a satellite virus were observed in samples testing positive for the virus. The results demonstrate that BSBV is a helper virus for the novel satellite virus BvSat1A.


Asunto(s)
Beta vulgaris , Enfermedades de las Plantas , Virus de Plantas , Virus Satélites , Beta vulgaris/virología , Enfermedades de las Plantas/virología , Virus Satélites/genética , Virus Satélites/fisiología , Virus de Plantas/genética , Virus de Plantas/fisiología , Virus Helper/genética , Virus Helper/fisiología , ARN Viral/genética , Raíces de Plantas/virología , Genoma Viral/genética , Microbiología del Suelo
7.
Am J Sports Med ; 52(5): 1336-1349, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38482805

RESUMEN

BACKGROUND: Restoration of osteochondral defects is critical, because osteoarthritis (OA) can arise. HYPOTHESIS: Overexpression of insulin-like growth factor 1 (IGF-1) via recombinant adeno-associated viral (rAAV) vectors (rAAV-IGF-1) would improve osteochondral repair and reduce parameters of early perifocal OA in sheep after 6 months in vivo. STUDY DESIGN: Controlled laboratory study. METHODS: Osteochondral defects were created in the femoral trochlea of adult sheep and treated with rAAV-IGF-1 or rAAV-lacZ (control) (24 defects in 6 knees per group). After 6 months in vivo, osteochondral repair and perifocal OA were assessed by well-established macroscopic, histological, and immunohistochemical scoring systems as well as biochemical and micro-computed tomography evaluations. RESULTS: Application of rAAV-IGF-1 led to prolonged (6 months) IGF-1 overexpression without adverse effects, maintaining a significantly superior overall cartilage repair, together with significantly improved defect filling, extracellular matrix staining, cellular morphology, and surface architecture compared with rAAV-lacZ. Expression of type II collagen significantly increased and that of type I collagen significantly decreased. Subchondral bone repair and tidemark formation were significantly improved, and subchondral bone plate thickness and subarticular spongiosa mineral density returned to normal. The OA parameters of perifocal structure, cell cloning, and matrix staining were significantly better preserved upon rAAV-IGF-1 compared with rAAV-lacZ. Novel mechanistic associations between parameters of osteochondral repair and OA were identified. CONCLUSION: Local rAAV-mediated IGF-1 overexpression enhanced osteochondral repair and ameliorated parameters of perifocal early OA. CLINICAL RELEVANCE: IGF-1 gene therapy may be beneficial in repair of focal osteochondral defects and prevention of perifocal OA.


Asunto(s)
Cartílago Articular , Factor I del Crecimiento Similar a la Insulina , Osteoartritis , Animales , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Dependovirus/genética , Terapia Genética , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/uso terapéutico , Osteoartritis/genética , Osteoartritis/terapia , Osteoartritis/metabolismo , Virus Satélites/genética , Virus Satélites/metabolismo , Ovinos/genética , Microtomografía por Rayos X
8.
Arch Virol ; 169(1): 10, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38093169

RESUMEN

A novel emaravirus, tentatively named "clematis yellow mottle associated virus" (CYMaV), was identified through transcriptome sequencing and RT-PCR analysis of yellow-mottled leaf samples from Clematis brevicaudata DC. The genome of CYMaV consists of five viral RNAs: RNA1 (6591 nucleotides, nt), RNA2 (1982 nt), RNA3a (1301 nt), RNA3b (1397 nt), and RNA4 (1192 nt). The 13-nt sequences at the 5'- and 3'-termini of the CYMaV RNAs are conserved and have reverse complementary, as typically seen in emaraviruses. The proteins encoded by CYMaV shared the highest amino acid sequence similarity with those of the unclassified Karaka Okahu purepure emaravirus (KOPV), with 60.2% identity in the RNA-dependent RNA polymerase (RdRp), 44.4% in the glycoprotein precursor, and 46.9% in the nucleocapsid protein. A phylogenetic tree based on amino acid sequences of the RdRp revealed that CYMaV is most closely related to KOPV and clusters with ChMaV (chrysanthemum mosaic-associated virus, LC576445) and PCLSaV (pear chlorotic leaf spot-associated virus, MK602177) in one distinct clade. Transmission electron microscopy observation of negatively stained samples from C. brevicaudata revealed spherical virus-like particles (VLPs) approximately 100 nm in diameter. Five primers, specific for each viral RNA, were used to detect CYMaV in 11 symptomatic and two asymptomatic C. brevicaudata samples, but the results failed to show a consistent association of viral infection with symptoms. CYMaV can be considered a putative new member in the genus Emaravirus, and this marks the first report of an emaravirus found infecting C. brevicaudata plants.


Asunto(s)
Clematis , Virus del Mosaico , Virus de Plantas , Virus ARN , Clematis/genética , Filogenia , Virus de Plantas/genética , Virus ARN/genética , ARN Viral/genética , Virus Satélites/genética , Virus del Mosaico/genética , ARN Polimerasa Dependiente del ARN/genética
9.
Biomed Res Int ; 2023: 8069559, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38058394

RESUMEN

Introduction: Trichomonas vaginalis genome is among the largest genome size and coding capacities. Combinations of gene duplications, transposon, repeated sequences, and lateral gene transfers (LGTs) have contributed to the unexpected large genomic size and diversity. This study is aimed at investigating genomic exchange and seeking for presence of the CRISPR CAS system as one of the possible mechanisms for some level of genetic exchange. Material and Methods. In this comparative analysis, 398 publicly available Trichomonas vaginalis complete genomes were investigated for the presence of CRISPR CAS. Spacer sequences were also analyzed for their origin using BLAST. Results: We identified a CRISPR CAS (Cas3). CRISPR spacers are highly similar to transposable genetic elements such as viruses of protozoan parasites, especially megavirals, some transposons, and, interestingly, papillomavirus and HIV-1 in a few cases. Discussion. There is a striking similarity between the prokaryotes/Archaean CRISPR and what we find as eukaryotic CRISPR. About 5-10% of the 398 T. vaginalis possess a CRISPR structure. Conclusion: According to sequences and their organization, we assume that these repeated sequences and spacer, along with their mentioned features, could be the eukaryotic homolog of prokaryotes and Archaean CRISPR systems and may involve in a process similar to the CRISPR function.


Asunto(s)
Trichomonas vaginalis , Trichomonas vaginalis/genética , Virus Satélites/genética , Sistemas CRISPR-Cas/genética , Células Eucariotas , Genómica , Archaea/genética , Elementos Transponibles de ADN
10.
ISME J ; 17(12): 2381-2388, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37907733

RESUMEN

Satellites are mobile genetic elements that are dependent upon the replication machinery of their helper viruses. Bacteriophages have provided many examples of satellite nucleic acids that utilize their helper morphogenic genes for propagation. Here we describe two novel satellite-helper phage systems, Mulch and Flayer, that infect Streptomyces species. The satellites in these systems encode for encapsidation machinery but have an absence of key replication genes, thus providing the first example of bacteriophage satellite viruses. We also show that codon usage of the satellites matches the tRNA gene content of the helpers. The satellite in one of these systems, Flayer, does not appear to integrate into the host genome, which represents the first example of a virulent satellite phage. The Flayer satellite has a unique tail adaptation that allows it to attach to its helper for simultaneous co-infection. These findings demonstrate an ever-increasing array of satellite strategies for genetic dependence on their helpers in the evolutionary arms race between satellite and helper phages.


Asunto(s)
Bacteriófagos , Streptomyces , Virus Satélites/genética , Streptomyces/genética , Virulencia , Virus Helper/genética , Bacteriófagos/genética
11.
J Extracell Vesicles ; 12(6): e12324, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37272896

RESUMEN

Adeno-associated virus (AAV) vector has shown multiple clinical breakthroughs, but its clinical implementation in inhaled gene therapy remains elusive due to difficulty in transducing lung airway cells. We demonstrate here AAV serotype 6 (AAV6) associated with extracellular vesicles (EVs) and secreted from vector-producing HEK-293 cells during vector preparation (EVAAV6) as a safe and highly efficacious gene delivery platform for inhaled gene therapy applications. Specifically, we discovered that EVAAV6 provided markedly enhanced reporter transgene expression in mucus-covered air-liquid interface (ALI) cultures of primary human bronchial and nasal epithelial cells as well as in mouse lung airways compared to standard preparations of AAV6 alone. Of note, AAV6 has been previously shown to outperform other clinically tested AAV serotypes, including those approved by the FDA for treating non-lung diseases, in transducing ALI cultures of primary human airway cells. We provide compelling experimental evidence that the superior performance of EVAAV6 is attributed to the ability of EV to facilitate mucus penetration and cellular entry/transduction of AAV6. The tight and stable linkage between AAV6 and EVs appears essential to exploit the benefits of EVs given that a physical mixture of individually prepared EVs and AAV6 failed to mediate EV-AAV6 interactions or to enhance gene transfer efficacy.


Asunto(s)
Vesículas Extracelulares , Virus Satélites , Ratones , Animales , Humanos , Virus Satélites/genética , Transducción Genética , Dependovirus/genética , Células HEK293
12.
Viruses ; 15(4)2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37113001

RESUMEN

Metagenomic next-generation sequencing (mNGS) has enabled the high-throughput multiplexed identification of sequences from microbes of potential medical relevance. This approach has become indispensable for viral pathogen discovery and broad-based surveillance of emerging or re-emerging pathogens. From 2015 to 2019, plasma was collected from 9586 individuals in Cameroon and the Democratic Republic of the Congo enrolled in a combined hepatitis virus and retrovirus surveillance program. A subset (n = 726) of the patient specimens was analyzed by mNGS to identify viral co-infections. While co-infections from known blood-borne viruses were detected, divergent sequences from nine poorly characterized or previously uncharacterized viruses were also identified in two individuals. These were assigned to the following groups by genomic and phylogenetic analyses: densovirus, nodavirus, jingmenvirus, bastrovirus, dicistrovirus, picornavirus, and cyclovirus. Although of unclear pathogenicity, these viruses were found circulating at high enough concentrations in plasma for genomes to be assembled and were most closely related to those previously associated with bird or bat excrement. Phylogenetic analyses and in silico host predictions suggested that these are invertebrate viruses likely transmitted through feces containing consumed insects or through contaminated shellfish. This study highlights the power of metagenomics and in silico host prediction in characterizing novel viral infections in susceptible individuals, including those who are immunocompromised from hepatitis viruses and retroviruses, or potentially exposed to zoonotic viruses from animal reservoir species.


Asunto(s)
Quirópteros , Coinfección , Virosis , Virus , Animales , Virus Satélites/genética , Metagenómica , Filogenia , Virus/genética , Retroviridae/genética , Virus de Hepatitis/genética , Insectos/genética , Secuenciación de Nucleótidos de Alto Rendimiento
13.
Mol Microbiol ; 119(4): 515-533, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36786209

RESUMEN

Satellite viruses are present across all domains of life, defined as subviral parasites that require infection by another virus for satellite progeny production. Phage satellites exhibit various regulatory mechanisms to manipulate phage gene expression to the benefit of the satellite, redirecting resources from the phage to the satellite, and often inhibiting phage progeny production. While small RNAs (sRNAs) are well documented as regulators of prokaryotic gene expression, they have not been shown to play a regulatory role in satellite-phage conflicts. Vibrio cholerae encodes the phage inducible chromosomal island-like element (PLE), a phage satellite, to defend itself against the lytic phage ICP1. Here, we use Hi-GRIL-seq to identify a complex RNA-RNA interactome between PLE and ICP1. Both inter- and intragenome RNA interactions were detected, headlined by the PLE sRNA, SviR. SviR is involved in regulating both PLE and ICP1 gene expression uniquely, decreasing ICP1 target translation and affecting PLE transcripts. The striking conservation of SviR across all known PLEs suggests the sRNA is deeply rooted in the PLE-ICP1 conflict and implicates sRNAs as unidentified regulators of gene expression in phage-satellite interactions.


Asunto(s)
Bacteriófagos , ARN Pequeño no Traducido , Vibrio cholerae , Bacteriófagos/metabolismo , Vibrio cholerae/genética , Virus Satélites/genética , Expresión Génica , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo
14.
Arch Virol ; 168(2): 58, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36617592

RESUMEN

Phellodendron-associated higre-like virus (PaHLV) was identified in Phellodendron amurense Rupr. in China. Three near-full-length sequences of the viral genomic RNAs (RNA1-RNA3) were first obtained by RNA-seq, and their complete sequences were then determined by RT-PCR, 5'-RACE, and 3'-RACE. RNA1-3 of PaHLV were determined to be 8,183, 3,062, and 3,998 nucleotides (nt) in length, respectively, excluding the poly(A) tail. All of the viral proteins encoded by PaHLV shared the highest amino acid sequence identity (44.8-78.1%) with the unclassified kitavirid pistachio virus X (PiVX, MT334618-MT334620) from Iranian pistachio. Sequence comparisons and phylogenetic analysis also showed PiVX to be the closest relative of PaHLV and supported their inclusion in the genus Higrevirus, family Kitaviridae. Thus, PaHLV is proposed to be a member of a new species in this genus, for which we suggest the binomial name "Higrevirus amur".


Asunto(s)
Phellodendron , Virus ARN , Filogenia , Irán , Virus ARN/genética , Virus Satélites/genética , China , ARN Viral/genética , Genoma Viral
15.
Arch Virol ; 168(1): 16, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36593371

RESUMEN

We determined the complete genome sequence of a new virus infecting Ecballium elaterium ('cohombrillo amargo') plants, a weed species common on the borders of cultivated fields in the Mediterranean region. The genome of this virus is composed of two molecules of monocistronic positive-sense RNA, 6,934 and 3,501 nucleotides in length, excluding their poly(A) tails. The highest amino acid sequence similarity (50 % identity) in the Pro-Pol core region encoded by RNA 1 was observed in the corresponding protein of strawberry latent ringspot virus. Based on pairwise comparisons and phylogenetic analysis, this virus, tentatively named "cohombrillo-associated virus" (CoAV), appears to be a member of a new species in the genus Stralarivirus (family Secoviridae), for which the name "Stralarivirus elaterii" is proposed. This new virus has different putative cleavage patterns from members of other species belonging to this genus.


Asunto(s)
Virus de Plantas , Secoviridae , Virus Satélites/genética , ARN Viral/genética , Filogenia , Virus de Plantas/genética , Genoma Viral , Enfermedades de las Plantas , Sistemas de Lectura Abierta
16.
Arch Virol ; 167(12): 2827-2831, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36175794

RESUMEN

A new negative-strand RNA (nsRNA) virus genome was discovered in Edgeworthia chrysantha Lindl. This virus, tentatively named "Edgeworthia chrysantha mosaic-associated virus" (ECMaV), has a bipartite genome that comprises (i) a nsRNA1, encoding the viral RNA-dependent RNA polymerase (RdRp), and (ii) an ambisense RNA2, coding for the putative movement protein (MP) and nucleocapsid protein (NP), with the open reading frames separated by a long AU-rich intergenic region (IR). Sequence comparisons and phylogenetic analysis showed that the RdRp is closely related to those of other recently discovered plant-infecting nsRNA viruses in the new genus Coguvirus and that ECMaV can be classified as a member of a novel species.


Asunto(s)
Virus del Mosaico , Virus ARN , Virus Satélites/genética , Filogenia , Genoma Viral , ARN Viral/genética , Virus ARN/genética , Virus del Mosaico/genética , Sistemas de Lectura Abierta , Enfermedades de las Plantas
17.
J Virol Methods ; 309: 114608, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36029900

RESUMEN

Pear chlorotic leaf spot associated virus (PCLSaV) belongs to the genus Emaravirus and possesses a genome composed of five negative-sense single-stranded RNA (-ssRNA) segments. This study developed a SYBR green-based reverse transcription quantitative PCR (RT-qPCR) assay for the detection of PCLSaV infecting pear trees. A set of two primers q5-F2/q5-R2 designed based on the viral RNA5 sequences showed high specificity and feasibility for PCLSaV detection. The standard curve was established. RT-qPCR assays showed that PCLSaV content was greatly higher in diseased branch and symptomatic leaf samples than that in un-diseased branch and asymptomatic leaf samples. The RT-qPCR was reliability in the detection of the virus in field and in-vitro cultured pear samples. This technique would be useful for the supervision of the viral disease and the certification of pear planting materials.


Asunto(s)
Pyrus , Virus ARN , Enfermedades de las Plantas , ARN , Virus ARN/genética , ARN Viral/genética , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virus Satélites/genética , Sensibilidad y Especificidad
18.
J Virol Methods ; 308: 114578, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35820624

RESUMEN

Grapevine leafroll disease (GLD) is one of the most economically important viral diseases of grapevines. GLD is caused by a complex of several ssRNA (+) viruses referred to as Grapevine leafroll-associated viruses (GLRaVs). To date, five different GLRaV species have been identified. One of those species, GLRaV-7, was first reported from a symptomless white-fruited wine grape cultivar from Albania. Since its discovery, GLRaV-7 has been reported from 14 countries. Although serological assays have been developed to detect GLRaV-7, commercially available antibodies produce high background signals making them unsuitable for regulatory testing. Furthermore, while molecular detection assays have been shown to be more sensitive when compared to the serological assays, published molecular assays, except the one Reverse Transcription-quantitaive Polymerase Chain Reaction (RT-qPCR) assay based on heat shock protein 70 homologue (HSP70h) gene, have been reported to be inadequate in detecting all reported isolates of GLRaV-7. Availability of multiple assays provides flexibility to diagnostic laboratories in cases where the chosen assay fails to detect a strain or an isolate of a pathogen due to variation in its targeted region or where additional confirmation of the results is required. In this study, we developed a sensitive and specific RT-qPCR assay, based on a region of p61 gene of GLRaV-7, which detected all available isolates.


Asunto(s)
Closteroviridae , Vitis , Closteroviridae/genética , Enfermedades de las Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa , Virus Satélites/genética
19.
Arch Virol ; 167(5): 1247-1256, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35344095

RESUMEN

Panicum mosaic virus (PMV), the type member of the genus Panicovirus in the family Tombusviridae, naturally infects switchgrass (Panicum virgatum L.). PMV and its molecular partner, satellite panicum mosaic virus (SPMV), interact synergistically in coinfected millets to exacerbate the disease phenotype and increase the accumulation of PMV compared to plants infected with PMV alone. In this study, we examined the reaction of switchgrass cvs. Summer and Kanlow to PMV and PMV+SPMV infections at 24°C and 32°C. Switchgrass cv. Summer was susceptible to PMV at both temperatures. In contrast, cv. Kanlow was tolerant to PMV at 24°C, but not at 32°C, suggesting that Kanlow harbors temperature-sensitive resistance to PMV. At 24°C, PMV was readily detected in inoculated leaves, but not in upper uninoculated leaves of Kanlow, suggesting that resistance to PMV was likely mediated by abrogation of long-distance virus transport. Coinfection by PMV and SPMV at 24°C and 32°C in cv. Summer, but not in Kanlow, caused increased symptomatic systemic infection and mild disease synergism with slightly increased PMV accumulation compared to plants infected with PMV alone. These data suggest that the interaction between PMV and SPMV in switchgrass is cultivar-dependent, manifested in Summer but not in Kanlow. However, co-inoculation of cv. Kanlow with PMV+SPMV caused an enhanced asymptomatic infection, suggesting a role of SPMV in enhancement of symptomless infection in a tolerant cultivar. These data suggest that enhanced asymptomatic infections in a virus-tolerant switchgrass cultivar could serve as a source of virus spread and play an important role in panicum mosaic disease epidemiology under field conditions. Our data reveal that the cultivar, coinfection with SPMV, and temperature influence the severity of symptoms elicited by PMV in switchgrass.


Asunto(s)
Coinfección , Panicum , Tombusviridae , Virus Satélites/genética , Temperatura , Tombusviridae/genética
20.
Viruses ; 14(2)2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35215816

RESUMEN

Alphasatellites, which encode only a replication-associated protein (alpha-Rep), are frequently found to be non-essential satellite components associated with begomovirus/betasatellite complexes, and their presence can modulate disease symptoms and/or viral DNA accumulation during infection. Our previous study has shown that there are three types of alphasatellites associated with begomovirus/betasatellite complexes in Yunnan province in China and they encode three corresponding types of alpha-Rep proteins. However, the biological functions of alpha-Reps remain poorly understood. In this study, we investigated the biological functions of alpha-Reps in post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) using 16c and 16-TGS transgenic Nicotiana benthamiana plants. Results showed that all the three types of alpha-Rep proteins were capable of suppressing the PTGS and reversing the TGS. Among them, the alpha-Rep of Y10DNA1 has the strongest PTGS and TGS suppressor activities. We also found that the alpha-Rep proteins were able to increase the accumulation of their helper virus during coinfection. These results suggest that the alpha-Reps may have a role in overcoming host defense, which provides a possible explanation for the selective advantage provided by the association of alphasatellites with begomovirus/betasatellite complexes.


Asunto(s)
Begomovirus/metabolismo , Enfermedades de las Plantas/virología , Virus Satélites/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Begomovirus/química , Begomovirus/genética , China , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/virología , Virus Satélites/química , Virus Satélites/genética , Alineación de Secuencia , Nicotiana/genética , Nicotiana/virología , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA