Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Inglés | LILACS, CUMED | ID: biblio-1410302

RESUMEN

In Egypt, the lyophilized live attenuated sheep pox virus vaccine has been used for the vaccination of cattle against lumpy skin disease virus to control its economic impact on livestock industry. In this endeavor, we validate the efficacy of Carbopol® as a stabilizer and adjuvant to enhance immunogenicity of such a heterologous sheep pox virus vaccine against lumpy skin disease. Lyophilization of sheep pox virus vaccine stabilized with Carbopol® produced better physical and antigenic properties than freeze-drying with lactalbumin/sucrose stabilizer; this was manifested by superior disc uniformity, thermo-stability at 37oC, and less reduction in virus titer. Immunization of calves' groups with variable sheep pox vaccine doses containing different Carbopol® concentrations revealed that 103.5 TCID50 of sheep pox virus vaccine enclosing 0.5 percent Carbopol® is the field dose of choice. Moreover, it induced protective serum neutralizing index of 2.5 and a ELISA S/P ratio of 36, by the 4th week post vaccination. Besides, the inclusion of 0.5 percent Carbopol® in formulation of the sheep pox virus vaccine was safe in bovines and enhanced cellular immune response to lumpy skin disease virus, as evidenced by increased T cell proliferation. Hence, it is recommended to use Carbopol® as 0.5 percent in preparation of live attenuated sheep pox virus vaccine to confer better protection against lumpy skin disease virus infection(AU)


En Egipto, la vacuna atenuada liofilizada contra el virus de la viruela ovina ha sido utilizado para la vacunación del ganado, contra el virus de la dermatosis nodular contagiosa, para controlar su impacto económico en la industria ganadera. En este trabajo, validamos la eficacia del Carbopol®, como estabilizador y adyuvante, para mejorar la inmunogenicidad de dicha vacuna heteróloga contra la dermatosis nodular contagiosa. La liofilización de la vacuna contra el virus de la viruela ovina estabilizada con Carbopol®, resultó en mejores propiedades físicas y antigénicas que la liofilización con el estabilizador de lactoalbúmina/sacarosa; lo anterior se manifestó en la uniformidad superior del disco, la termoestabilidad a 37°C y la menor reducción del título del virus. La inmunización de grupos de terneros con dosis variables de vacuna contra el virus de la viruela ovina, que contenían diferentes concentraciones de Carbopol®, reveló que la dosis de campo de elección fue 103,5 TCID50 de la vacuna contra el virus de la viruela ovina conteniendo 0,5 por ciento de Carbopol®, la que indujo un índice de neutralización sérica protectora de 2,5 y una relación S/P de ELISA de 36 a la cuarta semana después de la vacunación. Además, la inclusión de Carbopol® al 0,5 por ciento en la formulación de la vacuna contra el virus de la viruela ovina fue segura en los bovinos y potenció la respuesta inmunitaria celular contra el virus de la dermatosis nodular contagiosa, como lo demuestra el aumento de la proliferación de células T. Por lo tanto, se recomienda el uso de Carbopol® al 0,5 por ciento en la preparación de la vacuna viva atenuada contra el virus de la viruela ovina para conferir una mejor protección contra la infección por el virus de la dermatosis nodular contagiosa(AU)


Asunto(s)
Animales , Ensayo de Inmunoadsorción Enzimática/métodos , Capripoxvirus/patogenicidad , Medicamentos de Referencia , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Vacunas , Vacunas Atenuadas/uso terapéutico , Egipto
2.
PLoS One ; 16(2): e0238210, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606690

RESUMEN

Lumpy skin disease (LSD) is an emerging disease of cattle in Kazakhstan and the means of transmission remains uncertain. In the current study, retention of Lumpy Skin Disease Virus (LSDV) by three Stomoxys species following intrathoracic inoculation was demonstrated under laboratory conditions. A virulent LSDV strain was injected into the thorax of flies to bypass the midgut barrier. The fate of the pathogen in the hemolymph of the flies was examined using PCR and virus isolation tests. LSDV was isolated from all three Stomoxys species up to 24h post inoculation while virus DNA was detectable up to 7d post inoculation.


Asunto(s)
Dermatosis Nodular Contagiosa/transmisión , Virus de la Dermatosis Nodular Contagiosa/aislamiento & purificación , Muscidae/patogenicidad , Animales , Bovinos , ADN Viral , Insectos Vectores/virología , Kazajstán , Dermatosis Nodular Contagiosa/epidemiología , Dermatosis Nodular Contagiosa/virología , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Vacunación
3.
Viruses ; 12(7)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708708

RESUMEN

Infection with Lumpy Skin Disease virus (LSDV), as well as infections with other Capripox virus species, are described as the most severe pox diseases of production animals and are therefore listed as notifiable diseases under the guidelines of the World Organization for Animal Health (OIE). To our knowledge there is only a single study examining dose dependency, clinical course, viremia, virus shedding, as well as serological response following experimental LSDV "Neethling" inoculation. Here, we inoculated cattle with four different doses of LSDV strain "Macedonia2016", a recently characterized virulent LSDV field strain, and examined clinical symptoms, viremia, viral shedding, and seroconversion. Interestingly, around 400 cell culture infectious dose50 (CCID50) of LSDV-"Macedonia2016" were sufficient to induce generalized Lumpy Skin Disease (LSD) in two out of six cattle but with a different incubation time, whereas the other animals of this group showed only a mild course of LSD. However, differences in incubation time, viral loads, serology, and in the clinical scoring could not be observed in the other three groups. In summary, we concluded that experimental LSDV infection of cattle with an infectious virus titer of 105 to 106 CCID50/mL of "Macedonia2016" provides a robust and sufficient challenge model for future studies.


Asunto(s)
Dermatosis Nodular Contagiosa/virología , Virus de la Dermatosis Nodular Contagiosa , Animales , Bovinos , Dermatosis Nodular Contagiosa/patología , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Virus de la Dermatosis Nodular Contagiosa/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , República de Macedonia del Norte , Replicación Viral , Esparcimiento de Virus
4.
Transbound Emerg Dis ; 67(6): 2946-2960, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32506755

RESUMEN

South Africa is endemic for lumpy skin disease and is therefore reliant on various live attenuated vaccines for the control and prevention of the disease. In recent years, widespread outbreaks of vaccine-like strains of lumpy skin disease virus (LSDV) were reported internationally, leading to an increase in the generation of full genome sequences from field isolates. In this study, the complete genomes of six LSDVs submitted during active outbreaks in the 1990s in South Africa were generated. Based on phylogenetic analysis, the six viruses clustered with vaccine strains in LSDV Subgroup 1.1 and are subsequently referred to as vaccine-associated. The genetic differences between the phenotypically distinct vaccine and vaccine-associated strains were 67 single nucleotide polymorphisms (SNPs). This study characterized the location and possible importance of each of these SNPs in their role during virulence and host specificity.


Asunto(s)
Dermatosis Nodular Contagiosa/virología , Virus de la Dermatosis Nodular Contagiosa/genética , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Polimorfismo de Nucleótido Simple , Vacunas Virales/inmunología , Animales , Bovinos , Sudáfrica , Virulencia
5.
Vet Microbiol ; 245: 108695, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32456811

RESUMEN

In this comparative study, we examine the safety of the sheeppox (SPP) and goatpox (GTP) vaccines and the protective response of these vaccines in cattle against a virulent lumpy skin disease (LSD) field strain. The vaccine safety was tested in rabbits, mice and cattle using ten times recommended dose. In the safety trial, none of the vaccinated animals showed any deviation from physiological norms or fever, inappetence or local/ generalized skin reactions. In the challenge trial, both SPP and GTP vaccine groups developed virus-neutralizing antibodies with an average titre of 2.1 log2 at 21 days post-vaccination. No significant difference in seroconversion was found in cattle vaccinated with SPP and GTP vaccines (P ≥ 0.05). When challenged with a virulent LSD field strain, one animal vaccinated with the SPP Niskhi vaccine strain showed typical LSD skin lesions at the injection sites of different dilutions of the challenge virus. All animals vaccinated with GTP G20-LKV vaccine strain showed full protection. After infection with the challenge virus, unvaccinated fully susceptible control cattle showed characteristic clinical signs of LSD. The average protective index for SPP and GTP vaccine groups was 5.3 ± 1.42 and 5.9 ± 0.00, respectively.


Asunto(s)
Capripoxvirus/inmunología , Enfermedades de los Bovinos/prevención & control , Inmunogenicidad Vacunal , Dermatosis Nodular Contagiosa/prevención & control , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Vacunas Virales/inmunología , Animales , Capripoxvirus/clasificación , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/virología , Femenino , Virus de la Dermatosis Nodular Contagiosa/inmunología , Ratones , Conejos , Vacunación , Vacunas Virales/administración & dosificación
6.
Vet Pathol ; 57(3): 388-396, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32314676

RESUMEN

Lumpy skin disease is a high-consequence disease in cattle caused by infection with the poxvirus lumpy skin disease virus (LSDV). The virus is endemic in most countries in Africa and an emerging threat to cattle populations in Europe and Asia. As LSDV spreads into new regions, it is important that signs of disease are recognized promptly by animal caregivers. This study describes the gross, microscopic, and ultrastructural changes that occur over time in cattle experimentally challenged with LSDV. Four calves were inoculated with wildtype LSDV and monitored for 19 to 21 days. At 7 days after inoculation, 2 of the 4 cattle developed multifocal cutaneous nodules characteristic of LSD. Some lesions displayed a targetoid appearance. Histologically, intercellular and intracellular edema was present in the epidermis of some nodules. Occasional intracytoplasmic inclusion bodies were identified in keratinocytes. More severe and consistent changes were present in the dermis, with marked histiocytic inflammation and necrotizing fibrinoid vasculitis of dermal vessels, particularly the deep dermal plexus. Chronic lesions consisted of full-thickness necrosis of the dermis and epidermis. Lesions in other body organs were not a major feature of LSD in this study, highlighting the strong cutaneous tropism of this virus. Immunohistochemistry and electron microscopy identified LSDV-infected histiocytes and fibroblasts in the skin nodules of affected cattle. This study highlights the noteworthy lesions of LSDV and how they develop over time.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa/aislamiento & purificación , Animales , Asia/epidemiología , Bovinos , Enfermedades de los Bovinos/virología , Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades Transmisibles Emergentes/virología , Dermatitis/patología , Dermatitis/veterinaria , Dermatitis/virología , Enfermedades Endémicas/veterinaria , Europa (Continente)/epidemiología , Dermatosis Nodular Contagiosa/epidemiología , Dermatosis Nodular Contagiosa/patología , Dermatosis Nodular Contagiosa/transmisión , Dermatosis Nodular Contagiosa/virología , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Virus de la Dermatosis Nodular Contagiosa/ultraestructura , Piel/patología , Piel/virología , Vasculitis/patología , Vasculitis/veterinaria , Vasculitis/virología
7.
Sci Rep ; 9(1): 20076, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882819

RESUMEN

Lumpy skin disease (LSD) is a devastating disease of cattle characterized by fever, nodules on the skin, lymphadenopathy and milk drop. Several haematophagous arthropod species like dipterans and ticks are suspected to play a role in the transmission of LSDV. Few conclusive data are however available on the importance of biting flies and horseflies as potential vectors in LSDV transmission. Therefore an in vivo transmission study was carried out to investigate possible LSDV transmission by Stomoxys calcitrans biting flies and Haematopota spp. horseflies from experimentally infected viraemic donor bulls to acceptor bulls. LSDV transmission by Stomoxys calcitrans was evidenced in 3 independent experiments, LSDV transmission by Haematopota spp. was shown in one experiment. Evidence of LSD was supported by induction of nodules and virus detection in the blood of acceptor animals. Our results are supportive for a mechanical transmission of the virus by these vectors.


Asunto(s)
Dípteros/virología , Mordeduras y Picaduras de Insectos , Insectos Vectores , Dermatosis Nodular Contagiosa/transmisión , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Animales , Bovinos , ADN Viral/genética , Dermatosis Nodular Contagiosa/virología , Virus de la Dermatosis Nodular Contagiosa/genética
8.
Arch Virol ; 164(12): 2931-2941, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31538254

RESUMEN

Lumpy skin disease virus (LSDV) infections can cause massive clinical signs in cattle and have great economic impact due to severe trade restrictions. For LSDV control, only live attenuated vaccines are commercially available, but they currently are not authorized in the European Union. Moreover, these vaccine virus strains can induce substantial side effects with clinical signs similar to infections with virulent LSDV. In our study, we compared clinical symptoms, viremia, and seroconversion of cattle inoculated either with a virulent field strain from North Macedonia isolated from diseased cattle in 2016 or with the attenuated LSDV vaccine strain "Neethling". Using specimens from the field and from experimental inoculation, different diagnostic tools, including a pan-capripox real-time qPCR, newly developed duplex real-time qPCR assays for differentiation between virulent and attenuated LSDV strains, and several serological methods (ELISA, indirect immunofluorescence test and serum neutralization test [SNT]) were evaluated. Our data show a high analytical sensitivity of both tested duplex real-time qPCR systems for the reliable distinction of LSDV field and vaccine strains. Moreover, the commercially available capripox double-antigen ELISA seems to be as specific as the SNT and therefore provides an excellent tool for rapid and simple serological examination of LSDV-vaccinated or infected cattle.


Asunto(s)
Dermatosis Nodular Contagiosa/diagnóstico , Virus de la Dermatosis Nodular Contagiosa/clasificación , Vacunas Atenuadas/clasificación , Animales , Anticuerpos Antivirales/metabolismo , Bovinos , Línea Celular , Dermatosis Nodular Contagiosa/inmunología , Virus de la Dermatosis Nodular Contagiosa/inmunología , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad , Seroconversión , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Virales/clasificación , Vacunas Virales/genética , Vacunas Virales/inmunología
9.
Transbound Emerg Dis ; 66(2): 813-822, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30520550

RESUMEN

Data from affected lumpy skin disease (LSD) locations between July 2012 and September 2018 in the Balkans, Caucasus, and Middle East were retrieved from FAO's Global Animal Disease Information System (EMPRES-i) from the European Commission's Animal Disease Notification System (ADNS) and completed with data from the official veterinary services of some countries. During this period, a total of 7,593 locations from 22 countries were affected. Within this period, over 46,000 cattle were clinically affected by LSD, 3,700 animals died and 17,500 were slaughtered due to culling policies to stop the spread of the disease. Most outbreaks occurred in 2016, between the months of May and November. The affected region was divided into a grid of 10 × 10 km cells and we fit a spatial regression model to analyse the association between the reported LSD outbreaks and climatic variables, land cover, and cattle density. The results showed big differences in the odds of being LSD positive due to the type of land cover: the odds of a cell being LSD positive was increased in areas mostly covered with croplands, grassland, or shrubland. The odds was also increased for higher cattle density, as well as areas with higher annual mean temperature and higher temperature diurnal range. The resulting model was utilized to predict the LSD risk in neighbouring unaffected areas in Europe, the Caucasus, and Central Asia, identifying several areas with high risk of spread. Results from this study provide useful information for the design of surveillance and awareness systems, and preventive measures, e.g., vaccination programmes.


Asunto(s)
Brotes de Enfermedades/veterinaria , Dermatosis Nodular Contagiosa/epidemiología , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Animales , Asia/epidemiología , Bovinos , Europa (Continente)/epidemiología , Dermatosis Nodular Contagiosa/transmisión , Medición de Riesgo , Análisis Espacial , Vacunación
10.
Biomed Res Int ; 2016: 6257984, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27294125

RESUMEN

Lumpy skin disease is an economically important poxvirus disease of cattle. Vaccination is the main method of control but sporadic outbreaks have been reported in Turkey. This study was carried out to determine the changes in serum biochemical values of cattle naturally infected with lumpy skin disease virus (LSDV). For this study, blood samples in EDTA, serum samples, and nodular skin lesions were obtained from clinically infected animals (n = 15) whereas blood samples in EDTA and serum samples were collected from healthy animals (n = 15). A quantitative real-time PCR method was used to detect Capripoxvirus (CaPV) DNA in clinical samples. A real-time PCR high-resolution melt assay was performed to genotype CaPVs. Serum cardiac, hepatic, and renal damage markers and lipid metabolism products were measured by autoanalyzer. LSDV nucleic acid was detected in all samples which were obtained from clinically infected cattle. The results of serum biochemical analysis showed that aspartate aminotransferase, alkaline phosphatase, total protein, and creatinine concentrations were markedly increased in serum from infected animals. However, there were no significant differences in the other biochemical parameters evaluated. The results of the current study suggest that liver and kidney failures occur during LSDV infection. These findings may help in developing effective treatment strategies in LSDV infection.


Asunto(s)
Dermatosis Nodular Contagiosa/sangre , Dermatosis Nodular Contagiosa/virología , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Fosfatasa Alcalina/sangre , Animales , Aspartato Aminotransferasas/sangre , Capripoxvirus/genética , Capripoxvirus/patogenicidad , Bovinos , Creatinina/sangre , ADN Viral , Fallo Hepático/sangre , Fallo Hepático/metabolismo , Fallo Hepático/virología , Dermatosis Nodular Contagiosa/metabolismo , Virus de la Dermatosis Nodular Contagiosa/genética , Proteínas/metabolismo , Insuficiencia Renal/sangre , Insuficiencia Renal/metabolismo , Insuficiencia Renal/virología
11.
Virol J ; 8: 265, 2011 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-21624130

RESUMEN

BACKGROUND: The Capripoxvirus, Lumpy skin disease virus (LSDV) has a restricted host-range and is being investigated as a novel HIV-1 vaccine vector. LSDV does not complete its replication cycle in non-ruminant hosts. METHODS: The safety of LSDV was tested at doses of 104 and 106 plaque forming units in two strains of immunocompromised mice, namely RAG mice and CD4 T cell knockout mice. LSDV expressing HIV-1 subtype C Gag, reverse transcriptase (RT), Tat and Nef as a polyprotein (Grttn), (rLSDV-grttn), was constructed. The immunogenicity of rLSDV-grttn was tested in homologous prime-boost regimens as well as heterologous prime-boost regimes in combination with a DNA vaccine (pVRC-grttn) or modified vaccinia Ankara vaccine (rMVA-grttn) both expressing Grttn. RESULTS: Safety was demonstrated in two strains of immunocompromised mice.In the immunogenicity experiments mice developed high magnitudes of HIV-specific cells producing IFN-gamma and IL-2. A comparison of rLSDV-grttn and rMVA-grttn to boost a DNA vaccine (pVRC-grttn) indicated a DNA prime and rLSDV-grttn boost induced a 2 fold (p < 0.01) lower cumulative frequency of Gag- and RT-specific IFN-γ CD8 and CD4 cells than a boost with rMVA-grttn. However, the HIV-specific cells induced by the DNA vaccine prime rLSDV-grttn boost produced greater than 3 fold (p < 0.01) more IFN- gamma than the HIV-specific cells induced by the DNA vaccine prime rMVA-grttn boost. A boost of HIV-specific CD4 cells producing IL-2 was only achieved with the DNA vaccine prime and rLSDV-grttn boost. Heterologous prime-boost combinations of rLSDV-grttn and rMVA-grttn induced similar cumulative frequencies of IFN- gamma producing Gag- and RT-specific CD8 and CD4 cells. A significant difference (p < 0.01) between the regimens was the higher capacity (2.1 fold) of Gag-and RT-specific CD4 cells to produce IFN-γ with a rMVA-grttn prime - rLSDV-grttn boost. This regimen also induced a 1.5 fold higher (p < 0.05) frequency of Gag- and RT-specific CD4 cells producing IL-2. CONCLUSIONS: LSDV was demonstrated to be non-pathogenic in immunocompromised mice. The rLSDV-grttn vaccine was immunogenic in mice particularly in prime-boost regimens. The data suggests that this novel vaccine may be useful for enhancing, in particular, HIV-specific CD4 IFN- gamma and IL-2 responses induced by a priming vaccine.


Asunto(s)
Vacunas contra el SIDA/efectos adversos , Vacunas contra el SIDA/inmunología , Virus Defectuosos/patogenicidad , Portadores de Fármacos , Vectores Genéticos , VIH-1/inmunología , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Vacunas contra el SIDA/genética , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Virus Defectuosos/genética , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/genética , Inmunización Secundaria/métodos , Huésped Inmunocomprometido , Virus de la Dermatosis Nodular Contagiosa/genética , Ratones , Ratones Noqueados , Vacunación/métodos , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
12.
Transbound Emerg Dis ; 55(7): 299-307, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18503511

RESUMEN

Lumpy skin disease along with sheep pox and goatpox are the most serious poxvirus diseases of livestock, and are caused by viruses that belong to the genus Capripoxvirus within the subfamily Chordopoxvirinae, family Poxviridae. To facilitate the study of lumpy skin disease pathogenesis, we inoculated eight 4- to 6-month-old Holstein calves intravenously with lumpy skin disease virus (LSDV) and collected samples over a period of 42 days for analysis by virus isolation, real-time PCR and light microscopy. Following inoculation, cattle developed fever and skin nodules, with the extent of infection varying between animals. Skin nodules remained visible until the end of the experiment on day post-inoculation (DPI) 42. Viremia measured by real-time PCR and virus isolation was not observed in all animals but was detectable between 6 and 15 DPI. Low levels of viral shedding were observed in oral and nasal secretions between 12 and 18 DPI. Several tissues were assessed for the presence of virus at DPI 3, 6, 9, 12, 15, 18 and 42 by virus isolation and real-time PCR. Virus was consistently detected by real-time PCR and virus isolation at high levels in skin nodules indicating LSDV has a tropism for skin. In contrast, relatively few lesions were observed systemically. Viral DNA was detected by real-time PCR in skin lesions collected on DPI 42. Cattle developing anti-capripoxvirus antibodies starting at DPI 21 was detected by serum neutralization. The disease in this study varied from mild with few secondary skin nodules to generalized infection of varying severity, and was characterized by morbidity with no mortality.


Asunto(s)
Dermatosis Nodular Contagiosa/patología , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Viremia/veterinaria , Animales , Anticuerpos Antivirales/sangre , Bovinos , ADN Viral/análisis , ADN Viral/aislamiento & purificación , Inmunohistoquímica/veterinaria , Inyecciones Intravenosas/veterinaria , Dermatosis Nodular Contagiosa/virología , Virus de la Dermatosis Nodular Contagiosa/inmunología , Pruebas de Neutralización , Reacción en Cadena de la Polimerasa/veterinaria , Distribución Aleatoria , Factores de Tiempo , Esparcimiento de Virus
13.
Vaccine ; 25(12): 2238-43, 2007 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-17250934

RESUMEN

Twelve serologically negative bulls were used, six were vaccinated with a modified live LSD vaccine and six unvaccinated. All were then experimentally infected with a virulent field strain of LSDV. No clinical abnormality was detected following vaccination, and mild clinical signs were seen in four vaccinated bulls following challenge. Virus was not found in semen of vaccinated bulls. Two of the unvaccinated bulls developed severe LSD and four showed mild symptoms, all excreted the virus in the semen following challenge. This study confirmed the ability of LSD vaccination to prevent the excretion of LSDV in semen of vaccinated bulls.


Asunto(s)
Dermatosis Nodular Contagiosa/inmunología , Virus de la Dermatosis Nodular Contagiosa/inmunología , Semen/virología , Vacunación/métodos , Vacunas Virales/inmunología , Animales , Bovinos , ADN Viral/análisis , Dermatosis Nodular Contagiosa/tratamiento farmacológico , Dermatosis Nodular Contagiosa/virología , Virus de la Dermatosis Nodular Contagiosa/genética , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Masculino , Reacción en Cadena de la Polimerasa , Semen/efectos de los fármacos , Vacunas Virales/uso terapéutico , Virulencia
14.
Arch Virol ; 148(7): 1335-56, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12827464

RESUMEN

The genomic sequences of 3 strains of Lumpy skin disease virus (LSDV) (Neethling type) were compared to determine molecular differences, viz. the South African vaccine strain (LW), a virulent field-strain from a recent outbreak in South Africa (LD), and the virulent Kenyan 2490 strain (LK). A comparison between the virulent field isolates indicates that in 29 of the 156 putative genes, only 38 encoded amino acid differences were found, mostly in the variable terminal regions. When the attenuated vaccine strain (LW) was compared with field isolate LD, a total of 438 amino acid substitutions were observed. These were also mainly in the terminal regions, but with notably more frameshifts leading to truncated ORFs as well as deletions and insertions. These modified ORFs encode proteins involved in the regulation of host immune responses, gene expression, DNA repair, host-range specificity and proteins with unassigned functions. We suggest that these differences could lead to restricted immuno-evasive mechanisms and virulence factors present in attenuated LSDV strains. Further studies to determine the functions of the relevant encoded gene products will hopefully confirm this assumption. The molecular design of an improved LSDV vaccine is likely to be based on the strategic manipulation of such genes.


Asunto(s)
Dermatosis Nodular Contagiosa/virología , Virus de la Dermatosis Nodular Contagiosa/genética , Virus de la Dermatosis Nodular Contagiosa/inmunología , Vacunas Virales/química , Animales , Bovinos , Clonación Molecular , ADN Viral/genética , ADN Viral/aislamiento & purificación , Kenia , Dermatosis Nodular Contagiosa/inmunología , Dermatosis Nodular Contagiosa/prevención & control , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Familia de Multigenes , Sistemas de Lectura Abierta , Sudáfrica , Vacunas Atenuadas/química , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...