Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Virulence ; 12(1): 430-443, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33487119

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is an encephalitic alphavirus that can cause debilitating, acute febrile illness and potentially result in encephalitis. Currently, there are no FDA-licensed vaccines or specific therapeutics for VEEV. Previous studies have demonstrated that VEEV infection results in increased blood-brain barrier (BBB) permeability that is mediated by matrix metalloproteinases (MMPs). Furthermore, after subarachnoid hemorrhage in mice, MMP-9 is upregulated in the brain and mediates BBB permeability in a toll-like receptor 4 (TLR4)-dependent manner. Here, we demonstrate that disease in C3H mice during VEEV TC-83 infection is dependent on TLR4 because intranasal infection of C3H/HeN (TLR4 WT ) mice with VEEV TC-83 resulted in mortality as opposed to survival of TLR4-defective C3H/HeJ (TLR4 mut ) mice. In addition, BBB permeability was induced to a lesser extent in TLR4 mut mice compared with TLR4 WT mice during VEEV TC-83 infection as determined by sodium fluorescein and fluorescently-conjugated dextran extravasation. Moreover, MMP-9, MMP-2, ICAM-1, CCL2 and IFN-γ were all induced to significantly lower levels in the brains of infected TLR4 mut mice compared with infected TLR4 WT mice despite the absence of significantly different viral titers or immune cell populations in the brains of infected TLR4 WT and TLR4 mut mice. These data demonstrate the critical role of TLR4 in mediating BBB permeability and disease in C3H mice during VEEV TC-83 infection, which suggests that TLR4 is a potential target for the development of therapeutics for VEEV.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Virus de la Encefalitis Equina Venezolana/patogenicidad , Receptor Toll-Like 4/genética , Animales , Encéfalo/virología , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/virología , Femenino , Ratones , Ratones Endogámicos C3H , Permeabilidad , Receptor Toll-Like 4/metabolismo , Replicación Viral
2.
Mol Ther ; 29(3): 1174-1185, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33352107

RESUMEN

Self-amplifying RNA (saRNA) is a cutting-edge platform for both nucleic acid vaccines and therapeutics. saRNA is self-adjuvanting, as it activates types I and III interferon (IFN), which enhances the immunogenicity of RNA vaccines but can also lead to inhibition of translation. In this study, we screened a library of saRNA constructs with cis-encoded innate inhibiting proteins (IIPs) and determined the effect on protein expression and immunogenicity. We observed that the PIV-5 V and Middle East respiratory syndrome coronavirus (MERS-CoV) ORF4a proteins enhance protein expression 100- to 500-fold in vitro in IFN-competent HeLa and MRC5 cells. We found that the MERS-CoV ORF4a protein partially abates dose nonlinearity in vivo, and that ruxolitinib, a potent Janus kinase (JAK)/signal transducer and activator of transcription (STAT) inhibitor, but not the IIPs, enhances protein expression of saRNA in vivo. Both the PIV-5 V and MERS-CoV ORF4a proteins were found to enhance the percentage of resident cells in human skin explants expressing saRNA and completely rescued dose nonlinearity of saRNA. Finally, we observed that the MERS-CoV ORF4a increased the rabies virus (RABV)-specific immunoglobulin G (IgG) titer and neutralization half-maximal inhibitory concentration (IC50) by ∼10-fold in rabbits, but not in mice or rats. These experiments provide a proof of concept that IIPs can be directly encoded into saRNA vectors and effectively abate the nonlinear dose dependency and enhance immunogenicity.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Inmunogenicidad Vacunal , Biosíntesis de Proteínas/efectos de los fármacos , Vacunas Sintéticas/farmacología , Proteínas del Envoltorio Viral/administración & dosificación , Animales , Línea Celular , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Virus de la Encefalitis Equina Venezolana/inmunología , Virus de la Encefalitis Equina Venezolana/patogenicidad , Fibroblastos , Regulación de la Expresión Génica , Células HeLa , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunoglobulina G/biosíntesis , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/genética , Quinasas Janus/inmunología , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , FN-kappa B/genética , FN-kappa B/inmunología , Nitrilos , Virus de la Parainfluenza 5/efectos de los fármacos , Virus de la Parainfluenza 5/inmunología , Virus de la Parainfluenza 5/patogenicidad , Pirazoles/farmacología , Pirimidinas , Conejos , Virus de la Rabia/efectos de los fármacos , Virus de la Rabia/inmunología , Virus de la Rabia/patogenicidad , Ratas , Factores de Transcripción STAT/antagonistas & inhibidores , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/inmunología , Transducción de Señal , Vacunas Sintéticas/biosíntesis , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Vacunas de ARNm
3.
Nature ; 588(7837): 308-314, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33208938

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a neurotropic alphavirus transmitted by mosquitoes that causes encephalitis and death in humans1. VEEV is a biodefence concern because of its potential for aerosol spread and the current lack of sufficient countermeasures. The host factors that are required for VEEV entry and infection remain poorly characterized. Here, using a genome-wide CRISPR-Cas9-based screen, we identify low-density lipoprotein receptor class A domain-containing 3 (LDLRAD3)-a highly conserved yet poorly characterized member of the scavenger receptor superfamily-as a receptor for VEEV. Gene editing of mouse Ldlrad3 or human LDLRAD3 results in markedly reduced viral infection of neuronal cells, which is restored upon complementation with LDLRAD3. LDLRAD3 binds directly to VEEV particles and enhances virus attachment and internalization into host cells. Genetic studies indicate that domain 1 of LDLRAD3 (LDLRAD3(D1)) is necessary and sufficient to support infection by VEEV, and both anti-LDLRAD3 antibodies and an LDLRAD3(D1)-Fc fusion protein block VEEV infection in cell culture. The pathogenesis of VEEV infection is abrogated in mice with deletions in Ldlrad3, and administration of LDLRAD3(D1)-Fc abolishes disease caused by several subtypes of VEEV, including highly virulent strains. The development of a decoy-receptor fusion protein suggests a strategy for the prevention of severe VEEV infection and associated disease in humans.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/metabolismo , Receptores de LDL/metabolismo , Receptores Virales/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/metabolismo , Encefalomielitis Equina Venezolana/prevención & control , Encefalomielitis Equina Venezolana/virología , Femenino , Prueba de Complementación Genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Receptores de LDL/deficiencia , Receptores de LDL/genética , Receptores Virales/genética , Acoplamiento Viral , Internalización del Virus
4.
PLoS One ; 15(8): e0238254, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32841293

RESUMEN

The identification of host / pathogen interactions is essential to both understanding the molecular biology of infection and developing rational intervention strategies to overcome disease. Alphaviruses, such as Sindbis virus, Chikungunya virus, and Venezuelan Equine Encephalitis virus are medically relevant positive-sense RNA viruses. As such, they must interface with the host machinery to complete their infectious lifecycles. Nonetheless, exhaustive RNA:Protein interaction discovery approaches have not been reported for any alphavirus species. Thus, the breadth and evolutionary conservation of host interactions on alphaviral RNA function remains a critical gap in the field. Herein we describe the application of the Cross-Link Assisted mRNP Purification (CLAMP) strategy to identify conserved alphaviral interactions. Through comparative analyses, conserved alphaviral host / pathogen interactions were identified. Approximately 100 unique host proteins were identified as a result of these analyses. Ontological assessments reveal enriched Molecular Functions and Biological Processes relevant to alphaviral infection. Specifically, as anticipated, Poly(A) RNA Binding proteins are significantly enriched in virus specific CLAMP data sets. Moreover, host proteins involved in the regulation of mRNA stability, proteasome mediated degradation, and a number of 14-3-3 proteins were identified. Importantly, these data expand the understanding of alphaviral host / pathogen interactions by identifying conserved interactants.


Asunto(s)
Alphavirus/genética , Alphavirus/patogenicidad , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Alphavirus/fisiología , Animales , Línea Celular , Virus Chikungunya/genética , Virus Chikungunya/patogenicidad , Virus Chikungunya/fisiología , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/patogenicidad , Virus de la Encefalitis Equina Venezolana/fisiología , Evolución Molecular , Células HEK293 , Humanos , Mapas de Interacción de Proteínas , Ribonucleoproteínas/genética , Ribonucleoproteínas/aislamiento & purificación , Ribonucleoproteínas/metabolismo , Virus Sindbis/genética , Virus Sindbis/patogenicidad , Virus Sindbis/fisiología , Especificidad de la Especie
5.
Antiviral Res ; 182: 104875, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32755661

RESUMEN

Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV) are mosquito-borne viruses in the Americas that cause central nervous system (CNS) disease in humans and equids. In this study, we directly characterized the pathogenesis of VEEV, EEEV, and WEEV in cynomolgus macaques following subcutaneous exposure because this route more closely mimics natural infection via mosquito transmission or by an accidental needle stick. Our results highlight how EEEV is significantly more pathogenic compared to VEEV similarly to what is observed in humans. Interestingly, EEEV appears to be just as neuropathogenic by subcutaneous exposure as it was in previously completed aerosol exposure studies. In contrast, subcutaneous exposure of cynomolgus macaques with WEEV caused limited disease and is contradictory to what has been reported for aerosol exposure. Several differences in viremia, hematology, or tissue tropism were noted when animals were exposed subcutaneously compared to prior aerosol exposure studies. This study provides a more complete picture of the pathogenesis of the encephalitic alphaviruses and highlights how further defining the neuropathology of these viruses could have important implications for the development of medical countermeasures for the neurovirulent alphaviruses.


Asunto(s)
Virus de la Encefalitis Equina del Este/patogenicidad , Virus de la Encefalitis Equina Venezolana/patogenicidad , Virus de la Encefalitis Equina del Oeste/patogenicidad , Encefalomielitis Equina/patología , Encefalomielitis Equina Venezolana/patología , Macaca fascicularis/virología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Femenino , Masculino , Replicación Viral
6.
Virology ; 539: 121-128, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31733451

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a neurotropic virus that causes significant disease in both humans and equines. Here we characterized the impact of VEEV on signaling pathways regulating cell death in human primary astrocytes. VEEV productively infected primary astrocytes and caused an upregulation of early growth response 1 (EGR1) gene expression at 9 and 18 h post infection. EGR1 induction was dependent on extracellular signal-regulated kinase1/2 (ERK1/2) and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), but not on p38 mitogen activated protein kinase (MAPK) or phosphoinositide 3-kinase (PI3K) signaling. Knockdown of EGR1 significantly reduced VEEV-induced apoptosis and impacted viral replication. Knockdown of ERK1/2 or PERK significantly reduced EGR1 gene expression, dramatically reduced viral replication, and increased cell survival as well as rescued cells from VEEV-induced apoptosis. These data indicate that EGR1 activation and subsequent cell death are regulated through ERK and PERK pathways in VEEV infected primary astrocytes.


Asunto(s)
Muerte Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Virus de la Encefalitis Equina Venezolana/fisiología , Encefalomielitis Equina Venezolana/virología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , eIF-2 Quinasa/metabolismo , Apoptosis , Astrocitos/metabolismo , Astrocitos/patología , Astrocitos/virología , Supervivencia Celular , Células Cultivadas , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/metabolismo , Encefalomielitis Equina Venezolana/patología , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Transducción de Señal , Replicación Viral , eIF-2 Quinasa/genética
7.
Viruses ; 11(9)2019 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-31480472

RESUMEN

Licensure of a vaccine to protect against aerosolized Venezuelan equine encephalitis virus (VEEV) requires use of the U.S. Food and Drug Administration (FDA) Animal Rule to assess vaccine efficacy as human studies are not feasible or ethical. An approach to selecting VEEV challenge strains for use under the Animal Rule was developed, taking into account Department of Defense (DOD) vaccine requirements, FDA Animal Rule guidelines, strain availability, and lessons learned from the generation of filovirus challenge agents within the Filovirus Animal Nonclinical Group (FANG). Initial down-selection to VEEV IAB and IC epizootic varieties was based on the DOD objective for vaccine protection in a bioterrorism event. The subsequent down-selection of VEEV IAB and IC isolates was based on isolate availability, origin, virulence, culture and animal passage history, known disease progression in animal models, relevancy to human disease, and ability to generate sufficient challenge material. Methods for the propagation of viral stocks (use of uncloned (wild-type), plaque-cloned, versus cDNA-cloned virus) to minimize variability in the potency of the resulting challenge materials were also reviewed. The presented processes for VEEV strain selection and the propagation of viral stocks may serve as a template for animal model development product testing under the Animal Rule to other viral vaccine programs. This manuscript is based on the culmination of work presented at the "Alphavirus Workshop" organized and hosted by the Joint Vaccine Acquisition Program (JVAP) on 15 December 2014 at Fort Detrick, Maryland, USA.


Asunto(s)
Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/prevención & control , Vacunas Virales/uso terapéutico , Animales , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/virología , Guías como Asunto , Humanos , Programas de Inmunización/métodos , Programas de Inmunización/normas , Virología/métodos
8.
Antiviral Res ; 164: 106-122, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30742841

RESUMEN

The alphaviral nonstructural protein 2 (nsP2) cysteine proteases (EC 3.4.22.-) are essential for the proteolytic processing of the nonstructural (ns) polyprotein and are validated drug targets. A common secondary role of these proteases is to antagonize the effects of interferon (IFN). After delineating the cleavage site motif of the Venezuelan equine encephalitis virus (VEEV) nsP2 cysteine protease, we searched the human genome to identify host protein substrates. Here we identify a new host substrate of the VEEV nsP2 protease, human TRIM14, a component of the mitochondrial antiviral-signaling protein (MAVS) signalosome. Short stretches of homologous host-pathogen protein sequences (SSHHPS) are present in the nonstructural polyprotein and TRIM14. A 25-residue cyan-yellow fluorescent protein TRIM14 substrate was cleaved in vitro by the VEEV nsP2 protease and the cleavage site was confirmed by tandem mass spectrometry. A TRIM14 cleavage product also was found in VEEV-infected cell lysates. At least ten other Group IV (+)ssRNA viral proteases have been shown to cleave host proteins involved in generating the innate immune responses against viruses, suggesting that the integration of these short host protein sequences into the viral protease cleavage sites may represent an embedded mechanism of IFN antagonism. This interference mechanism shows several parallels with those of CRISPR/Cas9 and RNAi/RISC, but with a protease recognizing a protein sequence common to both the host and pathogen. The short host sequences embedded within the viral genome appear to be analogous to the short phage sequences found in a host's CRISPR spacer sequences. To test this algorithm, we applied it to another Group IV virus, Zika virus (ZIKV), and identified cleavage sites within human SFRP1 (secreted frizzled related protein 1), a retinal Gs alpha subunit, NT5M, and Forkhead box protein G1 (FOXG1) in vitro. Proteolytic cleavage of these proteins suggests a possible link between the protease and the virus-induced phenotype of ZIKV. The algorithm may have value for selecting cell lines and animal models that recapitulate virus-induced phenotypes, predicting host-range and susceptibility, selecting oncolytic viruses, identifying biomarkers, and de-risking live virus vaccines. Inhibitors of the proteases that utilize this mechanism may both inhibit viral replication and alleviate suppression of the innate immune responses.


Asunto(s)
Proteasas de Cisteína/metabolismo , Virus de la Encefalitis Equina Venezolana/enzimología , Proteínas Virales/metabolismo , Virus Zika/enzimología , 5'-Nucleotidasa/metabolismo , Línea Celular , Inhibidores de Cisteína Proteinasa/farmacología , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/virología , Factores de Transcripción Forkhead/metabolismo , Interacciones Huésped-Patógeno , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteolisis , Replicación Viral/efectos de los fármacos , Virus Zika/patogenicidad , Infección por el Virus Zika/virología
9.
Viruses ; 11(2)2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30781656

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is an alphavirus in the family Togaviridae. VEEV is highly infectious in aerosol form and a known bio-warfare agent that can cause severe encephalitis in humans. Periodic outbreaks of VEEV occur predominantly in Central and South America. Increased interest in VEEV has resulted in a more thorough understanding of the pathogenesis of this disease. Inflammation plays a paradoxical role of antiviral response as well as development of lethal encephalitis through an interplay between the host and viral factors that dictate virus replication. VEEV has efficient replication machinery that adapts to overcome deleterious mutations in the viral genome or improve interactions with host factors. In the last few decades there has been ongoing development of various VEEV vaccine candidates addressing the shortcomings of the current investigational new drugs or approved vaccines. We review the current understanding of the molecular basis of VEEV pathogenesis and discuss various types of vaccine candidates.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/patogenicidad , Interacciones Microbiota-Huesped/inmunología , Vacunas Virales/inmunología , Animales , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/fisiología , Encefalomielitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/prevención & control , Genoma Viral , Caballos/virología , Humanos , Inflamación , América del Sur , Vacunas Virales/genética , Replicación Viral
10.
Nucleic Acids Res ; 46(7): 3657-3670, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29361131

RESUMEN

Alphaviruses are mosquito-borne pathogens that cause human diseases ranging from debilitating arthritis to lethal encephalitis. Studies with Sindbis virus (SINV), which causes fever, rash, and arthralgia in humans, and Venezuelan equine encephalitis virus (VEEV), which causes encephalitis, have identified RNA structural elements that play key roles in replication and pathogenesis. However, a complete genomic structural profile has not been established for these viruses. We used the structural probing technique SHAPE-MaP to identify structured elements within the SINV and VEEV genomes. Our SHAPE-directed structural models recapitulate known RNA structures, while also identifying novel structural elements, including a new functional element in the nsP1 region of SINV whose disruption causes a defect in infectivity. Although RNA structural elements are important for multiple aspects of alphavirus biology, we found the majority of RNA structures were not conserved between SINV and VEEV. Our data suggest that alphavirus RNA genomes are highly divergent structurally despite similar genomic architecture and sequence conservation; still, RNA structural elements are critical to the viral life cycle. These findings reframe traditional assumptions about RNA structure and evolution: rather than structures being conserved, alphaviruses frequently evolve new structures that may shape interactions with host immune systems or co-evolve with viral proteins.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/genética , ARN/genética , Virus Sindbis/genética , Replicación Viral/genética , Alphavirus/química , Alphavirus/genética , Alphavirus/patogenicidad , Animales , Encefalitis/genética , Encefalitis/virología , Virus de la Encefalitis Equina Venezolana/química , Virus de la Encefalitis Equina Venezolana/patogenicidad , Genoma Viral/genética , Caballos/virología , Humanos , Conformación de Ácido Nucleico , ARN/química , Virus Sindbis/química , Virus Sindbis/patogenicidad
11.
Sci Rep ; 7(1): 17705, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29255256

RESUMEN

Therapeutics are currently unavailable for Venezuelan equine encephalitis virus (VEEV), which elicits flu-like symptoms and encephalitis in humans, with an estimated 14% of cases resulting in neurological disease. Here we identify anti-VEEV agents using in silico structure-based-drug-design (SBDD) for the first time, characterising inhibitors that block recognition of VEEV capsid protein (C) by the host importin (IMP) α/ß1 nuclear transport proteins. From an initial screen of 1.5 million compounds, followed by in silico refinement and screening for biological activity in vitro, we identified 21 hit compounds which inhibited IMPα/ß1:C binding with IC50s as low as 5 µM. Four compounds were found to inhibit nuclear import of C in transfected cells, with one able to reduce VEEV replication at µM concentration, concomitant with reduced C nuclear accumulation in infected cells. Further, this compound was inactive against a mutant VEEV that lacks high affinity IMPα/ß1:C interaction, supporting the mode of its antiviral action to be through inhibiting C nuclear localization. This successful application of SBDD paves the way for lead optimization for VEEV antivirals, and is an exciting prospect to identify inhibitors for the many other viral pathogens of significance that require IMPα/ß1 in their infectious cycle.


Asunto(s)
Proteínas de la Cápside/efectos de los fármacos , Descubrimiento de Drogas/métodos , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Antivirales/farmacología , Cápside , Proteínas de la Cápside/metabolismo , Núcleo Celular/metabolismo , Chlorocebus aethiops , Simulación por Computador , Diseño de Fármacos , Virus de la Encefalitis Equina Venezolana/patogenicidad , Humanos , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Células Vero , Replicación Viral/efectos de los fármacos , alfa Carioferinas/antagonistas & inhibidores , alfa Carioferinas/metabolismo , beta Carioferinas/antagonistas & inhibidores , beta Carioferinas/metabolismo
12.
Viruses ; 9(10)2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28961161

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a New World alphavirus that is vectored by mosquitos and cycled in rodents. It can cause disease in equines and humans characterized by a febrile illness that may progress into encephalitis. Like the capsid protein of other viruses, VEEV capsid is an abundant structural protein that binds to the viral RNA and interacts with the membrane-bound glycoproteins. It also has protease activity, allowing cleavage of itself from the growing structural polypeptide during translation. However, VEEV capsid protein has additional nonstructural roles within the host cell functioning as the primary virulence factor for VEEV. VEEV capsid inhibits host transcription and blocks nuclear import in mammalian cells, at least partially due to its complexing with the host CRM1 and importin α/ß1 nuclear transport proteins. VEEV capsid also shuttles between the nucleus and cytoplasm and is susceptible to inhibitors of nuclear trafficking, making it a promising antiviral target. Herein, the role of VEEV capsid in viral replication and pathogenesis will be discussed including a comparison to proteins of other alphaviruses.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Virus de la Encefalitis Equina Venezolana/patogenicidad , ARN Viral/metabolismo , Replicación Viral , Transporte Activo de Núcleo Celular , Animales , Cápside/química , Proteínas de la Cápside/genética , Línea Celular , Virus de la Encefalitis Equina del Este , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/metabolismo , Virus de la Encefalitis Equina del Oeste , Caballos , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Virulencia , Replicación Viral/genética , Proteína Exportina 1
13.
PLoS One ; 12(7): e0180486, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28686653

RESUMEN

Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.


Asunto(s)
Encéfalo/diagnóstico por imagen , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/diagnóstico por imagen , Microscopía Confocal/métodos , Animales , Encéfalo/fisiopatología , Encéfalo/virología , Callithrix/virología , Virus de la Encefalitis Equina Venezolana/aislamiento & purificación , Encefalomielitis Equina Venezolana/diagnóstico , Encefalomielitis Equina Venezolana/fisiopatología , Encefalomielitis Equina Venezolana/virología , Humanos , Ratones , Neuroimagen/métodos , Ratas , Replicación Viral
14.
J Wildl Dis ; 53(3): 657-661, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28384059

RESUMEN

Arboviruses are important zoonotic agents with complex transmission cycles and are not well understood because they may involve many vectors and hosts. We studied sympatric wild mammals and hematophagous mosquitoes having the potential to act as hosts and vectors in two areas of southern Mexico. Mosquitoes, bats, and rodents were captured in Calakmul (Campeche) and Montes Azules (Chiapas), between November 2010 and August 2011. Spleen samples from 146 bats and 14 rodents were tested for molecular evidence of Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), western equine encephalitis virus (WEEV), and West Nile virus (WNV) using PCR protocols. Bat ( Artibeus lituratus , Carollia sowelli , Glossophaga soricina , and Sturnira parvidens) and rodent ( Sigmodon hispidus and Oryzomys alfaroi ) species were positive for VEEV. No individuals were positive for WNV, EEEV, or WEEV. A total of 1,298 mosquitoes were collected at the same sites, and five of the mosquito species collected were known VEEV vectors (Aedes fulvus, Mansonia indubitans, Psorophora ferox, Psorophora cilipes, and Psorophora confinnis). This survey simultaneously presents the first molecular evidence, to our knowledge, of VEEV in bats and rodents from southern Mexico and the identification of potential sympatric vectors. Studies investigating sympatric nonhuman hosts, vectors, and arboviruses must be expanded to determine arboviral dynamics in complex systems in which outbreaks of emerging and reemerging zoonoses are continuously occurring.


Asunto(s)
Virus de la Encefalitis Equina del Este , Virus de la Encefalitis Equina Venezolana/aislamiento & purificación , Mamíferos/virología , Animales , Arbovirus , Culicidae , Vectores de Enfermedades , Virus de la Encefalitis Equina Venezolana/patogenicidad , Caballos , Humanos , Insectos Vectores , México , Zoonosis
15.
BMC Infect Dis ; 17(1): 309, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446152

RESUMEN

BACKGROUND: Venezuelan equine encephalitis virus (VEEV) is an alphavirus in the family Togaviridae. VEEV causes a bi-phasic illness in mice where primary replication in lymphoid organs is followed by entry into the central nervous system (CNS). The CNS phase of infection is marked by encephalitis and large scale neuronal death ultimately resulting in death. Molecular determinants of VEEV neurovirulence are not well understood. In this study, host gene expression response to highly neurovirulent VEEV (V3000 strain) infection was compared with that of a partially neurovirulent VEEV (V3034 strain) to identify host factors associated with VEEV neurovirulence. METHODS: Whole genome microarrays were performed to identify the significantly modulated genes. Microarray observations were classified into three categories i.e., genes that were similarly modulated against both V3000 and V3034 infections, and genes that were uniquely modulated in infection with V3034 or V3000. Histologic sections of spleen and brain were evaluated by hematoxylin and eosin stains from all the mice. RESULTS: V3000 infection induced a greater degree of pathology in both the spleen and brain tissue of infected mice compared to V3034 infection. Genes commonly modulated in the spleens after V3000 or V3034 infection were associated with innate immune responses, inflammation and antigen presentation, however, V3000 induced a gene response profile that suggests a stronger inflammatory and apoptotic response compared to V3034. In the brain, both the strains of VEEV induced an innate immune response reflected by an upregulation of the genes involved in antigen presentation, interferon response, and inflammation. Similar to the spleen, V3000 was found to induce a stronger inflammatory response than V3034 in terms of induction of pro-inflammatory genes and associated pathways. Ccl2, Ccl5, Ccl6, and Ly6 were uniquely upregulated in V3000 infected mouse brains and correlated with the extensive inflammation observed in the brain. CONCLUSION: The common gene profile identified from V3000 and V3034 exposure can help in understanding a generalized host response to VEEV infection. Inflammatory genes that were uniquely identified in mouse brains with V3000 infection will help in better understanding the lethal neurovirulence of VEEV. Future studies are needed to explore the roles played by the genes identified in VEEV induced encephalitis.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/virología , Interacciones Huésped-Patógeno/genética , Animales , Presentación de Antígeno , Encéfalo/patología , Encéfalo/virología , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos , Bazo/patología , Bazo/virología , Regulación hacia Arriba
16.
Virology ; 499: 30-39, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27632563

RESUMEN

Eastern, Venezuelan and western equine encephalitis viruses (EEEV, VEEV, and WEEV) are mosquito-borne viruses that cause substantial disease in humans and other vertebrates. Vaccines are limited and current treatment options have not proven successful. In this report, we vaccinated outbred mice with lipid-antigen-nucleic acid-complexes (LANACs) containing VEEV E1+WEEV E1 antigen and characterized protective efficacy against lethal EEEV, VEEV, and WEEV challenge. Vaccination resulted in complete protection against EEEV, VEEV, and WEEV in CD-1 mice. Measurements of bioluminescence and plaque reduction neutralization tests (PRNTs) indicate that LANAC VEEV E1+WEEV E1 vaccination is sterilizing against VEEV and WEEV challenge; whereas immunity to EEEV is not sterilizing. Passive transfer of rabbit VEEV E1+WEEV E1 immune serum to naive mice extended the mean time to death (MTD) of EEEV challenged mice and provided significant protection from lethal VEEV and WEEV challenge.


Asunto(s)
Alphavirus/inmunología , Antígenos Virales/inmunología , Reacciones Cruzadas/inmunología , Virus de la Encefalitis Equina Venezolana/inmunología , Virus de la Encefalitis Equina del Oeste/inmunología , Proteínas Virales/inmunología , Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/mortalidad , Infecciones por Alphavirus/prevención & control , Infecciones por Alphavirus/virología , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/administración & dosificación , Antígenos Virales/genética , Línea Celular , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/patogenicidad , Virus de la Encefalitis Equina del Oeste/genética , Virus de la Encefalitis Equina del Oeste/patogenicidad , Femenino , Expresión Génica , Genes Reporteros , Inmunidad Humoral , Inmunización , Liposomas , Ratones , Ácidos Nucleicos , Homología de Secuencia , Proteínas Virales/administración & dosificación , Proteínas Virales/genética , Virulencia/genética , Replicación Viral
17.
Stem Cells Transl Med ; 5(8): 1026-35, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27334491

RESUMEN

UNLABELLED: : Mesenchymal stromal cells (MSCs) are being exploited as gene delivery vectors for various disease and injury therapies. We provide proof-of-concept that engineered MSCs can provide a useful, effective platform for protection against infectious disease. Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne pathogen affecting humans and equines and can be used in bio-warfare. No licensed vaccine or antiviral agent currently exists to combat VEEV infection in humans. Direct antibody administration (passive immunity) is an effective, but short-lived, method of providing immediate protection against a pathogen. We compared the protective efficacy of human umbilical cord perivascular cells (HUCPVCs; a rich source of MSCs), engineered with a transgene encoding a humanized VEEV-neutralizing antibody (anti-VEEV), to the purified antibody. In athymic mice, the anti-VEEV antibody had a half-life of 3.7 days, limiting protection to 2 or 3 days after administration. In contrast, engineered HUCPVCs generated protective anti-VEEV serum titers for 21-38 days after a single intramuscular injection. At 109 days after transplantation, 10% of the mice still had circulating anti-VEEV antibody. The mice were protected against exposure to a lethal dose of VEEV by an intramuscular pretreatment injection with engineered HUCPVCs 24 hours or 10 days before exposure, demonstrating both rapid and prolonged immune protection. The present study is the first to describe engineered MSCs as gene delivery vehicles for passive immunity and supports their utility as antibody delivery vehicles for improved, single-dose prophylaxis against endemic and intentionally disseminated pathogens. SIGNIFICANCE: Direct injection of monoclonal antibodies (mAbs) is an important strategy to immediately protect the recipient from a pathogen. This strategy is critical during natural outbreaks or after the intentional release of bio-weapons. Vaccines require weeks to become effective, which is not practical for first responders immediately deployed to an infected region. However, mAb recipients often require booster shots to maintain protection, which is expensive and impractical once the first responders have been deployed. The present study has shown, for the first time, that mesenchymal stromal cells are effective gene delivery vehicles that can significantly improve mAb-mediated immune protection in a single, intramuscular dose of engineered cells. Such a cell-based delivery system can provide extended life-saving protection in the event of exposure to biological threats using a more practical, single-dose regimen.


Asunto(s)
Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Neutralizantes/inmunología , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/prevención & control , Terapia Genética/métodos , Células Madre Mesenquimatosas/inmunología , Cordón Umbilical/citología , Vacunas Virales/inmunología , Animales , Anticuerpos Monoclonales Humanizados/biosíntesis , Anticuerpos Monoclonales Humanizados/genética , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/genética , Células Cultivadas , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/virología , Femenino , Genotipo , Semivida , Interacciones Huésped-Patógeno , Humanos , Inyecciones Intramusculares , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/virología , Ratones Endogámicos BALB C , Ratones Desnudos , Fenotipo , Estabilidad Proteica , Transfección , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Vacunas Virales/farmacocinética
18.
J Virol ; 90(5): 2418-33, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26676771

RESUMEN

UNLABELLED: Alphaviruses represent a diverse set of arboviruses, many of which are important pathogens. Chikungunya virus (CHIKV), an arthritis-inducing alphavirus, is the cause of a massive ongoing outbreak in the Caribbean and South America. In contrast to CHIKV, other related alphaviruses, such as Venezuelan equine encephalitis virus (VEEV) and Semliki Forest virus (SFV), can cause encephalitic disease. E2, the receptor binding protein, has been implicated as a determinant in cell tropism, host range, pathogenicity, and immunogenicity. Previous reports also have demonstrated that E2 contains residues important for host range expansions and monoclonal antibody binding; however, little is known about what role each protein domain (e.g., A, B, and C) of E2 plays on these factors. Therefore, we constructed chimeric cDNA clones between CHIKV and VEEV or SFV to probe the effect of each domain on pathogenicity in vitro and in vivo. CHIKV chimeras containing each of the domains of the E2 (ΔDomA, ΔDomB, and ΔDomC) from SFV, but not VEEV, were successfully rescued. Interestingly, while all chimeric viruses were attenuated compared to CHIKV in mice, ΔDomB virus showed similar rates of infection and dissemination in Aedes aegypti mosquitoes, suggesting differing roles for the E2 protein in different hosts. In contrast to CHIKV; ΔDomB, and to a lesser extent ΔDomA, caused neuron degeneration and demyelination in mice infected intracranially, suggesting a shift toward a phenotype similar to SFV. Thus, chimeric CHIKV/SFV provide insights on the role the alphavirus E2 protein plays on pathogenesis. IMPORTANCE: Chikungunya virus (CHIKV) has caused large outbreaks of acute and chronic arthritis throughout Africa and Southeast Asia and has now become a massive public health threat in the Americas, causing an estimated 1.2 million human cases in just over a year. No approved vaccines or antivirals exist for human use against CHIKV or any other alphavirus. Despite the threat, little is known about the role the receptor binding protein (E2) plays on disease outcome in an infected host. To study this, our laboratory generated chimeric CHIKV containing corresponding regions of the Semliki Forest virus (SFV) E2 (domains A, B, and C) substituted into the CHIKV genome. Our results demonstrate that each domain of E2 likely plays a critical, but dissimilar role in the viral life cycle. Our experiments show that manipulation of E2 domains can be useful for studies on viral pathogenesis and potentially the production of vaccines and/or antivirals.


Asunto(s)
Infecciones por Alphavirus/patología , Virus Chikungunya/patogenicidad , Virus de la Encefalitis Equina Venezolana/patogenicidad , Virus de los Bosques Semliki/patogenicidad , Proteínas del Envoltorio Viral/metabolismo , Aedes/virología , Infecciones por Alphavirus/virología , Animales , Encéfalo/patología , Virus Chikungunya/genética , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/genética , Femenino , Masculino , Ratones Endogámicos C57BL , Estructura Terciaria de Proteína , Virus de los Bosques Semliki/genética , Proteínas del Envoltorio Viral/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
19.
Vopr Virusol ; 60(3): 14-8, 2015.
Artículo en Ruso | MEDLINE | ID: mdl-26281301

RESUMEN

The status of the various recombinant DNA and RNA-derived candidate vaccines, as well as the Venezuelan equine encephalomyelitis virus (VEEV) replicon vaccine system against extremely hazardous viral hemorrhagic fevers, were reviewed. The VEEV-based replication-incompetent vectors offer attractive features in terms of safety, high expression levels of the heterologous viral antigen, tropism to dendritic cells, robust immune responses, protection efficacy, low potential for pre-existing anti-vector immunity and possibility of engineering multivalent vaccines were tested. These features of the VEEV replicon system hold much promise for the development of new generation vaccine candidates against viral hemorrhagic fevers.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Antígenos Virales/inmunología , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/prevención & control , Fiebres Hemorrágicas Virales/prevención & control , Vacunas Virales/inmunología , Animales , Antígenos Virales/genética , Protección Cruzada , Células Dendríticas/inmunología , Células Dendríticas/virología , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/virología , Fiebres Hemorrágicas Virales/inmunología , Fiebres Hemorrágicas Virales/virología , Caballos , Humanos , Replicón , Vacunación , Vacunas Atenuadas , Vacunas Sintéticas , Vacunas Virales/administración & dosificación , Vacunas Virales/biosíntesis
20.
PLoS One ; 10(4): e0124792, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25927990

RESUMEN

Many viruses have been implicated in utilizing or modulating the Ubiquitin Proteasome System (UPS) to enhance viral multiplication and/or to sustain a persistent infection. The mosquito-borne Venezuelan equine encephalitis virus (VEEV) belongs to the Togaviridae family and is an important biodefense pathogen and select agent. There are currently no approved vaccines or therapies for VEEV infections; therefore, it is imperative to identify novel targets for therapeutic development. We hypothesized that a functional UPS is required for efficient VEEV multiplication. We have shown that at non-toxic concentrations Bortezomib, a FDA-approved inhibitor of the proteasome, proved to be a potent inhibitor of VEEV multiplication in the human astrocytoma cell line U87MG. Bortezomib inhibited the virulent Trinidad donkey (TrD) strain and the attenuated TC-83 strain of VEEV. Additional studies with virulent strains of Eastern equine encephalitis virus (EEEV) and Western equine encephalitis virus (WEEV) demonstrated that Bortezomib is a broad spectrum inhibitor of the New World alphaviruses. Time-of-addition assays showed that Bortezomib was an effective inhibitor of viral multiplication even when the drug was introduced many hours post exposure to the virus. Mass spectrometry analyses indicated that the VEEV capsid protein is ubiquitinated in infected cells, which was validated by confocal microscopy and immunoprecipitation assays. Subsequent studies revealed that capsid is ubiquitinated on K48 during early stages of infection which was affected by Bortezomib treatment. This study will aid future investigations in identifying host proteins as potential broad spectrum therapeutic targets for treating alphavirus infections.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Western Blotting , Bortezomib/farmacología , Supervivencia Celular/efectos de los fármacos , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Cobayas , Inmunoprecipitación , Hibridación Fluorescente in Situ , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...