Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Viruses ; 16(4)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38675838

RESUMEN

Rabbit hemorrhagic disease (RHD) is an acute fatal disease caused by the rabbit hemorrhagic disease virus (RHDV). Since the first outbreaks of type 2 RHDV (RHDV2) in April 2020 in China, the persistence of this virus in the rabbit population has caused substantial economic losses in rabbit husbandry. Previous failures in preventing RHDV2 prompted us to further investigate the immune mechanisms underlying the virus's pathogenicity, particularly concerning the spleen, a vital component of the mononuclear phagocyte system (MPS). For this, a previous RHDV2 isolate, CHN/SC2020, was utilized to challenge naive adult rabbits. Then, the splenic transcriptome was determined by RNA-Seq. This study showed that the infected adult rabbits had 3148 differentially expressed genes (DEGs), which were associated with disease, signal transduction, cellular processes, and cytokine signaling categories. Of these, 100 upregulated DEGs were involved in inflammatory factors such as IL1α, IL-6, and IL-8. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs were significantly enriched in the cytokine-cytokine receptor interaction signaling pathway, which may play a vital role in CHN/SC2020 infection. At the same time, proinflammatory cytokines and chemokines were significantly increased in the spleen at the late stages of infection. These findings suggested that RHDV2 (CHN/SC2020) might induce dysregulation of the cytokine network and compromise splenic immunity against viral infection, which expanded our understanding of RHDV2 pathogenicity.


Asunto(s)
Infecciones por Caliciviridae , Citocinas , Virus de la Enfermedad Hemorrágica del Conejo , Bazo , Transcriptoma , Animales , Virus de la Enfermedad Hemorrágica del Conejo/genética , Virus de la Enfermedad Hemorrágica del Conejo/inmunología , Bazo/virología , Bazo/inmunología , Conejos , Infecciones por Caliciviridae/virología , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/genética , Citocinas/metabolismo , Citocinas/genética , Perfilación de la Expresión Génica , Inflamación/virología , Inflamación/genética
2.
Viruses ; 16(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38675862

RESUMEN

Rabbit haemorrhage disease virus 2 (RHDV2) is a highly pathogenic lagovirus that causes lethal disease in rabbits and hares (lagomorphs). Since its first detection in Europe in 2010, RHDV2 has spread worldwide and has been detected in over 35 countries so far. Here, we provide the first detailed report of the detection and subsequent circulation of RHDV2 in New Zealand. RHDV2 was first detected in New Zealand in 2018, with positive samples retrospectively identified in December 2017. Subsequent time-resolved phylogenetic analysis suggested a single introduction into the North Island between March and November 2016. Genetic analysis identified a GI.3P-GI.2 variant supporting a non-Australian origin for the incursion; however, more accurate identification of the source of the incursion remains challenging due to the wide global distribution of the GI.3P-GI.2 variant. Furthermore, our analysis suggests the spread of the virus between the North and South Islands of New Zealand at least twice, dated to mid-2017 and around 2018. Further phylogenetic analysis also revealed a strong phylogeographic pattern. So far, no recombination events with endemic benign New Zealand rabbit caliciviruses have been identified. This study highlights the need for further research and surveillance to monitor the distribution and diversity of lagoviruses in New Zealand and to detect incursions of novel variants.


Asunto(s)
Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Filogenia , Nueva Zelanda/epidemiología , Animales , Virus de la Enfermedad Hemorrágica del Conejo/genética , Virus de la Enfermedad Hemorrágica del Conejo/aislamiento & purificación , Virus de la Enfermedad Hemorrágica del Conejo/clasificación , Conejos/virología , Infecciones por Caliciviridae/veterinaria , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Filogeografía , Liebres/virología , Estudios Retrospectivos , Genoma Viral
3.
Viruses ; 16(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38675881

RESUMEN

Rabbit hemorrhagic disease virus 2 (RHDV2) emerged in the United States in 2018 and has spread in both domestic and wild rabbits nationwide. The virus has a high mortality rate and can spread rapidly once introduced in a rabbit population. Vaccination against RHDV2 provides the best protection against disease and should be considered by all rabbit owners. Here, we investigate the duration of immunity provided by vaccination with the Medgene Platform conditionally licensed commercial vaccine 6 months following the initial series. Rabbits received either the vaccination or a placebo and were challenged with RHDV2 6 months later. All vaccinated rabbits survived challenge whereas 18/19 non-vaccinated controls succumbed to infection within 10 or fewer days post-challenge. These results demonstrate lasting immunity following vaccination with the Medgene RHDV2 vaccine.


Asunto(s)
Baculoviridae , Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Vacunación , Vacunas Sintéticas , Vacunas Virales , Animales , Virus de la Enfermedad Hemorrágica del Conejo/inmunología , Virus de la Enfermedad Hemorrágica del Conejo/genética , Conejos , Infecciones por Caliciviridae/prevención & control , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/virología , Infecciones por Caliciviridae/veterinaria , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Baculoviridae/genética , Baculoviridae/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología
4.
Viruses ; 16(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38543804

RESUMEN

Pathogenic lagoviruses (Rabbit hemorrhagic disease virus, RHDV) are widely spread across the world and are used in Australia and New Zealand to control populations of feral European rabbits. The spread of the non-pathogenic lagoviruses, e.g., rabbit calicivirus (RCV), is less well studied as the infection results in no clinical signs. Nonetheless, RCV has important implications for the spread of RHDV and rabbit biocontrol as it can provide varying levels of cross-protection against fatal infection with pathogenic lagoviruses. In Chile, where European rabbits are also an introduced species, myxoma virus was used for localised biocontrol of rabbits in the 1950s. To date, there have been no studies investigating the presence of lagoviruses in the Chilean feral rabbit population. In this study, liver and duodenum rabbit samples from central Chile were tested for the presence of lagoviruses and positive samples were subject to whole RNA sequencing and subsequent data analysis. Phylogenetic analysis revealed a novel RCV variant in duodenal samples that likely originated from European RCVs. Sequencing analysis also detected the presence of a rabbit astrovirus in one of the lagovirus-positive samples.


Asunto(s)
Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Lagovirus , Animales , Conejos , Filogenia , Chile , Infecciones por Caliciviridae/epidemiología , Virus de la Enfermedad Hemorrágica del Conejo/genética
5.
Virus Res ; 339: 199257, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38347757

RESUMEN

The genus Lagovirus, belonging to the family Caliciviridae, emerged around the 1980s. It includes highly pathogenic species, rabbit hemorrhagic disease virus (RHDV/GI.1) and European brown hare syndrome virus (EBHSV/GII.1), which cause fatal hepatitis, and nonpathogenic viruses with enteric tropism, rabbit calicivirus (RCV/GI.3,4) and hare calicivirus (HaCV/GII.2). Lagoviruses have evolved along two independent genetic lineages: GI (RHDV and RCV) in rabbits and GII (EBHSV and HaCV) in hares. To be emphasized is that genomes of lagoviruses, like other caliciviruses, are highly conserved at RdRp-VP60 junctions, favoring intergenotypic recombination events at this point. The recombination between an RCV (genotype GI.3), donor of non-structural (NS) genes, and an unknown virus, donor of structural (S) genes, likely led to the emergence of a new lagovirus in the European rabbit, called RHDV type 2 (GI.2), identified in Europe in 2010. New RHDV2 intergenotypic recombinants isolated in rabbits in Europe and Australia originated from similar events between RHDV2 (GI.2) and RHDV (GI.1) or RCV (GI.3,4). RHDV2 (GI.2) rapidly spread worldwide, replacing RHDV and showing several lagomorph species as secondary hosts. The recombination events in RHDV2 viruses have led to a number of viruses with very different combinations of NS and S genes. Recombinant RHDV2 with NS genes from hare lineage (GII) was recently identified in the European hare. This study investigated the first RHDV2 (GI.2) identified in Italy in European hare (RHDV2_Bg12), demonstrating that it was a new virus that originated from the recombination between RHDV2, as an S-gene donor and a hare lagovirus, not yet identified but presumably nonpathogenic, as an NS gene donor. When rabbits were inoculated with RHDV2_Bg12, neither deaths nor seroconversions were recorded, demonstrating that RHDV2_Bg12 cannot infect the rabbit. Furthermore, despite intensive and continuous field surveillance, RHDV2_Bg12 has never again been identified in either hares or rabbits in Italy or elsewhere. This result showed that the host specificity of lagoviruses can depend not only on S genes, as expected until today, but potentially also on some species-specific NS gene sequences. Therefore, because RHDV2 (GI.2) infects several lagomorphs, which in turn probably harbor several specific nonpathogenic lagoviruses, the possibility of new speciation, especially in those other than rabbits, is real. RHDV2 Bg_12 demonstrated this, although the attempt apparently failed.


Asunto(s)
Infecciones por Caliciviridae , Liebres , Virus de la Enfermedad Hemorrágica del Conejo , Animales , Conejos , Filogenia , Infecciones por Caliciviridae/veterinaria , Infecciones por Caliciviridae/epidemiología , Evolución Biológica , Virus de la Enfermedad Hemorrágica del Conejo/genética , Recombinación Genética
6.
Viruses ; 15(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38140589

RESUMEN

Australia has multiple lagoviruses with differing pathogenicity. The circulation of these viruses was traditionally determined through opportunistic sampling events. In the lead up to the nationwide release of RHDVa-K5 (GI.1aP-GI.1a) in 2017, an existing citizen science program, RabbitScan, was augmented to allow members of the public to submit samples collected from dead leporids for lagovirus testing. This study describes the information obtained from the increased number of leporid samples received between 2015 and 2022 and focuses on the recent epidemiological interactions and evolutionary trajectory of circulating lagoviruses in Australia between October 2020 and December 2022. A total of 2771 samples were tested from January 2015 to December 2022, of which 1643 were lagovirus-positive. Notable changes in the distribution of lagovirus variants were observed, predominantly in Western Australia, where RHDV2-4c (GI.4cP-GI.2) was detected again in 2021 after initially being reported to be present in 2018. Interestingly, we found evidence that the deliberately released RHDVa-K5 was able to establish and circulate in wild rabbit populations in WA. Overall, the incorporation of citizen science approaches proved to be a cost-efficient method to increase the sampling area and enable an in-depth analysis of lagovirus distribution, genetic diversity, and interactions. The maintenance of such programs is essential to enable continued investigations of the critical parameters affecting the biocontrol of feral rabbit populations in Australia, as well as to enable the detection of any potential future incursions.


Asunto(s)
Infecciones por Caliciviridae , Ciencia Ciudadana , Virus de la Enfermedad Hemorrágica del Conejo , Lagovirus , Animales , Conejos , Virus de la Enfermedad Hemorrágica del Conejo/genética , Epidemiología Molecular , Lagovirus/genética , Filogenia , Australia/epidemiología
7.
Trop Anim Health Prod ; 55(5): 327, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37749427

RESUMEN

Following the first 2020 rabbit haemorrhagic disease virus (RHDV) outbreak in Nigeria which caused massive mortalities in several rabbitries, there was a need to know the spread and strains circulating in the affected states. Over 100 rabbitries still existing post-RHDV outbreak in Ogun and Kwara States were investigated. A commercial enzyme-linked immunosorbent assay kit was used to screen for RHDV immunoglobulin G in 192 rabbit sera, while RHDV VP60 gene was amplified in RNA extracted from these sera and tissues (liver and/or spleen harvested from 37 carcasses necrotized) by reverse transcription-polymerase chain reaction (RT-PCR). Sequences obtained from the amplicons were subjected to phylogenetic analysis. The results revealed a seroprevalence of 82.3% (158/192). RHDV VP60 gene was detected in 15/17 (88.2%) and 2/20 (10.0%) carcasses from Ogun and Kwara States, respectively, while none of the sera was positive. Sequences of the two positive amplicons selected (one from each states) shared 98.95% nucleotide identity and belonged to RHDV 2/GI.2 strain. Also, nBLAST of these sequences revealed 98.43-99.55% homology with the prototype Nigerian RHDV strain RHDV/NGR/ILN/001 (MT996357.1). Furthermore, these strains clustered with this prototype and a German RHDV strain (LR899166.1). Pathologic lesions affecting the respiratory, cardiovascular, renal, lymphatic, and digestive systems were observed in necropsied carcasses. This study indicated that RHDV 2/GI.2 strain was the cause of 2020 RHD outbreak in Nigeria. Thus, while continuous public sensitization about RHD especially among rabbit farmers in Nigeria is important, efforts aimed at design and implementation of RHD vaccination policy, preferably using indigenous seed, should be expedited.


Asunto(s)
Virus de la Enfermedad Hemorrágica del Conejo , Animales , Conejos , Nigeria/epidemiología , Virus de la Enfermedad Hemorrágica del Conejo/genética , Filogenia , Estudios Seroepidemiológicos , Autopsia/veterinaria
8.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37584657

RESUMEN

The genus Lagovirus of the family Caliciviridae contains some of the most virulent vertebrate viruses known. Lagoviruses infect leporids, such as rabbits, hares and cottontails. Highly pathogenic viruses such as Rabbit haemorrhagic disease virus 1 (RHDV1) cause a fulminant hepatitis that typically leads to disseminated intravascular coagulation within 24-72 h of infection, killing over 95 % of susceptible animals. Research into the pathophysiological mechanisms that are responsible for this extreme phenotype has been hampered by the lack of a reliable culture system. Here, we report on a new ex vivo model for the cultivation of lagoviruses in cells derived from the European rabbit (Oryctolagus cuniculus) and European brown hare (Lepus europaeus). We show that three different lagoviruses, RHDV1, RHDV2 and RHDVa-K5, replicate in monolayer cultures derived from rabbit hepatobiliary organoids, but not in monolayer cultures derived from cat (Felis catus) or mouse (Mus musculus) organoids. Virus multiplication was demonstrated by (i) an increase in viral RNA levels, (ii) the accumulation of dsRNA viral replication intermediates and (iii) the expression of viral structural and non-structural proteins. The establishment of an organoid culture system for lagoviruses will facilitate studies with considerable implications for the conservation of endangered leporid species in Europe and North America, and the biocontrol of overabundant rabbit populations in Australia and New Zealand.


Asunto(s)
Infecciones por Caliciviridae , Liebres , Virus de la Enfermedad Hemorrágica del Conejo , Lagovirus , Animales , Gatos , Ratones , Conejos , Filogenia , Virus de la Enfermedad Hemorrágica del Conejo/genética , Lagovirus/genética , Organoides
9.
Viruses ; 15(7)2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37515264

RESUMEN

MicroRNAs (miRNAs, miRs) are a group of small, 17-25 nucleotide, non-coding RNA sequences that, in their mature form, regulate gene expression at the post-transcriptional level. They participate in many physiological and pathological processes in both humans and animals. One such process is viral infection, in which miR-155 participates in innate and adaptive immune responses to a broad range of inflammatory mediators. Recently, the study of microRNA has become an interesting field of research as a potential candidate for biomarkers for various processes and disease. To use miRNAs as potential biomarkers of inflammation in viral diseases of animals and humans, it is necessary to improve their detection and quantification. In a previous study, using reverse transcription real-time quantitative PCR (RT-qPCR), we showed that the expression of ocu-miR-155-5p in liver tissue was significantly higher in rabbits infected with Lagovirus europaeus/Rabbit Hemorrhagic Disease Virus (RHDV) compared to healthy rabbits. The results indicated a role for ocu-miR-155-5p in Lagovirus europaeus/RHDV infection and reflected hepatitis and the impairment/dysfunction of this organ during RHD. MiR-155-5p was, therefore, hypothesized as a potential candidate for a tissue biomarker of inflammation and examined in tissues in Lagovirus europaeus/RHDV infection by dPCR. The objective of the study is the absolute quantification of ocu-miR-155-5p in four tissues (liver, lung, kidney, and spleen) of rabbits infected with Lagovirus europaeus/RHDV by digital PCR, a robust technique for the precise and direct quantification of small amounts of nucleic acids, including miRNAs, without standard curves and external references. The average copy number/µL (copies/µL) of ocu-miRNA-155-5p in rabbits infected with Lagovirus europaeus GI.1a/Rossi in the liver tissue was 12.26 ± 0.14, that in the lung tissue was 48.90 ± 9.23, that in the kidney tissue was 16.92 ± 2.89, and that in the spleen was 25.10 ± 0.90. In contrast, in the tissues of healthy control rabbits, the average number of copies/µL of ocu-miRNA-155-5p was 5.07 ± 1.10 for the liver, 23.52 ± 2.77 for lungs, 8.10 ± 0.86 for kidneys, and 42.12 ± 3.68 for the spleen. The increased expression of ocu-miRNA-155-5p in infected rabbits was demonstrated in the liver (a fold-change of 2.4, p-value = 0.0003), lung (a fold-change of 2.1, p-value = 0.03), and kidneys (a fold-change of 2.1, p-value = 0.01), with a decrease in the spleen (a fold-change of 0.6, p-value = 0.002). In the study of Lagovirus europaeus/RHDV infection and in the context of viral infections, this is the first report that shows the potential use of dPCR for the sensitive and absolute quantification of microRNA-155-5p in tissues during viral infection. We think miR-155-5p may be a potential candidate for a tissue biomarker of inflammation with Lagovirus europaeus/RHDV infection. Our report presents a new path in discovering potential candidates for the tissue biomarkers of inflammation.


Asunto(s)
Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Lagovirus , MicroARNs , Animales , Conejos , Humanos , Virus de la Enfermedad Hemorrágica del Conejo/genética , Lagovirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Biomarcadores , Inflamación , MicroARNs/genética , Filogenia
10.
Vopr Virusol ; 68(2): 132-141, 2023 05 18.
Artículo en Ruso | MEDLINE | ID: mdl-37264848

RESUMEN

INTRODUCTION: Rabbit hemorrhagic disease is an acute highly contagious infection associated with two genotypes of pathogenic Lagovirus. Antibodies to major capsid protein (Vp60) are protective. The aim of the work ‒ is an evaluation of antigenic and immunogenic activity of virus-like particles (VLPs) based on recombinant major capsid proteins of both genotypes of rabbit hemorrhagic disease virus (RHDV) (recVP60-GI1 and recVP60-GI2). MATERIALS AND METHODS: Baculovirus-expressed VLPs were evaluated using electron microscopy and administered to clinically healthy 1.53 month old rabbits in a dose of 50 g. Rabbits were challenged with 103 LD50 of virulent strains Voronezhsky-87 and Tula 21 days post immunization. Serum samples were tested for the presence of RHDV-specific antibodies. RESULTS: VLPs with hemagglutination activity forming VLP 3040 nm in size were obtained in Hi-5 cell culture. Specific antibody titers in rabbits measured by ELISA were 1 : 200 to 1 : 800 on 21th day post immunization with VLPs. Immunogenic activity of recVP60-GI1 VLPs was 90 and 40%, while it was 30 and 100% for recVP60-GI2 VLPs after the challenge with RHDV genotypes 1 and 2 respectively. The immunogenicity of two VLPs in mixture reached 100%. DISCUSSION: VLPs possess hemagglutinating, antigenic and immunogenic activity, suggesting their use as components in substances designed for RHDV specific prophylaxis in rabbits. Results of the control challenge experiment demonstrated the need to include the antigens from both RHDV genotypes in the vaccine. CONCLUSION: Recombinant proteins recVP60-GI1 and recVP60-GI2 form VLPs that possess hemagglutinating an antigenic activity, and provide 90100% level of protection for animals challenged with RHDV GI1 and GI2 virulent strains.


Asunto(s)
Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Lagovirus , Animales , Conejos , Virus de la Enfermedad Hemorrágica del Conejo/genética , Proteínas de la Cápside/genética , Proteínas Recombinantes/genética
11.
J Gen Virol ; 104(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37159399

RESUMEN

Rabbit haemorrhagic disease (RHD) is a highly contagious and fatal disease in rabbits caused by the rabbit haemorrhagic disease virus (RHDV), which includes two genotypes, RHDV-GI.1 and RHDV2-GI.2. RHDVs tend to recombine among different strains, resulting in significant genetic evolution. This study evaluated the genetics of Japanese RHDV strains associated with six outbreaks between 2000 and 2020 using whole-genome sequencing, genomic recombination and phylogenetic analyses. Genomic recombination analysis using near-complete genomic sequences revealed that two Japanese strains detected in 2000 and 2002 were non-recombinant GI.1 (variant RHDVa-GI.1a) strains of different origins, most closely related to strains identified in PR China in 1997 and the USA in 2001, respectively. In contrast, four recent Japanese GI.2 strains detected between 2019 and 2020 were recombinant viruses harbouring structural protein (SP) genes from GI.2 strains and non-SP (NSP) genes from a benign rabbit calicivirus (RCV) strain of genotype RCV-E1-GI.3 (GI.3P-GI.2) or an RHDV G1-GI.1b variant (GI.1bP-GI.2). Phylogenetic analysis based on SP and NSP regions revealed that the GI.1bP-GI.2 recombinant virus detected in Ehime prefecture and the GI.3P-GI.2 recombinant viruses detected in Ibaraki, Tochigi and Chiba prefectures were most closely related to recombinant viruses identified in Australia in 2017 and Germany in 2017, respectively. These results suggested that past RHD outbreaks in Japan did not result from the evolution of domestic RHDVs but rather represented incursions of foreign RHDV strains, implying that Japan is constantly at risk of RHDV incursion from other countries.


Asunto(s)
Virus de la Enfermedad Hemorrágica del Conejo , Trastornos Hemorrágicos , Conejos , Animales , Virus de la Enfermedad Hemorrágica del Conejo/genética , Japón/epidemiología , Filogenia , Brotes de Enfermedades
12.
Biotechniques ; 74(4): 156-157, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37161262

RESUMEN

We compared a bead RNA extraction method with a one-tube method that required only a heat block and ice. RNA was first extracted from liver samples from nine rabbits dying from rabbit hemorrhagic disease virus 2 (RHDV2) using magnetic beads, and RT-PCR was used to detect RHDV2 sequence. Following freezing, RNA was extracted a second time using the SwiftX™ Swabs Viral RNA Extraction Reagent. RHDV2 was detected in all nine samples. Cycle threshold values were higher in the RT-PCR following SwiftX extraction (mean: 3.79), indicating that the second extraction method resulted in approximately a 1 log10 reduction in sensitivity. A second freeze-thaw for the samples and less tissue extracted using SwiftX may have contributed additionally to the loss in sensitivity.


Asunto(s)
Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Animales , Conejos , Virus de la Enfermedad Hemorrágica del Conejo/genética , Infecciones por Caliciviridae/diagnóstico , Infecciones por Caliciviridae/veterinaria , ARN Viral/genética , Hígado , Fenómenos Magnéticos
13.
Viruses ; 15(5)2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37243245

RESUMEN

Following the arrival of rabbit haemorrhagic disease virus 2 (RHDV2) in Australia, average rabbit population abundances were reduced by 60% between 2014 and 2018 based on monitoring data acquired from 18 sites across Australia. During this period, as the seropositivity to RHDV2 increased, concurrent decreases were observed in the seroprevalence of both the previously circulating RHDV1 and RCVA, a benign endemic rabbit calicivirus. However, the detection of substantial RHDV1 seropositivity in juvenile rabbits suggested that infections were continuing to occur, ruling out the rapid extinction of this variant. Here we investigate whether the co-circulation of two pathogenic RHDV variants was sustained after 2018 and whether the initially observed impact on rabbit abundance was still maintained. We monitored rabbit abundance and seropositivity to RHDV2, RHDV1 and RCVA at six of the initial eighteen sites until the summer of 2022. We observed sustained suppression of rabbit abundance at five of the six sites, with the average population reduction across all six sites being 64%. Across all sites, average RHDV2 seroprevalence remained high, reaching 60-70% in adult rabbits and 30-40% in juvenile rabbits. In contrast, average RHDV1 seroprevalence declined to <3% in adult rabbits and 5-6% in juvenile rabbits. Although seropositivity continued to be detected in a low number of juvenile rabbits, it is unlikely that RHDV1 strains now play a major role in the regulation of rabbit abundance. In contrast, RCVA seropositivity appears to be reaching an equilibrium with that of RHDV2, with RCVA seroprevalence in the preceding quarter having a strong negative effect on RHDV2 seroprevalence and vice versa, suggesting ongoing co-circulation of these variants. These findings highlight the complex interactions between different calicivirus variants in free-living rabbit populations and demonstrate the changes in interactions over the course of the RHDV2 epizootic as it has moved towards endemicity. While it is encouraging from an Australian perspective to see sustained suppression of rabbit populations in the eight years following the arrival of RHDV2, it is likely that rabbit populations will eventually recover, as has been observed with previous rabbit pathogens.


Asunto(s)
Infecciones por Caliciviridae , Liebres , Virus de la Enfermedad Hemorrágica del Conejo , Animales , Conejos , Virus de la Enfermedad Hemorrágica del Conejo/genética , Estudios Seroepidemiológicos , Australia/epidemiología , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/veterinaria , Infecciones por Caliciviridae/patología , Filogenia
14.
Virol J ; 20(1): 103, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237382

RESUMEN

The European rabbit (Oryctolagus cuniculus) populations of the Iberian Peninsula have been severely affected by the emergence of the rabbit haemorrhagic disease virus (RHDV) Lagovirus europaeus/GI.2 (RHDV2/b). Bushflies and blowflies (Muscidae and Calliphoridae families, respectively) are important RHDV vectors in Oceania, but their epidemiological role is unknown in the native range of the European rabbit. In this study, scavenging flies were collected between June 2018 and February 2019 in baited traps at one site in southern Portugal, alongside a longitudinal capture-mark-recapture study of a wild European rabbit population, aiming to provide evidence of mechanical transmission of GI.2 by flies. Fly abundance, particularly from Calliphoridae and Muscidae families, peaked in October 2018 and in February 2019. By employing molecular tools, we were able to detect the presence of GI.2 in flies belonging to the families Calliphoridae, Muscidae, Fanniidae and Drosophilidae. The positive samples were detected during an RHD outbreak and absent in samples collected when no evidence of viral circulation in the local rabbit population was found. We were able to sequence a short viral genomic fragment, confirming its identity as RHDV GI.2. The results suggest that scavenging flies may act as mechanical vectors of GI.2 in the native range of the southwestern Iberian subspecies O. cuniculus algirus. Future studies should better assess their potential in the epidemiology of RHD and as a tool for monitoring viral circulation in the field.


Asunto(s)
Infecciones por Caliciviridae , Dípteros , Virus de la Enfermedad Hemorrágica del Conejo , Lagovirus , Animales , Conejos , Lagovirus/genética , Infecciones por Caliciviridae/epidemiología , Filogenia , Virus de la Enfermedad Hemorrágica del Conejo/genética
15.
Viruses ; 15(4)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37112796

RESUMEN

Rabbit haemorrhagic disease virus (RHDV), European brown hare syndrome virus (EBHSV), rabbit calicivirus (RCV), and hare calicivirus (HaCV) belong to the genus Lagovirus of the Caliciviridae family that causes severe diseases in rabbits and several hare (Lepus) species. Previously, Lagoviruses were classified into two genogroups, e.g., GI (RHDVs and RCVs) and GII (EBHSV and HaCV) based on partial genomes, e.g., VP60 coding sequences. Herein, we provide a robust phylogenetic classification of all the Lagovirus strains based on full-length genomes, grouping all the available 240 strains identified between 1988 and 2021 into four distinct clades, e.g., GI.1 (classical RHDV), GI.2 (RHDV2), HaCV/EBHSV, and RCV, where the GI.1 clade is further classified into four (GI.1a-d) and GI.2 into six sub-clades (GI.2a-f). Moreover, the phylogeographic analysis revealed that the EBHSV and HaCV strains share their ancestor with the GI.1, while the RCV shares with the GI.2. In addition, all 2020-2021 RHDV2 outbreak strains in the USA are connected to the strains from Canada and Germany, while RHDV strains isolated in Australia are connected with the USA-Germany haplotype RHDV strain. Furthermore, we identified six recombination events in the VP60, VP10, and RNA-dependent RNA polymerase (RdRp) coding regions using the full-length genomes. The amino acid variability analysis showed that the variability index exceeded the threshold of 1.00 in the ORF1-encoded polyprotein and ORF2-encoded VP10 protein, respectively, indicating significant amino acid drift with the emergence of new strains. The current study is an update of the phylogenetic and phylogeographic information of Lagoviruses that may be used to map the evolutionary history and provide hints for the genetic basis of their emergence and re-emergence.


Asunto(s)
Infecciones por Caliciviridae , Liebres , Virus de la Enfermedad Hemorrágica del Conejo , Animales , Conejos , Filogenia , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/veterinaria , Virus de la Enfermedad Hemorrágica del Conejo/genética , Aminoácidos/genética
16.
Infect Genet Evol ; 110: 105427, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36958414

RESUMEN

Lagovirus europaeus/GI.1 is the virus that causes severe and dangerous rabbit haemorrhagic disease (RHD) in rabbits. Recombination formation in RHD viruses is common. Recombination is thought to play a key role in the evolution of lagoviruses and therefore most likely influences the pathogenicity of L. europaeus/GI strains. Immunological events also play a key role in the control of RHD, and an in-depth knowledge of these phenomena provides insights into the characteristics of the infection, which can help implement appropriate infection control measures. To obtain a more complete picture of RHD caused by different GI.1 strains, it is necessary to correlate the genetic diversity within L. europaeus/GI.1 strains and the immune picture in response to infection. We performed a phylogenetic analysis of the L. europaeus/GI strains and compared the recombinant L. europaeus/GI.1 strain with the GI.1a strain on the basis of a thorough statistical analysis of immunological traits performed previously. Our phylogenetic analysis based on the sequence of the gene encoding the VP60 capsid protein of 34 strains of Lagovirus europaeus showed that the Hartmannsdorf strain forms a separate clade from the other GI.1a strains and is separate from the GI.1b-d strains. Next, we showed significant differences in the levels of individual parameters for non-specific cellular and humoral immunity in infection with the GI.1a strain and the Hartmannsdorf recombinant strain. Against the background of this study, our results indicate that the characteristics of each recombinant should be considered individually.


Asunto(s)
Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Lagomorpha , Lagovirus , Animales , Conejos , Lagovirus/genética , Filogenia , Virus de la Enfermedad Hemorrágica del Conejo/genética , Inmunidad
17.
Am J Vet Res ; 83(12)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36327167

RESUMEN

OBJECTIVE: To evaluate efficacy of a novel vaccine against rabbit hemorrhagic disease virus 2 (RHDV2) in domestic rabbits. ANIMALS: 40 New Zealand White rabbits obtained from a commercial breeder. PROCEDURES: Rabbits were vaccinated and held at the production facility for the duration of the vaccination phase and transferred to Colorado State University for challenge with RHDV2. Rabbits were challenged with oral suspensions containing infectious virus and monitored for clinical disease for up to 10 days. Rabbits that died or were euthanized following infection were necropsied, and livers were evaluated for viral RNA via RT-PCR. RESULTS: None of the vaccinated animals (0/9) exhibited clinical disease or mortality following infection with RHDV2 while 9/13 (69%) of the control animals succumbed to lethal disease following infection. CLINICAL RELEVANCE: The novel vaccine described herein provided complete protection against lethal infection following RHDV2 challenge. Outside of emergency use, there are currently no licensed vaccines against RHDV2 on the market in the United States; as such, this vaccine candidate would provide an option for control of this disease now that RHDV2 has become established in North America.


Asunto(s)
Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Vacunas , Conejos , Animales , Virus de la Enfermedad Hemorrágica del Conejo/genética , Infecciones por Caliciviridae/prevención & control , Infecciones por Caliciviridae/veterinaria , Vacunación/veterinaria
18.
Viruses ; 14(11)2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36366520

RESUMEN

European brown hare syndrome (EBHS) is one of the main causes of mortality in brown hares (Lepus europaeus) and mountain hares (Lepus timidus) in Europe. Since the mid-1990s, this highly lethal and contagious plague has been widespread in many European countries, contributing to a drastic decline in the number of free-living and farmed hares. A second lagovirus, able to infect some species of hares is rabbit haemorrhagic disease virus 2 (RHDV2; GI.2) recognised in 2010, a new viral emergence of RHDV (GI.1) which is known to be responsible for haemorrhagic disease in rabbits-RHD. The aim of this study was to evaluate the current EBHS epidemiological situation on the basis of the presence of antibodies to European brown hare syndrome virus (EBHSV) and anti-RHDV2 antibodies in sera collected from free-ranging hares in Central and Southeastern Poland in 2020-2021. Additionally, studies on the presence of EBHSV and RHDV2 antigens or their genetic material in the blood and internal organs taken from brown hares between 2014 - 2021 have been carried out. The results of the serological examination showed nearly 88% of tested blood samples were positive for EBHSV antibodies. No EBHSV was identified in the examined hares using virological and molecular tests. The positive results of EBHS serological studies confirmed the circulation and maintenance of EBHSV in free-living brown hares in Poland. However, no serological, virological or molecular evidence was obtained indicating that the brown hares tested had been in contact with RHDV2.


Asunto(s)
Infecciones por Caliciviridae , Liebres , Virus de la Enfermedad Hemorrágica del Conejo , Lagomorpha , Lagovirus , Animales , Conejos , Polonia/epidemiología , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/veterinaria , Lagovirus/genética , Virus de la Enfermedad Hemorrágica del Conejo/genética
19.
Microbiol Spectr ; 10(6): e0229822, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36445093

RESUMEN

Lagovirus europaeus (rabbit hemorrhagic disease virus [RHDV]) is a small, nonenveloped, single-stranded RNA virus that causes a severe, highly infectious, and fatal disease in rabbits (Oryctolagus cuniculus) called rabbit hemorrhagic disease (RHD). Since its discovery in the 1980s, it has posed a very serious threat to the global rabbit industry and the rabbit population in the wild. According to data from 2005 to 2018, the occurrence of RHD has been reported or suspected in 50 countries, with more than one-half of the reports being recorded in European countries. The main aim of the study was to detect Lagovirus europaeus (RHDV) strains found in domestic rabbits that died suddenly in the city of Wroclaw in southwest Poland. All animals (n = 14) tested in this study died naturally and showed macroscopic features at necropsy that indicated the possibility of death from RHD. As a result of the research, the presence of L. europaeus virus was confirmed in 8 samples of all 14 samples collected. All strains of Lagovirus europaeus isolated in the present study showed 100% nucleotide identity to L. europaeus GI.1 strain FRG and a strain isolated in New Zealand, as well as the L. europaeus GI.1a Erfurt strain. This suggests that it is likely that L. europaeus GI.2 strains have so far not displaced L. europaeus GI.1 strains from the environment in Poland. IMPORTANCE Lagovirus europaeus (RHDV) causes a severe, highly infectious, and fatal disease in rabbits called RHD. The disease is a very serious threat to the global rabbit industry and the rabbit population in the wild. The aim of the study was to detect Lagovirus europaeus (RHDV) strains in domestic rabbits that died suddenly in Poland. The presence of RHDV was confirmed in 8 samples of all 14 samples collected. This is one of the very few reports on the existence of this virus in pet rabbits in Poland.


Asunto(s)
Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Trastornos Hemorrágicos , Lagovirus , Animales , Conejos , Virus de la Enfermedad Hemorrágica del Conejo/genética , Lagovirus/genética , Polonia , Filogenia , Infecciones por Caliciviridae/epidemiología
20.
Microb Pathog ; 173(Pt A): 105814, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36220397

RESUMEN

To detail early tissue distribution and innate immune response to rabbit hemorrhagic disease virus 2 (RHDV2), 13 rabbits were orally (Oryctolagus cuniculus) inoculated with liver homogenate made from a feral rabbit that succumbed to RHDV2 during the 2020 outbreak in Oregon, USA. Rabbits were monitored regularly, with euthanasia and collection of tissues and swabs, at 12, 24, 36, 48, 96, and 144 h post inoculation. Livers from these rabbits were positive by RT-rtPCR for presence of the virus. Using RNAscope for viral and replicative intermediates, rabbits had detectable viral genomic RNA at each time point, initially within the gastrointestinal tract, then in the liver by 36 h post inoculation. Also using RNAscope, there were increasing amounts of mRNA coding for TNF-α, IL-6, and IL-1ß within the liver and spleen through 48 h post inoculation. The results of this study aided our understanding of the local innate immune response to RHDV2, as well as aspects of pathogenesis.


Asunto(s)
Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Animales , Conejos , Virus de la Enfermedad Hemorrágica del Conejo/genética , Infecciones por Caliciviridae/veterinaria , Brotes de Enfermedades , Genoma Viral , ARN Viral , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...