Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.248
Filtrar
1.
Nat Commun ; 15(1): 4148, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755149

RESUMEN

Cell plasticity theoretically extends to all possible cell types, but naturally decreases as cells differentiate, whereas injury-repair re-engages the developmental plasticity. Here we show that the lung alveolar type 2 (AT2)-specific transcription factor (TF), CEBPA, restricts AT2 cell plasticity in the mouse lung. AT2 cells undergo transcriptional and epigenetic maturation postnatally. Without CEBPA, both neonatal and mature AT2 cells reduce the AT2 program, but only the former reactivate the SOX9 progenitor program. Sendai virus infection bestows mature AT2 cells with neonatal plasticity where Cebpa mutant, but not wild type, AT2 cells express SOX9, as well as more readily proliferate and form KRT8/CLDN4+ transitional cells. CEBPA promotes the AT2 program by recruiting the lung lineage TF NKX2-1. The temporal change in CEBPA-dependent plasticity reflects AT2 cell developmental history. The ontogeny of AT2 cell plasticity and its transcriptional and epigenetic mechanisms have implications in lung regeneration and cancer.


Asunto(s)
Células Epiteliales Alveolares , Plasticidad de la Célula , Factor Nuclear Tiroideo 1 , Animales , Ratones , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/citología , Factor Nuclear Tiroideo 1/metabolismo , Factor Nuclear Tiroideo 1/genética , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Diferenciación Celular , Epigénesis Genética , Ratones Endogámicos C57BL , Lesión Pulmonar/patología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/genética , Regeneración , Virus Sendai/genética , Virus Sendai/fisiología , Proliferación Celular , Ratones Noqueados , Pulmón/metabolismo
2.
Front Immunol ; 15: 1370564, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711520

RESUMEN

There are considerable avenues through which currently licensed influenza vaccines could be optimized. We tested influenza vaccination in a mouse model with two adjuvants: Sendai virus-derived defective interfering (SDI) RNA, a RIG-I agonist; and an amphiphilic imidazoquinoline (IMDQ-PEG-Chol), a TLR7/8 agonist. The negatively charged SDI RNA was formulated into lipid nanoparticles (LNPs) facilitating direct delivery of SDI RNA to the cytosol, where RIG-I sensing induces inflammatory and type I interferon responses. We previously tested SDI RNA and IMDQ-PEG-Chol as standalone and combination adjuvants for influenza and SARS-CoV-2 vaccines. Here, we tested two different ionizable lipids, K-Ac7-Dsa and S-Ac7-Dog, for LNP formulations. The LNPs were incorporated with SDI RNA to determine its potential as a combination adjuvant with IMDQ-PEG-Chol by evaluating the host immune response to vaccination and infection in immunized BALB/c mice. Adjuvanticity of IMDQ-PEG-Chol with and without empty or SDI-loaded LNPs was validated with quadrivalent inactivated influenza vaccine (QIV), showing robust induction of antibody titers and T-cell responses. Depending on the adjuvant combination and LNP formulation, humoral and cellular vaccine responses could be tailored towards type 1 or type 2 host responses with specific cytokine profiles that correlated with the protective responses to viral infection. The extent of protection conferred by different vaccine/LNP/adjuvant combinations was tested by challenging mice with a vaccine-matched strain of influenza A virus A/Singapore/gp1908/2015 IVR-180 (H1N1). Groups that received either LNP formulated with SDI or IMDQ-PEG-Chol, or both, showed very low levels of viral replication in their lungs at 5 days post-infection (DPI). These studies provide evidence that the combination of vaccines with LNPs and/or adjuvants promote antigen-specific cellular responses that can contribute to protection upon infection. Interestingly, we observed differences in humoral and cellular responses to vaccination between different groups receiving K-Ac7-Dsa or S-Ac7-Dog lipids in LNP formulations. The differences were also reflected in inflammatory responses in lungs of vaccinated animals to infection, depending on LNP formulations. Therefore, this study suggests that the composition of the LNPs, particularly the ionizable lipid, plays an important role in inducing inflammatory responses in vivo, which is important for vaccine safety and to prevent adverse effects upon viral exposure.


Asunto(s)
Adyuvantes Inmunológicos , Vacunas contra la Influenza , Liposomas , Ratones Endogámicos BALB C , Nanopartículas , Infecciones por Orthomyxoviridae , Animales , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Ratones , Adyuvantes Inmunológicos/administración & dosificación , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Femenino , Lípidos , Vacunación/métodos , Adyuvantes de Vacunas , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Virus Sendai/inmunología , Gripe Humana/prevención & control , Gripe Humana/inmunología
3.
Folia Neuropathol ; 62(1): 32-46, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741435

RESUMEN

Human induced pluripotent stem cells (hiPSCs) are a potential source of somatic cells for cell therapies due to their ability to self-renew and differentiate into various cells of the body. To date, the clinical application of hiPSCs has been limited due to safety issues. The present study aims to standardize the safety procedure of the derivation of GMP-compliant induced pluripotent stem cell (iPSC) lines from human fibroblasts. The hiPSC lines were generated using the nonintegrative Sendai virus method to incorporate Yamanaka reprogramming factors (OCT3/4, SOX2, KLF4 and c-MYC) into cells. A constant temperature was maintained during the cell culture, including all stages of the culture after transduction with Sendai virus. Pluripotency was proved in six independently generated hiPSC lines from adult female (47 years old) and male (57 years old) donors' derived fibroblasts via alkaline phosphatase live (ALP) staining, qPCR, and immunocytochemistry. The hiPSC lines showed a gradual decrease in the presence of the virus with each subsequent passage, and this reduction was specific to the hiPSC line. The frequency and probability of chromosomal aberrations in hiPSCs were dependent on both the iPSC clone identity and sex of the donor. In summary, the generation of hiPSC for clinical applications requires safety standards application (biosafety protocol, quality control of hiPSC lines, viral and genetic integrity screening) from the first stages of the clonal selection of hiPSC from the same donor.


Asunto(s)
Células Madre Pluripotentes Inducidas , Factor 4 Similar a Kruppel , Virus Sendai , Humanos , Femenino , Masculino , Persona de Mediana Edad , Línea Celular , Fibroblastos , Diferenciación Celular/fisiología , Transducción Genética/métodos , Factores Sexuales
4.
Methods Mol Biol ; 2794: 121-140, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630225

RESUMEN

Induced pluripotent stem cells (iPSCs) are in vitro-derived cells capable of giving rise to several different cell types. The generation of iPSCs holds great promise for regenerative medicine and drug discovery research because it allows mature cells to be reprogrammed into a state of pluripotency. These highly versatile cells can then be induced to produce a variety of cell lineages and tissues by activating specific regulatory genes that drive their differentiation along distinct lineages. The great potential of these cells was recognized by Shinya Yamanaka who was awarded the 2012 Nobel Prize for the discovery of iPSCs. Following their discovery, various methods have now been developed for generating iPSCs. Here, we describe a method for deriving iPSCs from human dental pulp using Sendai virus vectors.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Virus Sendai/genética , Diferenciación Celular/genética , Linaje de la Célula , Descubrimiento de Drogas
5.
Stem Cell Res ; 76: 103358, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447455

RESUMEN

Parkinson's disease is a degenerative brain disorder characterized by dopamine neuronal degeneration and dopamine transporter loss. In this study, we generated an induced pluripotent stem cell (iPSC) line, KNIHi001-A, from the peripheral blood mononuclear cells (PBMCs) of a 76-year-old man with Parkinson's disease. The non-integrating Sendai virus was used to reprogram iPSCs. iPSCs exhibit pluripotent markers, a normal karyotype, viral clearance, and the ability to differentiate into the three germ layers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Masculino , Humanos , Anciano , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Parkinson/metabolismo , Leucocitos Mononucleares/metabolismo , Estratos Germinativos/metabolismo , Virus Sendai/genética , Reprogramación Celular , Diferenciación Celular/fisiología
6.
J Biol Chem ; 300(4): 107200, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508315

RESUMEN

Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity. Here, we revealed a nontranscriptional activity of IRF7 contributing to its antiviral functions. IRF7 interacted with the pro-inflammatory transcription factor NF-κB-p65 and inhibited the induction of inflammatory target genes. Using knockdown, knockout, and overexpression strategies, we demonstrated that IRF7 inhibited NF-κB-dependent inflammatory target genes, induced by virus infection or toll-like receptor stimulation. A mutant IRF7, defective in transcriptional activity, interacted with NF-κB-p65 and suppressed NF-κB-induced gene expression. A single-action IRF7 mutant, active in anti-inflammatory function, but defective in transcriptional activity, efficiently suppressed Sendai virus and murine hepatitis virus replication. We, therefore, uncovered an anti-inflammatory function for IRF7, independent of transcriptional activity, contributing to the antiviral response of IRF7.


Asunto(s)
Factor 7 Regulador del Interferón , FN-kappa B , Animales , Humanos , Ratones , Células HEK293 , Inflamación/genética , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/inmunología , FN-kappa B/genética , FN-kappa B/inmunología , Virus Sendai/fisiología , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/inmunología , Replicación Viral , Mutación , Regulación de la Expresión Génica/genética , Virus de la Hepatitis Murina/fisiología , Infecciones por Coronavirus/inmunología , Infecciones por Respirovirus/inmunología
7.
Stem Cell Res ; 76: 103355, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412659

RESUMEN

In this study, we have established human induced pluripotent stem cell (hiPSC) line, NIMHi010-A of a 42-year-old healthy donor. The iPSC line was generated from human dermal fibroblasts using Sendai viruses carrying reprogramming factors c-MYC, SOX2, KLF4, and OCT4 under a feeder-free culture system. The generated hiPSC line expressed typical pluripotency markers, displayed a normal karyotype, and demonstrated the potential to differentiate into the three germ layers. This hiPSC line will serve as a healthy control model for physiological processes and drug screening of Asian origin from Indian population.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Adulto , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Fibroblastos/metabolismo , Piel , Virus Sendai , Diferenciación Celular/fisiología , Reprogramación Celular
8.
Stem Cell Res ; 76: 103332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354648

RESUMEN

We established two iPSC lines starting from skin fibroblasts of two healthy individuals using Sendai-virus-based technique. The obtained iPSCs were characterized showing same STR profile as starting fibroblasts, normal karyotype, loss of stemness vectors, expression of stemness markers, both through real-time PCR and immunofluorescence, (OCT4, SOX2, TRA-1-60, NANOG and SSEA4) and in vitro differentiation into three germ layers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Virus Sendai/genética , Fibroblastos/metabolismo , Diferenciación Celular
9.
Emerg Microbes Infect ; 13(1): 2300463, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38164736

RESUMEN

One-quarter of the world's population is infected with Mycobacterium tuberculosis (Mtb). After initial exposure, more immune-competent persons develop asymptomatic latent tuberculosis infection (LTBI) but not active diseases, creates an extensive reservoir at risk of developing active tuberculosis. Previously, we constructed a novel recombinant Sendai virus (SeV)-vectored vaccine encoding two dominant antigens of Mtb, which elicited immune protection against acute Mtb infection. In this study, nine Mtb latency-associated antigens were screened as potential supplementary vaccine candidate antigens, and three antigens (Rv2029c, Rv2028c, and Rv3126c) were selected based on their immune-therapeutic effect in mice, and their elevated immune responses in LTBI human populations. Then, a recombinant SeV-vectored vaccine, termed SeV986A, that expresses three latency-associated antigens and Ag85A was constructed. In murine models, the doses, titers, and inoculation sites of SeV986A were optimized, and its immunogenicity in BCG-primed and BCG-naive mice were determined. Enhanced immune protection against the Mtb challenge was shown in both acute-infection and latent-infection murine models. The expression levels of several T-cell exhaustion markers were significantly lower in the SeV986A-vaccinated group, suggesting that the expression of latency-associated antigens inhibited the T-cell exhaustion process in LTBI infection. Hence, the multistage quarter-antigenic SeV986A vaccine holds considerable promise as a novel post-exposure prophylaxis vaccine against tuberculosis.


Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Humanos , Animales , Ratones , Tuberculosis Latente/prevención & control , Virus Sendai/genética , Vacuna BCG , Antígenos Bacterianos/genética , Tuberculosis/microbiología , Mycobacterium tuberculosis/genética , Vacunas Sintéticas/genética
10.
Stem Cell Res ; 75: 103318, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295749

RESUMEN

We generated PUMCi005-A, an induced pluripotent stem cell (iPSC) line, from dermal fibroblasts of a 32-year-old female Perrault syndrome patient with double heterozygous (794 G > A and 1181 G > A) mutations in the TWNK gene using Sendai viral delivery of OCT4, SOX2, KLF4, and c-MYC. The PUMCi005-A iPSC line carried the TWNK mutations, displayed typical iPSC morphology, expressed pluripotent stem cell markers, did not have integration of Sendai virus, and exhibited a normal karyotype and differentiation into three germ layers.


Asunto(s)
Disgenesia Gonadal 46 XX , Pérdida Auditiva Sensorineural , Células Madre Pluripotentes Inducidas , Femenino , Humanos , Adulto , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Pérdida Auditiva Sensorineural/metabolismo , Disgenesia Gonadal 46 XX/metabolismo , Diferenciación Celular/genética , Virus Sendai/genética , Mutación/genética , Fibroblastos/metabolismo
11.
Jpn J Infect Dis ; 77(1): 1-6, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38030267

RESUMEN

Many viruses require the cleavage-activation of membrane fusion proteins by host proteases in the course of infection. This knowledge is based on historical studies of Sendai virus in the 1970s. From the 1970s to the 1990s, avian influenza virus and Newcastle disease virus were studied, showing a clear link between virulence and the cleavage-activation of viral membrane fusion proteins (hemagglutinin and fusion proteins) by host proteases. In these viruses, cleavage of viral membrane fusion proteins by furin is the basis for their high virulence. Subsequently, from the 2000s to the 2010s, the importance of TMPRSS2 in activating the membrane fusion proteins of various respiratory viruses, including seasonal influenza viruses, was demonstrated. In late 2019, severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) emerged and caused a pandemic. The virus continues to mutate, producing variants that have caused global pandemics. The spike protein of SARS-CoV-2 is characterized by two cleavage sites, each of which is cleaved by furin and TMPRSS2 to achieve membrane fusion. SARS-CoV-2 variants exhibit altered sensitivity to these proteases. Thus, studying the cleavage-activation of membrane fusion proteins by host proteases is critical for understanding the ongoing pandemic and developing countermeasures against it.


Asunto(s)
COVID-19 , Furina , Animales , Humanos , Furina/metabolismo , SARS-CoV-2/genética , Virus Sendai/genética , Virus Sendai/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas de la Fusión de la Membrana , Internalización del Virus
12.
Stem Cell Res ; 74: 103280, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38134577

RESUMEN

We have successfully derived a novel human induced pluripotent stem cell (hiPSC) line using non-integrative Sendai virus. This hiPSC line was generated from a healthy male adult donor, aged 55, and subjected to thorough characterization and extensive quality control. The analysis confirmed the expression of undifferentiated stem cell markers, demonstrated the ability to differentiate into the three germ layers, and revealed the absence of any chromosomal abnormalities.


Asunto(s)
Células Madre Pluripotentes Inducidas , Adulto , Humanos , Masculino , Células Madre Pluripotentes Inducidas/metabolismo , Línea Celular , Leucocitos Mononucleares/metabolismo , Aberraciones Cromosómicas , Virus Sendai/genética , Diferenciación Celular , Reprogramación Celular
13.
Stem Cell Reports ; 19(1): 141-157, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38134923

RESUMEN

Although it is in its early stages, canine induced pluripotent stem cells (ciPSCs) hold great potential for innovative translational research in regenerative medicine, developmental biology, drug screening, and disease modeling. However, almost all ciPSCs were generated from fibroblasts, and available canine cell sources for reprogramming are still limited. Furthermore, no report is available to generate ciPSCs under feeder-free conditions because of their low reprogramming efficiency. Here, we reanalyzed canine pluripotency-associated genes and designed canine LIN28A, NANOG, OCT3/4, SOX2, KLF4, and C-MYC encoding Sendai virus vector, called 159cf. and 162cf. We demonstrated that not only canine fibroblasts but also canine urine-derived cells, which can be isolated using a noninvasive and straightforward method, were successfully reprogrammed with or without feeder cells. ciPSCs existed in undifferentiated states, differentiating into the three germ layers in vitro and in vivo. We successfully generated ciPSCs under feeder-free conditions, which can promote studies in veterinary and consequently human regenerative medicines.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Perros , Humanos , Reprogramación Celular/genética , Virus Sendai/genética , Factor 4 Similar a Kruppel , Células Nutrientes , Fibroblastos , Diferenciación Celular/genética
14.
Acta Biochim Biophys Sin (Shanghai) ; 55(10): 1582-1591, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37580950

RESUMEN

Retinoic acid-inducible gene I (RIG-I) is a cytosolic viral RNA receptor. Upon viral infection, the protein recognizes and then recruits adapter protein mitochondrial antiviral signaling (MAVS) protein, initiating the production of interferons and proinflammatory cytokines to establish an antiviral state. In the present study, we identify zinc finger protein 205 (ZNF205) which associates with RIG-I and promotes the Sendai virus (SeV)-induced antiviral innate immune response. Overexpression of ZNF205 facilitates interferon-beta (IFN-ß) introduction, whereas ZNF205 deficiency restricts its introduction. Mechanistically, the C-terminal zinc finger domain of ZNF205 interacts with the N-terminal tandem caspase recruitment domains (CARDs) of RIG-I; this interaction markedly promotes K63 ubiquitin-linked polyubiquitination of RIG-I, which is crucial for RIG-I activation. Thus, our results demonstrate that ZNF205 is a positive regulator of the RIG-I-mediated innate antiviral immune signaling pathway.


Asunto(s)
Inmunidad Innata , Transducción de Señal , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Inmunidad Innata/genética , Interferón beta/genética , Interferones/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Virus Sendai/inmunología
15.
Vopr Virusol ; 68(3): 215-227, 2023 07 06.
Artículo en Ruso | MEDLINE | ID: mdl-37436413

RESUMEN

INTRODUCTION: Intranasal vaccination using live vector vaccines based on non-pathogenic or slightly pathogenic viruses is the one of the most convenient, safe and effective ways to prevent respiratory infections, including COVID-19. Sendai virus is the best suited for this purpose, since it is respiratory virus and is capable of limited replication in human bronchial epithelial cells without causing disease. The aim of the work is to design and study the vaccine properties of recombinant Sendai virus, Moscow strain, expressing secreted receptor-binding domain of SARS-CoV-2 Delta strain S protein (RBDdelta) during a single intranasal immunization. MATERIALS AND METHODS: Recombinant Sendai virus carrying insertion of RBDdelta transgene between P and M genes was constructed using reverse genetics and synthetic biology methods. Expression of RBDdelta was analyzed by Western blot. Vaccine properties were studied in two models: Syrian hamsters and BALB/c mice. Immunogenicity was evaluated by ELISA and virus-neutralization assays. Protectiveness was assessed by quantitation of SARS-CoV-2 RNA in RT-PCR and histological analysis of the lungs. RESULTS: Based on Sendai virus Moscow strain, a recombinant Sen-RBDdelta(M) was constructed that expressed a secreted RBDdelta immunologically identical to natural SARS-CoV-2 protein. A single intranasal administration of Sen-RBDdelta(M) to hamsters and mice significantly, by 15 and 107 times, respectively, reduced replicative activity of SARS-CoV-2 in lungs of animals, preventing the development of pneumonia. An effective induction of virus-neutralizing antibodies has also been demonstrated in mice. CONCLUSION: Sen-RBDdelta(M) is a promising vaccine construct against SARS-CoV-2 infection and has a protective properties even after a single intranasal introduction.


Asunto(s)
COVID-19 , Vacunas Virales , Cricetinae , Humanos , Ratones , Animales , Respirovirus/genética , Virus Sendai/genética , Vacunas contra la COVID-19 , COVID-19/prevención & control , Paramyxoviridae/genética , Vacunas Virales/genética , Anticuerpos Antivirales , Administración Intranasal , Moscú , ARN Viral , SARS-CoV-2/genética , Anticuerpos Neutralizantes
16.
Stem Cell Res ; 70: 103133, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37307755

RESUMEN

Urine cells obtained from a 14-year-old man with genetically proven (ACVR1: c.6176G > A) and clinically manifested fibrodysplasia ossificans progressiva were successfully transformed into induced pluripotent stem cells by using Sendai virus-based reprogramming vectors including the four Yamanaka factors such as OCT3/4, SOX2, KLF4, and c-MYC. These iPSCs expressed pluripotency markers, exhibited the potential to differentiate into three germ layers in spontaneous differentiation assay and had a normal karyotype. The iPSC line may provide a model for development of a personalized treatment including genome editing and drug screening, may be used for disease modelling, cell differentiation and pharmacological investigations. .


Asunto(s)
Células Madre Pluripotentes Inducidas , Miositis Osificante , Masculino , Humanos , Adolescente , Células Madre Pluripotentes Inducidas/metabolismo , Miositis Osificante/metabolismo , Factor 4 Similar a Kruppel , Diferenciación Celular/genética , Virus Sendai/genética , Reprogramación Celular
17.
Cell Transplant ; 32: 9636897221107009, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37088987

RESUMEN

One of the challenges in clinical translation of cell-replacement therapies is the definition of optimal cell generation and storage/recovery protocols which would permit a rapid preparation of cell-treatment products for patient administration. Besides, the availability of injection devices that are simple to use is critical for potential future dissemination of any spinally targeted cell-replacement therapy into general medical practice. Here, we compared the engraftment properties of established human-induced pluripotent stem cells (hiPSCs)-derived neural precursor cell (NPCs) line once cells were harvested fresh from the cell culture or previously frozen and then grafted into striata or spinal cord of the immunodeficient rat. A newly developed human spinal injection device equipped with a spinal cord pulsation-cancelation magnetic needle was also tested for its safety in an adult immunosuppressed pig. Previously frozen NPCs showed similar post-grafting survival and differentiation profile as was seen for freshly harvested cells. Testing of human injection device showed acceptable safety with no detectable surgical procedure or spinal NPCs injection-related side effects.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Inyecciones Espinales , Células-Madre Neurales , Trasplante de Células Madre , Adulto , Animales , Humanos , Ratas , Diferenciación Celular/fisiología , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Vectores Genéticos/genética , Supervivencia de Injerto/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/trasplante , Inyecciones Espinales/efectos adversos , Inyecciones Espinales/instrumentación , Inyecciones Espinales/métodos , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Virus Sendai , Manejo de Especímenes/métodos , Trasplante de Células Madre/efectos adversos , Trasplante de Células Madre/instrumentación , Trasplante de Células Madre/métodos , Porcinos , Recolección de Tejidos y Órganos/métodos , Resultado del Tratamiento , Encéfalo , Médula Espinal
18.
J Virol ; 97(4): e0024523, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37017521

RESUMEN

Viruses constantly evolve and adapt to the antiviral defenses of their hosts. The biology of viral circumvention of these selective pressures can often be attributed to the acquisition of novel antagonistic gene products or by rapid genome change that prevents host recognition. To study viral evasion of RNA interference (RNAi)-based defenses, we established a robust antiviral system in mammalian cells using recombinant Sendai virus designed to be targeted by endogenous host microRNAs (miRNAs) with perfect complementarity. Using this system, we previously demonstrated the intrinsic ability of positive-strand RNA viruses to escape this selective pressure via homologous recombination, which was not observed in negative-strand RNA viruses. Here, we show that given extensive time, escape of miRNA-targeted Sendai virus was enabled by host adenosine deaminase acting on RNA 1 (ADAR1). Independent of the viral transcript targeted, ADAR1 editing resulted in disruption of the miRNA-silencing motif, suggesting an intolerance for extensive RNA-RNA interactions necessary for antiviral RNAi. This was further supported in Nicotiana benthamiana, where exogenous expression of ADAR1 interfered with endogenous RNAi. Together, these results suggest that ADAR1 diminishes the effectiveness of RNAi and may explain why it is absent in species that utilize this antiviral defense system. IMPORTANCE All life at the cellular level has the capacity to induce an antiviral response. Here, we examine the result of imposing the antiviral response of one branch of life onto another and find evidence for conflict. To determine the consequences of eliciting an RNAi-like defense in mammals, we applied this pressure to a recombinant Sendai virus in cell culture. We find that ADAR1, a host gene involved in regulation of the mammalian response to virus, prevented RNAi-mediated silencing and subsequently allowed for viral replication. In addition, the expression of ADAR1 in Nicotiana benthamiana, which lacks ADARs and has an endogenous RNAi system, suppresses gene silencing. These data indicate that ADAR1 is disruptive to RNAi biology and provide insight into the evolutionary relationship between ADARs and antiviral defenses in eukaryotic life.


Asunto(s)
Adenosina Desaminasa , Interacciones Microbiota-Huesped , MicroARNs , Interferencia de ARN , Infecciones por Respirovirus , Animales , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Antivirales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Replicación Viral/genética , Virus Sendai/clasificación , Silenciador del Gen , Humanos , Mutación , Sistemas de Lectura Abierta , Evolución Biológica , Interacciones Microbiota-Huesped/genética , Infecciones por Respirovirus/metabolismo , Infecciones por Respirovirus/virología
19.
Cell Transplant ; 32: 9636897231163232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959733

RESUMEN

The critical requirements in developing clinical-grade human-induced pluripotent stem cells-derived neural precursors (hiPSCs-NPCs) are defined by expandability, genetic stability, predictable in vivo post-grafting differentiation, and acceptable safety profile. Here, we report on the use of manual-selection protocol for generating expandable and stable human NPCs from induced pluripotent stem cells. The hiPSCs were generated by the reprogramming of peripheral blood mononuclear cells with Sendai-virus (SeV) vector encoding Yamanaka factors. After induction of neural rosettes, morphologically defined NPC colonies were manually harvested, re-plated, and expanded for up to 20 passages. Established NPCs showed normal karyotype, expression of typical NPCs markers at the proliferative stage, and ability to generate functional, calcium oscillating GABAergic or glutamatergic neurons after in vitro differentiation. Grafted NPCs into the striatum or spinal cord of immunodeficient rats showed progressive maturation and expression of early and late human-specific neuronal and glial markers at 2 or 6 months post-grafting. No tumor formation was seen in NPCs-grafted brain or spinal cord samples. These data demonstrate the effective use of in vitro manual-selection protocol to generate safe and expandable NPCs from hiPSCs cells. This protocol has the potential to be used to generate GMP (Good Manufacturing Practice)-grade NPCs from hiPSCs for future clinical use.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Humanos , Ratas , Animales , Virus Sendai/genética , Leucocitos Mononucleares , Neuronas/metabolismo , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...