Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 635
Filtrar
1.
PLoS Pathog ; 20(5): e1011652, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768256

RESUMEN

The year 2022 was marked by the mpox outbreak caused by the human monkeypox virus (MPXV), which is approximately 98% identical to the vaccinia virus (VACV) at the sequence level with regard to the proteins involved in DNA replication. We present the production in the baculovirus-insect cell system of the VACV DNA polymerase holoenzyme, which consists of the E9 polymerase in combination with its co-factor, the A20-D4 heterodimer. This led to the 3.8 Å cryo-electron microscopy (cryo-EM) structure of the DNA-free form of the holoenzyme. The model of the holoenzyme was constructed from high-resolution structures of the components of the complex and the A20 structure predicted by AlphaFold 2. The structures do not change in the context of the holoenzyme compared to the previously determined crystal and NMR structures, but the E9 thumb domain became disordered. The E9-A20-D4 structure shows the same compact arrangement with D4 folded back on E9 as observed for the recently solved MPXV holoenzyme structures in the presence and the absence of bound DNA. A conserved interface between E9 and D4 is formed by a cluster of hydrophobic residues. Small-angle X-ray scattering data show that other, more open conformations of E9-A20-D4 without the E9-D4 contact exist in solution using the flexibility of two hinge regions in A20. Biolayer interferometry (BLI) showed that the E9-D4 interaction is indeed weak and transient in the absence of DNA although it is very important, as it has not been possible to obtain viable viruses carrying mutations of key residues within the E9-D4 interface.


Asunto(s)
Microscopía por Crioelectrón , ADN Polimerasa Dirigida por ADN , Virus Vaccinia , Virus Vaccinia/enzimología , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Holoenzimas/química , Holoenzimas/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Animales , Humanos , Modelos Moleculares , Conformación Proteica , Cristalografía por Rayos X
2.
Nucleic Acids Res ; 51(6): e34, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36731515

RESUMEN

The potential of synthetic mRNA as a genetic carrier has increased its application in scientific fields. Because the 5' cap regulates the stability and translational activity of mRNAs, there are concerted efforts to search for and synthesize chemically-modified 5' caps that improve the functionality of mRNA. Here, we report an easy and efficient method to synthesize functional mRNAs by modifying multiple 5' cap analogs using a vaccinia virus-capping enzyme. We show that this enzyme can introduce a variety of GTP analogs to the 5' end of RNA to generate 5' cap-modified mRNAs that exhibit different translation levels. Notably, some of these modified mRNAs improve translation efficiency and can be conjugated to chemical structures, further increasing their functionality. Our versatile method to generate 5' cap-modified mRNAs will provide useful tools for RNA therapeutics and biological research.


Asunto(s)
Nucleotidiltransferasas , Caperuzas de ARN , Virus Vaccinia , Biosíntesis de Proteínas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Virus Vaccinia/enzimología , Nucleotidiltransferasas/química
3.
J Virol ; 96(11): e0039822, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35543552

RESUMEN

Poxvirus proteins remodel signaling throughout the cell by targeting host enzymes for inhibition and redirection. Recently, it was discovered that early in infection the vaccinia virus (VACV) B12 pseudokinase copurifies with the cellular kinase VRK1, a proviral factor, in the nucleus. Although the formation of this complex correlates with inhibition of cytoplasmic VACV DNA replication and likely has other downstream signaling consequences, the molecular mechanisms involved are poorly understood. Here, we further characterize how B12 and VRK1 regulate one another during poxvirus infection. First, we demonstrate that B12 is stabilized in the presence of VRK1 and that VRK1 and B12 coinfluence their respective solubility and subcellular localization. In this regard, we find that B12 promotes VRK1 colocalization with cellular DNA during mitosis and that B12 and VRK1 may be tethered cooperatively to chromatin. Next, we observe that the C-terminal tail of VRK1 is unnecessary for B12-VRK1 complex formation or its proviral activity. Interestingly, we identify a point mutation of B12 capable of abrogating interaction with VRK1 and which renders B12 nonrepressive during infection. Lastly, we investigated the influence of B12 on the host factor BAF and antiviral signaling pathways and find that B12 triggers redistribution of BAF from the cytoplasm to the nucleus. In addition, B12 increases DNA-induced innate immune signaling, revealing a new functional consequence of the B12 pseudokinase. Together, this study characterizes the multifaceted roles B12 plays during poxvirus infection that impact VRK1, BAF, and innate immune signaling. IMPORTANCE Protein pseudokinases comprise a considerable fraction of the human kinome, as well as other forms of life. Recent studies have demonstrated that their lack of key catalytic residues compared to their kinase counterparts does not negate their ability to intersect with molecular signal transduction. While the multifaceted roles pseudokinases can play are known, their contribution to virus infection remains understudied. Here, we further characterize the mechanism of how the VACV B12 pseudokinase and human VRK1 kinase regulate one another in the nucleus during poxvirus infection and inhibit VACV DNA replication. We find that B12 disrupts regulation of VRK1 and its downstream target BAF, while also enhancing DNA-dependent innate immune signaling. Combined with previous data, these studies contribute to the growing field of nuclear pathways targeted by poxviruses and provide evidence of unexplored roles of B12 in the activation of antiviral immunity.


Asunto(s)
Inmunidad Innata , Péptidos y Proteínas de Señalización Intracelular , Infecciones por Poxviridae , Proteínas Serina-Treonina Quinasas , Virus Vaccinia , ADN/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Infecciones por Poxviridae/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Vaccinia , Virus Vaccinia/enzimología , Virus Vaccinia/fisiología
4.
Viruses ; 14(2)2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35215961

RESUMEN

A modified SELEX (Systematic Evolution of Ligands by Exponential Enrichment) pr,otocol (referred to as PT SELEX) was used to select primer-template (P/T) sequences that bound to the vaccinia virus polymerase catalytic subunit (E9) with enhanced affinity. A single selected P/T sequence (referred to as E9-R5-12) bound in physiological salt conditions with an apparent equilibrium dissociation constant (KD,app) of 93 ± 7 nM. The dissociation rate constant (koff) and binding half-life (t1/2) for E9-R5-12 were 0.083 ± 0.019 min-1 and 8.6 ± 2.0 min, respectively. The values indicated a several-fold greater binding ability compared to controls, which bound too weakly to be accurately measured under the conditions employed. Loop-back DNA constructs with 3'-recessed termini derived from E9-R5-12 also showed enhanced binding when the hybrid region was 21 nucleotides or more. Although the sequence of E9-R5-12 matched perfectly over a 12-base-pair segment in the coding region of the virus B20 protein, there was no clear indication that this sequence plays any role in vaccinia virus biology, or a clear reason why it promotes stronger binding to E9. In addition to E9, five other polymerases (HIV-1, Moloney murine leukemia virus, and avian myeloblastosis virus reverse transcriptases (RTs), and Taq and Klenow DNA polymerases) have demonstrated strong sequence binding preferences for P/Ts and, in those cases, there was biological or potential evolutionary relevance. For the HIV-1 RT, sequence preferences were used to aid crystallization and study viral inhibitors. The results suggest that several other DNA polymerases may have P/T sequence preferences that could potentially be exploited in various protocols.


Asunto(s)
ADN Viral/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , Virus Vaccinia/enzimología , Proteínas Virales/metabolismo , Virus de la Mieloblastosis Aviar/genética , Virus de la Mieloblastosis Aviar/metabolismo , Secuencia de Bases , ADN Polimerasa Dirigida por ADN/genética , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , Virus de la Leucemia Murina de Moloney/genética , Virus de la Leucemia Murina de Moloney/metabolismo , Unión Proteica , Técnica SELEX de Producción de Aptámeros , Virus Vaccinia/genética , Proteínas Virales/genética , Replicación Viral
5.
Nucleic Acids Res ; 49(22): 13019-13030, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34850141

RESUMEN

SARS-CoV-2 is a positive-sense RNA virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, which continues to cause significant morbidity, mortality and economic strain. SARS-CoV-2 can cause severe respiratory disease and death in humans, highlighting the need for effective antiviral therapies. The RNA synthesis machinery of SARS-CoV-2 is an ideal drug target and consists of non-structural protein 12 (nsp12), which is directly responsible for RNA synthesis, and numerous co-factors involved in RNA proofreading and 5' capping of viral RNAs. The formation of the 5' 7-methylguanosine (m7G) cap structure is known to require a guanylyltransferase (GTase) as well as a 5' triphosphatase and methyltransferases; however, the mechanism of SARS-CoV-2 RNA capping remains poorly understood. Here we find that SARS-CoV-2 nsp12 is involved in viral RNA capping as a GTase, carrying out the addition of a GTP nucleotide to the 5' end of viral RNA via a 5' to 5' triphosphate linkage. We further show that the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase) domain performs this reaction, and can be inhibited by remdesivir triphosphate, the active form of the antiviral drug remdesivir. These findings improve understanding of coronavirus RNA synthesis and highlight a new target for novel or repurposed antiviral drugs against SARS-CoV-2.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Nucleotidiltransferasas/antagonistas & inhibidores , ARN Viral/biosíntesis , SARS-CoV-2/enzimología , Adenosina Trifosfato/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , Genoma Viral/genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Humanos , Nucleotidiltransferasas/metabolismo , Caperuzas de ARN/genética , SARS-CoV-2/genética , Virus Vaccinia/enzimología , Virus Vaccinia/metabolismo , Tratamiento Farmacológico de COVID-19
6.
Molecules ; 26(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34771075

RESUMEN

Uracil-DNA glycosylases are enzymes that excise uracil bases appearing in DNA as a result of cytosine deamination or accidental dUMP incorporation from the dUTP pool. The activity of Family 1 uracil-DNA glycosylase (UNG) activity limits the efficiency of antimetabolite drugs and is essential for virulence in some bacterial and viral infections. Thus, UNG is regarded as a promising target for antitumor, antiviral, antibacterial, and antiprotozoal drugs. Most UNG inhibitors presently developed are based on the uracil base linked to various substituents, yet new pharmacophores are wanted to target a wide range of UNGs. We have conducted virtual screening of a 1,027,767-ligand library and biochemically screened the best hits for the inhibitory activity against human and vaccinia virus UNG enzymes. Although even the best inhibitors had IC50 ≥ 100 µM, they were highly enriched in a common fragment, tetrahydro-2,4,6-trioxopyrimidinylidene (PyO3). In silico, PyO3 preferably docked into the enzyme's active site, and in kinetic experiments, the inhibition was better consistent with the competitive mechanism. The toxicity of two best inhibitors for human cells was independent of the presence of methotrexate, which is consistent with the hypothesis that dUMP in genomic DNA is less toxic for the cell than strand breaks arising from the massive removal of uracil. We conclude that PyO3 may be a novel pharmacophore with the potential for development into UNG-targeting agents.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Pirimidinas/farmacología , Uracil-ADN Glicosidasa/antagonistas & inhibidores , Virus Vaccinia/enzimología , Inhibidores Enzimáticos/química , Humanos , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Pirimidinas/química , Uracil-ADN Glicosidasa/metabolismo
7.
Biosci Rep ; 41(6)2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34060602

RESUMEN

Immune checkpoint inhibitor (ICI) immunotherapies have vastly improved therapeutic outcomes for patients with certain cancer types, but these responses only manifest in a small percentage of all cancer patients. The goal of the present study was to improve checkpoint therapy efficacy by utilizing an engineered vaccinia virus to improve the trafficking of lymphocytes to the tumor, given that such lymphocyte trafficking is positively correlated with patient checkpoint inhibitor response rates. We developed an oncolytic vaccinia virus (OVV) platform expressing manganese superoxide dismutase (MnSOD) for use as both a monotherapy and together with anti-PD-L1. Intratumoral OVV-MnSOD injection in immunocompetent mice resulted in inflammation within poorly immunogenic tumors, thereby facilitating marked tumor regression. OVV-MnSOD administration together with anti-PD-L1 further improved antitumor therapy outcomes in models in which these monotherapy approaches were ineffective. Overall, our results emphasize the value of further studying these therapeutic approaches in patients with minimally or non-inflammatory tumors.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos Infiltrantes de Tumor/virología , Linfoma/terapia , Viroterapia Oncolítica , Superóxido Dismutasa/metabolismo , Virus Vaccinia/enzimología , Animales , Antígeno B7-H1/inmunología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Linfocitos Infiltrantes de Tumor/enzimología , Linfocitos Infiltrantes de Tumor/inmunología , Linfoma/enzimología , Linfoma/inmunología , Linfoma/virología , Ratones Endogámicos C57BL , Superóxido Dismutasa/genética , Carga Tumoral , Microambiente Tumoral/inmunología , Virus Vaccinia/genética , Virus Vaccinia/patogenicidad
8.
J Mol Biol ; 433(13): 167009, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33901538

RESUMEN

Poxviruses are enveloped viruses with a linear, double-stranded DNA genome. Viral DNA synthesis is achieved by a functional DNA polymerase holoenzyme composed of three essential proteins. For vaccinia virus (VACV) these are E9, the catalytic subunit, a family B DNA polymerase, and the heterodimeric processivity factor formed by D4 and A20. The A20 protein links D4 to the catalytic subunit. High-resolution structures have been obtained for the VACV D4 protein in complex with an N-terminal fragment of A20 as well as for E9. In addition, biochemical studies provided evidence that a poxvirus-specific insertion (insert 3) in E9 interacts with the C-terminal residues of A20. Here, we provide solution structures of two different VACV A20 C-terminal constructs containing residues 304-426, fused at their C-terminus to either a BAP (Biotin Acceptor Peptide)-tag or a short peptide containing the helix of E9 insert 3. Together with results from titration studies, these structures shed light on the molecular interface between the catalytic subunit and the processivity factor component A20. The interface comprises hydrophobic residues conserved within the Chordopoxvirinae subfamily. Finally, we constructed a HADDOCK model of the VACV A20304-426-E9 complex, which is in excellent accordance with previous experimental data.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , Dominios Proteicos , Virus Vaccinia/enzimología , Proteínas Virales/química , Secuencia de Aminoácidos , Dominio Catalítico/genética , Cristalografía por Rayos X , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Modelos Moleculares , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Homología de Secuencia de Aminoácido , Soluciones/química , Virus Vaccinia/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
9.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33177193

RESUMEN

The poxviral B1 and B12 proteins are a homologous kinase-pseudokinase pair, which modulates a shared host pathway governing viral DNA replication and antiviral defense. While the molecular mechanisms involved are incompletely understood, B1 and B12 seem to intersect with signaling processes mediated by their cellular homologs termed the vaccinia-related kinases (VRKs). In this study, we expand upon our previous characterization of the B1-B12 signaling axis to gain insights into B12 function. We begin our studies by demonstrating that modulation of B12 repressive activity is a conserved function of B1 orthologs from divergent poxviruses. Next, we characterize the protein interactome of B12 using multiple cell lines and expression systems and discover that the cellular kinase VRK1 is a highly enriched B12 interactor. Using complementary VRK1 knockdown and overexpression assays, we first demonstrate that VRK1 is required for the rescue of a B1-deleted virus upon mutation of B12. Second, we find that VRK1 overexpression is sufficient to overcome repressive B12 activity during B1-deleted virus replication. Interestingly, we also evince that B12 interferes with the ability of VRK1 to phosphoinactivate the host defense protein BAF. Thus, B12 restricts vaccinia virus DNA accumulation in part by repressing the ability of VRK1 to inactivate BAF. Finally, these data establish that a B12-VRK1-BAF signaling axis forms during vaccinia virus infection and is modulated via kinases B1 and/or VRK2. These studies provide novel insights into the complex mechanisms that poxviruses use to hijack homologous cellular signaling pathways during infection.IMPORTANCE Viruses from diverse families encode both positive and negative regulators of viral replication. While their functions can sometimes be enigmatic, investigation of virus-encoded, negative regulators of viral replication has revealed fascinating aspects of virology. Studies of poxvirus-encoded genes have largely concentrated on positive regulators of their replication; however, examples of fitness gains attributed to poxvirus gene loss suggests that negative regulators of poxvirus replication also impact infection dynamics. This study focuses on the vaccinia B12 pseudokinase, a protein capable of inhibiting vaccinia DNA replication. Here, we elucidate the mechanisms by which B12 inhibits vaccinia DNA replication, demonstrating that B12 activates the antiviral protein BAF by inhibiting the activity of VRK1, a cellular modulator of BAF. Combined with previous data, these studies provide evidence that poxviruses govern their replication by employing both positive and negative regulators of viral replication.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Interacciones Huésped-Patógeno , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Virus Vaccinia/enzimología , Vaccinia/inmunología , Proteínas Virales/metabolismo , Antivirales , Proteínas de Unión al ADN/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Vaccinia/metabolismo , Vaccinia/virología , Proteínas Virales/genética
10.
Anal Chem ; 93(2): 1126-1134, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33305941

RESUMEN

Among the key issues that are commonly associated with the development of microarray-based assays are nonspecific binding and diffusion constraints. Here we present a novel strategy addressing both of these challenges simultaneously. The essence of the method consists in blocking the microarray surface with a blocking agent containing a perfluoroalkyl chain and a disulfide linker. The resulting surface is hydrophobic, and no immiscible liquid layer remains on it upon cyclically draining and replenishing the sample solution, ensuring an efficient mass transfer of an analyte onto a microarray. Prior to the signal detection procedure, disulfide bonds are chemically cleaved, and the perfluoroalkyl chains are removed from the microarray surface along with nonspecifically adsorbed proteins, resulting in extremely low background. Using conventional fluorescent detection, we show a 30-fold increase in signal/background ratio compared to a common epoxy-modified glass substrate. The combination of this technique with magnetic beads detection results in a simple and ultrasensitive cholera toxin (CT) immunoassay. The limit of detection (LOD) is 1 fM, which is achieved with an analyte binding time of 1 h. Efficient mass transfer provides highly sensitive detection of whole virus particles despite their low diffusion coefficient. The achieved LOD for vaccinia virus is 104 particles in 1 mL of sample. Finally, we have performed for the first time the simultaneous detection of whole virus and CT protein biomarker in a single assay. The developed technique can be used for multiplex detection of trace amounts of pathogens of various natures.


Asunto(s)
Toxina del Cólera/análisis , Cistina/análogos & derivados , Técnica del Anticuerpo Fluorescente , Inmunoensayo , Análisis por Matrices de Proteínas , Toxina del Cólera/metabolismo , Cistina/síntesis química , Cistina/química , Estructura Molecular , Virus Vaccinia/enzimología , Virus Vaccinia/aislamiento & purificación
11.
Sci Rep ; 10(1): 21841, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33318548

RESUMEN

RNA-based drugs are an emerging class of therapeutics combining the immense potential of DNA gene-therapy with the absence of genome integration-associated risks. While the synthesis of such molecules is feasible, large scale in vitro production of humanised mRNA remains a biochemical and economical challenge. Human mRNAs possess two post-transcriptional modifications at their 5' end: an inverted methylated guanosine and a unique 2'O-methylation on the ribose of the penultimate nucleotide. One strategy to precisely methylate the 2' oxygen is to use viral mRNA methyltransferases that have evolved to escape the host's cell immunity response following virus infection. However, these enzymes are ill-adapted to industrial processes and suffer from low turnovers. We have investigated the effects of homologous and orthologous active-site mutations on both stability and transferase activity, and identified new functional motifs in the interaction network surrounding the catalytic lysine. Our findings suggest that despite their low catalytic efficiency, the active-sites of viral mRNA methyltransferases have low mutational plasticity, while mutations in a defined third shell around the active site have strong effects on folding, stability and activity in the variant enzymes, mostly via network-mediated effects.


Asunto(s)
Metiltransferasas , ARN Mensajero , ARN Viral , Virus Vaccinia , Proteínas no Estructurales Virales , Dominio Catalítico , Humanos , Metilación , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Virus Vaccinia/enzimología , Virus Vaccinia/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
12.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076270

RESUMEN

Genetically modified vaccinia viruses (VACVs) have been shown to possess profound oncolytic capabilities. However, tumor cell resistance to VACVs may endanger broad clinical success. Using cell mass assays, viral replication studies, and fluorescence microscopy, we investigated primary resistance phenomena of cell lines of the NCI-60 tumor cell panel to GLV-1h94, a derivative of the Lister strain of VACV, which encodes the enzyme super cytosine deaminase (SCD) that converts the prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic compound 5-fluorouracil (5-FU). After treatment with GLV-1h94 alone, only half of the cell lines were defined as highly susceptible to GLV-1h94-induced oncolysis. When adding 5-FC, 85% of the cell lines became highly susceptible to combinatorial treatment; none of the tested tumor cell lines exhibited a "high-grade resistance" pattern. Detailed investigation of the SCD prodrug system suggested that the cytotoxic effect of converted 5-FU is directed either against the cells or against the virus particles, depending on the balance between cell line-specific susceptibility to GLV-1h94-induced oncolysis and 5-FU sensitivity. The data provided by this work underline that cellular resistance against VACV-based virotherapy can be overcome by virus-encoded prodrug systems. Phase I/II clinical trials are recommended to further elucidate the enormous potential of this combination therapy.


Asunto(s)
Resistencia a Antineoplásicos , Ingeniería Genética/métodos , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Vaccinia/genética , Antineoplásicos/toxicidad , Muerte Celular , Línea Celular Tumoral , Terapia Combinada/métodos , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Flucitosina/farmacocinética , Fluorouracilo/toxicidad , Humanos , Virus Oncolíticos/enzimología , Profármacos , Virus Vaccinia/enzimología , Proteínas Virales/genética , Proteínas Virales/metabolismo
13.
Antiviral Res ; 181: 104870, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32707051

RESUMEN

We describe herein that Apigenin, which is a dietary flavonoid, exerts a strong in vitro and in ovo antiviral efficacy against buffalopox virus (BPXV). Apigenin treatment was shown to inhibit synthesis of viral DNA, mRNA and proteins, without affecting other steps of viral life cycle such as attachment, entry and budding. Although the major mode of antiviral action of Apigenin was shown to be mediated via targeting certain cellular factors, a modest inhibitory effect of Apigenin was also observed directly on viral polymerase. We also evaluated the selection of drug-resistant virus variants under long-term selection pressure of Apigenin. Wherein Apigenin-resistant mutants were not observed up to ~ P20 (passage 20), a significant resistance was observed to the antiviral action of Apigenin at ~ P30. However, a high degree resistance could not be observed even up to P60. To the best of our knowledge, this is the first report describing in vitro and in ovo antiviral efficacy of Apigenin against poxvirus infection. The study also provides mechanistic insights on the antiviral activity of Apigenin and selection of potential Apigenin-resistant mutants upon long-term culture.


Asunto(s)
Antivirales/farmacología , Apigenina/farmacología , Farmacorresistencia Viral , Virus Vaccinia/efectos de los fármacos , Animales , Embrión de Pollo/virología , Pollos , Chlorocebus aethiops , ADN Viral/genética , ADN Polimerasa Dirigida por ADN , Humanos , Virus Vaccinia/enzimología , Células Vero , Replicación Viral/efectos de los fármacos
14.
Talanta ; 205: 120120, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31450426

RESUMEN

Nucleosides analogues are the cornerstone of the treatment of several human diseases. They are especially at the forefront of antiviral therapy. Their therapeutic efficiency depends on their capacity to be converted to the active nucleoside triphosphate form through successive phosphorylation steps catalyzed by nucleoside/nucleotide kinases. In this context, it is mandatory to develop a rapid, reliable and sensitive enzyme activity test to evaluate their metabolic pathways. In this study, we report a proof of concept to directly monitor on-line nucleotide multiple phosphorylation. The methodology was developed by on-line enzyme bioreactors hyphenated with High-Resolution Mass Spectrometry detection. Human Thymidylate Kinase (hTMPK) and human Nucleoside Diphosphate Kinase (hNDPK) were covalently immobilized on functionalized silica beads, and packed into micro-bioreactors (40 µL). By continuous infusion of substrate into the bioreactors, the conversion of thymidine monophosphate (dTMP) into its di- (dTDP) and tri-phosphorylated (dTTP) forms was visualized by monitoring their Extracted Ion Chromatogram (EIC) of their [M - H]- ions. Both bioreactors were found to be robust and durable over 60 days (storage at 4 °C in ammonium acetate buffer), after 20 uses and more than 750 min of reaction, making them suitable for routine analysis. Each on-line conversion step was shown rapid (<5 min), efficient (conversion efficiency > 55%), precise and repeatable (CV < 3% for run-to-run analysis). The feasibility of the on-line multi-step conversion from dTMP to dTTP was also proved. In the context of selective antiviral therapy, this proof of concept was then applied to the monitoring of specificity of conversion of two synthesized Acyclic Nucleosides Phosphonates (ANPs), regarding human Thymidylate Kinase (hTMPK) and vaccina virus Thymidylate Kinase (vvTMPK).


Asunto(s)
Reactores Biológicos , Enzimas Inmovilizadas/química , Nucleósido-Fosfato Quinasa/química , Organofosfonatos/química , Timidina Monofosfato/química , Nucleótidos de Timina/química , Humanos , Espectrometría de Masas/métodos , Fosforilación , Prueba de Estudio Conceptual , Virus Vaccinia/enzimología
15.
Mol Biotechnol ; 61(8): 622-630, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31165966

RESUMEN

Type IB DNA topoisomerases are enzymes to change the topological state of DNA molecules and are essential in studying replication, transcription, and recombination of nucleic acids in vitro. DNA topoisomerase IB from Vaccinia virus (vTopIB) is a 32 kDa, type I eukaryotic topoisomerase, which relaxed positively and negatively supercoiled DNAs without Mg2+ and ATP. Although vTopIB has been effectively produced in E. coli expression system, no studies remain available to explore an alternative platform to express recombinant vTopIB (rvTopIB) in a higher eukaryote, where the one can expect post-translational modifications that affect the activity of rvTopIB. Here in this study, rvTopIB with N-terminal tags was constructed and expressed in a silkworm-baculovirus expression vector system (silkworm-BEVS). We developed a simple two consecutive chromatography purification to obtain highly pure rvTopIB. The final yield of rvTopIB obtained from a baculovirus-infected silkworm larva was 83.25 µg. We also evaluated the activity and function of rvTopIB by the DNA relaxation activity assays using a negatively supercoiled pUC19 plasmid DNA as a substrate. With carefully assessing optimized conditions for the reaction buffer, we found that divalent ions, Mg2+, Mn2+, Ca2+, as well as ATP stimulate the DNA relaxation activity by rvTopIB. The functional and active form of rvTopIB, together with the yields of the protein we obtained, suggests that silkworm-BEVS would be a potential alternative platform to produce eukaryotic topoisomerases on an industrial scale.


Asunto(s)
ADN-Topoisomerasas de Tipo I/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Virus Vaccinia , Proteínas Virales/aislamiento & purificación , Animales , Baculoviridae/genética , Bombyx/metabolismo , Bombyx/virología , ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Magnesio/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Virus Vaccinia/enzimología , Virus Vaccinia/genética , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
16.
Nature ; 566(7743): 259-263, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30728498

RESUMEN

Cytosolic DNA triggers innate immune responses through the activation of cyclic GMP-AMP synthase (cGAS) and production of the cyclic dinucleotide second messenger 2',3'-cyclic GMP-AMP (cGAMP)1-4. 2',3'-cGAMP is a potent inducer of immune signalling; however, no intracellular nucleases are known to cleave 2',3'-cGAMP and prevent the activation of the receptor stimulator of interferon genes (STING)5-7. Here we develop a biochemical screen to analyse 24 mammalian viruses, and identify poxvirus immune nucleases (poxins) as a family of 2',3'-cGAMP-degrading enzymes. Poxins cleave 2',3'-cGAMP to restrict STING-dependent signalling and deletion of the poxin gene (B2R) attenuates vaccinia virus replication in vivo. Crystal structures of vaccinia virus poxin in pre- and post-reactive states define the mechanism of selective 2',3'-cGAMP degradation through metal-independent cleavage of the 3'-5' bond, converting 2',3'-cGAMP into linear Gp[2'-5']Ap[3']. Poxins are conserved in mammalian poxviruses. In addition, we identify functional poxin homologues in the genomes of moths and butterflies and the baculoviruses that infect these insects. Baculovirus and insect host poxin homologues retain selective 2',3'-cGAMP degradation activity, suggesting an ancient role for poxins in cGAS-STING regulation. Our results define poxins as a family of 2',3'-cGAMP-specific nucleases and demonstrate a mechanism for how viruses evade innate immunity.


Asunto(s)
Desoxirribonucleasas/química , Desoxirribonucleasas/metabolismo , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal/inmunología , Virus Vaccinia/enzimología , Animales , Baculoviridae/enzimología , Mariposas Diurnas/enzimología , Línea Celular , Secuencia Conservada , Cristalografía por Rayos X , ADN Viral/inmunología , Femenino , Genes Virales/genética , Humanos , Evasión Inmune , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Mariposas Nocturnas/enzimología , Sistemas de Mensajero Secundario , Virus Vaccinia/genética , Virus Vaccinia/crecimiento & desarrollo , Virus Vaccinia/inmunología , Replicación Viral/genética
17.
Nat Commun ; 8(1): 1455, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29129932

RESUMEN

Vaccinia virus (VACV), the prototype member of the Poxviridae, replicates in the cytoplasm of an infected cell. The catalytic subunit of the DNA polymerase E9 binds the heterodimeric processivity factor A20/D4 to form the functional polymerase holoenzyme. Here we present the crystal structure of full-length E9 at 2.7 Å resolution that permits identification of important poxvirus-specific structural insertions. One insertion in the palm domain interacts with C-terminal residues of A20 and thus serves as the processivity factor-binding site. This is in strong contrast to all other family B polymerases that bind their co-factors at the C terminus of the thumb domain. The VACV E9 structure also permits rationalization of polymerase inhibitor resistance mutations when compared with the closely related eukaryotic polymerase delta-DNA complex.


Asunto(s)
Dominio Catalítico/genética , ADN Polimerasa Dirigida por ADN/ultraestructura , Virus Vaccinia/enzimología , Cristalografía por Rayos X , ADN Glicosilasas/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Nucleósido-Trifosfatasa/genética
18.
Microbiol Mol Biol Rev ; 81(3)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28701329

RESUMEN

The past 17 years have been marked by a revolution in our understanding of cellular multisubunit DNA-dependent RNA polymerases (MSDDRPs) at the structural level. A parallel development over the past 15 years has been the emerging story of the giant viruses, which encode MSDDRPs. Here we link the two in an attempt to understand the specialization of multisubunit RNA polymerases in the domain of life encompassing the large nucleocytoplasmic DNA viruses (NCLDV), a superclade that includes the giant viruses and the biochemically well-characterized poxvirus vaccinia virus. The first half of this review surveys the recently determined structural biology of cellular RNA polymerases for a microbiology readership. The second half discusses a reannotation of MSDDRP subunits from NCLDV families and the apparent specialization of these enzymes by virus family and by subunit with regard to subunit or domain loss, subunit dissociability, endogenous control of polymerase arrest, and the elimination/customization of regulatory interactions that would confer higher-order cellular control. Some themes are apparent in linking subunit function to structure in the viral world: as with cellular RNA polymerases I and III and unlike cellular RNA polymerase II, the viral enzymes seem to opt for speed and processivity and seem to have eliminated domains associated with higher-order regulation. The adoption/loss of viral RNA polymerase proofreading functions may have played a part in matching intrinsic mutability to genome size.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Virus Vaccinia/enzimología , Citoplasma/virología , Virus ADN/enzimología , Virus ADN/genética , Virus ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Evolución Molecular , Genes Virales , Filogenia , Transcripción Genética , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
19.
Nature ; 546(7660): 651-655, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28636603

RESUMEN

Ribosomes have the capacity to selectively control translation through changes in their composition that enable recognition of specific RNA elements. However, beyond differential subunit expression during development, evidence for regulated ribosome specification within individual cells has remained elusive. Here we report that a poxvirus kinase phosphorylates serine/threonine residues in the human small ribosomal subunit protein, receptor for activated C kinase (RACK1), that are not phosphorylated in uninfected cells or cells infected by other viruses. These modified residues cluster in an extended loop in RACK1, phosphorylation of which selects for translation of viral or reporter mRNAs with 5' untranslated regions that contain adenosine repeats, so-called polyA-leaders. Structural and phylogenetic analyses revealed that although RACK1 is highly conserved, this loop is variable and contains negatively charged amino acids in plants, in which these leaders act as translational enhancers. Phosphomimetics and inter-species chimaeras have shown that negative charge in the RACK1 loop dictates ribosome selectivity towards viral RNAs. By converting human RACK1 to a charged, plant-like state, poxviruses remodel host ribosomes so that adenosine repeats erroneously generated by slippage of the viral RNA polymerase confer a translational advantage. Our findings provide insight into ribosome customization through trans-kingdom mimicry and the mechanics of species-specific leader activity that underlie poxvirus polyA-leaders.


Asunto(s)
Mimetismo Biológico , Proteínas de Neoplasias/metabolismo , Biosíntesis de Proteínas , ARN Viral/metabolismo , Receptores de Cinasa C Activada/metabolismo , Ribosomas/metabolismo , Virus Vaccinia/enzimología , Proteínas Virales/metabolismo , Regiones no Traducidas 5'/genética , Adenosina/metabolismo , Secuencia de Aminoácidos , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Modelos Moleculares , Fosforilación , Poli A/metabolismo , ARN Viral/genética , Virus Vaccinia/genética
20.
Biochemistry ; 56(26): 3307-3317, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28570045

RESUMEN

Vaccinia TopIB (vTopIB), a 314-amino acid eukaryal-type IB topoisomerase, recognizes and transesterifies at the DNA sequence 5'-(T/C)CCTT↓, leading to the formation of a covalent DNA-(3'-phosphotyrosyl274)-enzyme intermediate in the supercoil relaxation reaction. The C-terminal segment of vTopIB (amino acids 81-314), which engages the DNA minor groove at the scissile phosphodiester, comprises an autonomous catalytic domain that retains cleavage specificity, albeit with a cleavage site affinity lower than that of the full-length enzyme. The N-terminal domain (amino acids 1-80) engages the major groove on the DNA face opposite the scissile phosphodiester. Whereas DNA contacts of the N-terminal domain have been implicated in the DNA site affinity of vTopIB, it was not known whether the N-terminal domain per se could bind DNA. Here, using isothermal titration calorimetry, we demonstrate the ability of the isolated N-terminal domain to bind a CCCTT-containing 24-mer duplex with an apparent affinity that is ∼2.2-fold higher than that for an otherwise identical duplex in which the pentapyrimidine sequence is changed to ACGTG. Analyses of the interactions of the isolated N-terminal domain with duplex DNA via solution nuclear magnetic resonance methods are consistent with its DNA contacts observed in DNA-bound crystal structures of full-length vTopIB. The chemical shift perturbations and changes in hydrodynamic properties triggered by CCCTT DNA versus non-CCCTT DNA suggest differences in DNA binding dynamics. The importance of key N-terminal domain contacts in the context of full-length vTopIB is underscored by assessing the effects of double-alanine mutations on DNA transesterification and its sensitivity to ionic strength.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , ADN/metabolismo , Modelos Moleculares , Virus Vaccinia/enzimología , Proteínas Virales/metabolismo , Sustitución de Aminoácidos , Calorimetría , ADN/química , ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/genética , Hidrodinámica , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Mutación , Resonancia Magnética Nuclear Biomolecular , Motivos de Nucleótidos , Concentración Osmolar , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Volumetría , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...