Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.394
Filtrar
1.
Vet Res ; 55(1): 58, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715081

RESUMEN

The haemagglutinin-neuraminidase (HN) protein, a vital membrane glycoprotein, plays a pivotal role in the pathogenesis of Newcastle disease virus (NDV). Previously, we demonstrated that a mutation in the HN protein is essential for the enhanced virulence of JS/7/05/Ch, a velogenic variant NDV strain originating from the mesogenic vaccine strain Mukteswar. Here, we explored the effects of the HN protein during viral infection in vitro using three viruses: JS/7/05/Ch, Mukteswar, and an HN-replacement chimeric NDV, JS/MukHN. Through microscopic observation, CCK-8, and LDH release assays, we demonstrated that compared with Mukteswar and JS/MukHN, JS/7/05/Ch intensified the cellular damage and mortality attributed to the mutant HN protein. Furthermore, JS/7/05/Ch induced greater levels of apoptosis, as evidenced by the activation of caspase-3/8/9. Moreover, JS/7/05/Ch promoted autophagy, leading to increased autophagosome formation and autophagic flux. Subsequent pharmacological experiments revealed that inhibition of apoptosis and autophagy significantly impacted virus replication and cell viability in the JS/7/05/Ch-infected group, whereas less significant effects were observed in the other two infected groups. Notably, the mutant HN protein enhanced JS/7/05/Ch-induced apoptosis and autophagy by suppressing NF-κB activation, while it mitigated the effects of NF-κB on NDV infection. Overall, our study offers novel insights into the mechanisms underlying the increased virulence of NDV and serves as a reference for the development of vaccines.


Asunto(s)
Apoptosis , Proteína HN , FN-kappa B , Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle/fisiología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/patogenicidad , Animales , Proteína HN/genética , Proteína HN/metabolismo , Enfermedad de Newcastle/virología , FN-kappa B/metabolismo , Enfermedades de las Aves de Corral/virología , Pollos , Embrión de Pollo
2.
Sci Rep ; 14(1): 10741, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730036

RESUMEN

The majority of pigeon paramyxovirus type 1 (PPMV-1) strains are generally non-pathogenic to chickens; however, they can induce severe illness and high mortality rates in pigeons, leading to substantial economic repercussions. The genomes of 11 PPMV-1 isolates from deceased pigeons on meat pigeon farms during passive monitoring from 2009 to 2012 were sequenced and analyzed using polymerase chain reaction and phylogenetic analysis. The complete genome lengths of 11 isolates were approximately 15,192 nucleotides, displaying a consistent gene order of 3'-NP-P-M-F-HN-L-5'. ALL isolates exhibited the characteristic motif of 112RRQKRF117 at the fusion protein cleavage site, which is characteristic of velogenic Newcastle disease virus. Moreover, multiple mutations have been identified within the functional domains of the F and HN proteins, encompassing the fusion peptide, heptad repeat region, transmembrane domains, and neutralizing epitopes. Phylogenetic analysis based on sequences of the F gene unveiled that all isolates clustered within genotype VI in class II. Further classification identified at least two distinct sub-genotypes, with seven isolates classified as sub-genotype VI.2.1.1.2.2, whereas the others were classified as sub-genotype VI.2.1.1.2.1. This study suggests that both sub-genotypes were implicated in severe disease manifestation among meat pigeons, with sub-genotype VI.2.1.1.2.2 displaying an increasing prevalence among Shanghai's meat pigeon population since 2011. These results emphasize the value of developing pigeon-specific vaccines and molecular diagnostic tools for monitoring and proactively managing potential PPMV-1 outbreaks.


Asunto(s)
Columbidae , Genoma Viral , Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Filogenia , Animales , Columbidae/virología , China/epidemiología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Virus de la Enfermedad de Newcastle/clasificación , Enfermedad de Newcastle/virología , Enfermedad de Newcastle/epidemiología , Genotipo , Granjas , Carne/virología
3.
Onderstepoort J Vet Res ; 91(1): e1-e7, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38708767

RESUMEN

Newcastle disease (ND) is endemic in Angola. Several outbreaks of ND occurred in small backyard flocks and village chickens with high mortality in the southern provinces of the country, Cunene, Namibe and Huíla, in 2016 and 2018. In those years, 15 virulent ND virus (NDV) strains were isolated and grouped within subgenotype 2 of genotype VII (subgenotype VII.2). We now present a study on the thermostability of the isolates, aiming at the selection of the most thermostable strains that, after being genetically modified to reduce their virulence, can be adapted to the production of vaccines less dependent on cold chain and more adequate to protect native chickens against ND. Heat-inactivation kinetics of haemagglutinin (Ha) activity and infectivity (I) of the isolates were determined by incubating aliquots of virus at 56 °C for different time intervals. The two isolates from Namibe province showed a decrease in infectivity of 2 log10 in ≤ 10 min, therefore belonging to the I-phenotype, but while the NB1 isolate from 2016 maintained the Ha activity up to 30 min and was classified as thermostable virus (I-Ha+), the Ha activity of the 2018 NB2 isolate decreased by 2 log2 in 30 min, being classified as a thermolabile virus (I-Ha-). Of the 13 NDV isolates from Huíla province, 10 isolates were classified as thermostable, eight with phenotype I+Ha+ and 2 with phenotype I-Ha+. The other three isolates from this province were classified as thermolabile viruses (I-Ha-).Contribution: This study will contribute to the control and/or eradication of Newcastle disease virus in Angola. The thermostable viral strains isolated from chickens in the country can be genetically manipulated by reverse genetic technology in order to reduce their virulence and use them as a vaccine in the remote areas of Angola.


Asunto(s)
Pollos , Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Virus de la Enfermedad de Newcastle/patogenicidad , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/clasificación , Animales , Enfermedad de Newcastle/virología , Enfermedad de Newcastle/epidemiología , Angola/epidemiología , Virulencia , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Calor
4.
Vaccine ; 42(15): 3410-3419, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38641498

RESUMEN

The application of recombinant herpesvirus of turkey, expressing the H9 hemagglutinin gene from low pathogenic avian influenza virus (LPAIV) H9N2 and the avian orthoavulavirus-1 (AOAV-1) (commonly known as Newcastle Disease virus (NDV)) fusion protein (F) as an rHVT-H9-F vaccine, is an alternative to currently used classical vaccines. This study investigated H9- and ND-specific humoral and mucosal responses, H9-specific cell-mediated immunity, and protection conferred by the rHVT-H9-F vaccine in specific pathogen-free (SPF) chickens. Vaccination elicited systemic NDV F- and AIV H9-specific antibody response but also local antibodies in eye wash fluid and oropharyngeal swabs. The ex vivo H9-specific stimulation of splenic and pulmonary T cells in the vaccinated group demonstrated the ability of vaccination to induce systemic and local cellular responses. The clinical protection against a challenge using a LPAIV H9N2 strain of the G1 lineage isolated in Morocco in 2016 was associated with a shorter duration of shedding along with reduced viral genome load in the upper respiratory tract and reduced cloacal shedding compared to unvaccinated controls.


Asunto(s)
Anticuerpos Antivirales , Pollos , Subtipo H9N2 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Esparcimiento de Virus , Animales , Subtipo H9N2 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/genética , Pollos/inmunología , Gripe Aviar/prevención & control , Gripe Aviar/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Esparcimiento de Virus/inmunología , Organismos Libres de Patógenos Específicos , Virus de la Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/genética , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Inmunidad Celular , Herpesvirus Meleágrido 1/inmunología , Herpesvirus Meleágrido 1/genética , Vacunación/métodos , Inmunidad Humoral , Vectores Genéticos/inmunología , Inmunogenicidad Vacunal , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética
5.
Open Vet J ; 14(1): 398-406, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633149

RESUMEN

Background: The use of traditional medicine against viral diseases in animal production has been practiced worldwide. Herbal extracts possess organic substances that would improve chicken body performance. Aim: The current study was designed to evaluate the effect of either thyme or ginseng oil in regard to their immune-modulatory, antiviral, and growth promoter properties. Methods: Two hundred and forty-one-day-old broiler chicks were allocated into eight equal groups as the following: group 1; nonvaccinated and nontreated and group 2; Newcastle disease virus (NDV) vaccinated and nontreated. Birds of groups 3 and 4 were treated with thyme oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 5 and 6 were treated with ginseng oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 7 and 8 were treated with a combination of ginseng oil (100 mg/l of drinking water) and thyme oil (100 mg/l of drinking water) for 12 hours/day. On the 35th day of life, birds in all the experimental groups were given 0.1 ml of a virulent genotype VIId NDV strain suspension containing 106.3 EID50/ml intramuscularly. Results: Administration of ginseng and thyme oils each alone or simultaneously to birds either vaccinated or nonvaccinated elicited a significant improvement in body performance parameters. Administration of thyme and ginseng each alone or concurrently to vaccinated birds (Gp 4, 6, and 8) induced a higher hemagglutination inhibition (HI) titer of 6, 7.3, and 6.3 log2 at 21 days of age, 6.7, 7.6, and 7 log2, at 28 days of age and 7, 8, and 6.8 log2 at 35 days of age, respectively. Challenge with vNDV genotype VII led to an increase in the NDV-specific HI-Ab titers 10 days post challenge in all the experimental groups. In addition, thyme, ginseng oils, or a combination of them improved the protection from mortality in vaccinated birds; by 100%, 100%, and 90%, respectively, compared with 80% protection from mortality in vaccinated-only birds post-NDV challenge. Moreover, NDV-vaccinated birds treated either with thyme; ginseng or their combination showed negative detection of the virus in both tracheal and cloacal swabs and nonvaccinated groups that received oils showed improvement in vNDV shedding in tracheal and cloacal swabs. Conclusion: It could be concluded that the administration of thyme and ginseng essential oils to broilers can improve productive performance parameters, stimulate humoral immunity against, and protect from vNDV infection.


Asunto(s)
Agua Potable , Enfermedad de Newcastle , Panax , Aceites de Plantas , Timol , Thymus (Planta) , Animales , Virus de la Enfermedad de Newcastle/genética , Pollos , Anticuerpos Antivirales , Aceites
6.
Open Vet J ; 14(1): 12-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633151

RESUMEN

Newcastle disease (ND) is a tremendously contagious avian infection with extensive monetary ramifications for the chicken zone. To reduce the effect of ND on the Saudi rooster enterprise, our analysis emphasizes the necessity of genotype-particular vaccinations, elevated surveillance, public recognition campaigns, and stepped-forward biosecurity. Data show that one-of-a-kind bird species, outdoor flocks, and nearby differences in susceptibility are all vulnerable. The pathogenesis consists of tropism in the respiratory and gastrointestinal structures and some genotypes boom virulence. Laboratory diagnostics use reverse transcription-polymerase chain reaction, sequencing, and serotyping among different strategies. Vital records are supplied through immune responses and serological trying out. Vaccination campaigns, biosecurity protocols, and emergency preparedness are all covered in prevention and manipulation techniques. Notably, co-circulating genotypes and disparities in immunization regulations worry Saudi Arabia. The effect of ND in Saudi Arabia is tested in this paper, with precise attention paid to immunological reaction, pathogenesis, susceptibility elements, laboratory analysis, and preventative and manipulation measures. Saudi Arabia can shield its bird region and beef up its defences against Newcastle's ailment, enforcing those hints into its policies.


Asunto(s)
Enfermedades de los Bovinos , Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Bovinos , Animales , Masculino , Aves de Corral , Pollos , Arabia Saudita , Virus de la Enfermedad de Newcastle/genética , Enfermedades de las Aves de Corral/epidemiología , Enfermedad de Newcastle/epidemiología
7.
Open Vet J ; 14(1): 32-45, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633185

RESUMEN

Background: Despite the strict preventive immunization used in Egypt, Newcastle disease remained a prospective risk to the commercial and backyard chicken industries. The severe economic losses caused by the Newcastle disease virus (NDV) highlight the importance of the trials for the improvement and development of vaccines and vaccination programs. Aim: In the present study, we evaluated the effectiveness of two vaccination schemes for protection against the velogenic NDV (vNDV) challenge. Methods: Four groups (A-D) of commercial broiler chickens were used. Two groups (G-A and G-B) were vaccinated with priming live HB1 GII simultaneously with inactivated GVII vaccines at 5 days of age, then boosted with live LaSota GII vaccine in group A and live recombinant NDV GVII vaccine in group B on day 16. Groups A to C were challenged with NDV/Chicken/Egypt/ALEX/ZU-NM99/2019 strain (106 Embryo infective dose 50/0.1 ml) at 28 days of age. Results: Two vaccination schemes achieved 93.3% clinical protection against NDV with body gain enhancement; whereas, 80% of the unvaccinated-challenged birds died. On day 28, the mean HI antibody titers were 4.3 ± 0.33 and 5.3 ± 0.33 log2 in groups A and B, respectively. As well as both programs remarkably reduced virus shedding. The two vaccination schemes displayed close protection efficacy against the vNDV challenge. Conclusion: Therefore, using the combination of a live attenuated vaccine with an inactivated genetically matched strain vaccine and then boosting it with one of the available live vaccines could be considered one of the most effective programs against current field vNDV infection in Egypt.


Asunto(s)
Enfermedad de Newcastle , Vacunas Virales , Animales , Virus de la Enfermedad de Newcastle/genética , Pollos , Egipto , Estudios Prospectivos , Vacunación/veterinaria , Vacunas Virales/genética , Vacunas Sintéticas/genética , Genotipo
8.
Viruses ; 16(4)2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675926

RESUMEN

The transcription and replication of the Newcastle disease virus (NDV) strictly rely on the viral ribonucleoprotein (RNP) complex, which is composed of viral NP, P, L and RNA. However, it is not known whether other viral non-RNP proteins participate in this process for viral self-regulation. In this study, we used a minigenome (MG) system to identify the regulatory role of the viral non-RNP proteins V, M, W, F and HN. Among them, V significantly reduced MG-encoded reporter activity compared with the other proteins and inhibited the synthesis of viral mRNA and cRNA. Further, V interacted with NP. A mutation in residue W195 of V diminished V-NP interaction and inhibited inclusion body (IB) formation in NP-P-L-cotransfected cells. Furthermore, a reverse-genetics system for the highly virulent strain F48E9 was established. The mutant rF48E9-VW195R increased viral replication and apparently enhanced IB formation. In vivo experiments demonstrated that rF48E9-VW195R decreased virulence and retarded time of death. Overall, the results indicate that the V-NP interaction of the W195 mutant V decreased, which regulated viral RNA synthesis, IB formation, viral replication and pathogenicity. This study provides insight into the self-regulation of non-RNP proteins in paramyxoviruses.


Asunto(s)
Virus de la Enfermedad de Newcastle , Proteínas Virales , Replicación Viral , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/fisiología , Virus de la Enfermedad de Newcastle/metabolismo , Animales , Proteínas Virales/metabolismo , Proteínas Virales/genética , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Enfermedad de Newcastle/virología , Enfermedad de Newcastle/metabolismo , Línea Celular , Regulación Viral de la Expresión Génica , ARN Viral/genética , ARN Viral/metabolismo , Pollos , Virulencia , Unión Proteica , Mutación
9.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473888

RESUMEN

Heat stress results in significant economic losses to the poultry industry. Genetics plays an important role in chickens adapting to the warm environment. Physiological parameters such as hematochemical parameters change in response to heat stress in chickens. To explore the genetics of heat stress resilience in chickens, a genome-wide association study (GWAS) was conducted using Hy-Line Brown layer chicks subjected to either high ambient temperature or combined high temperature and Newcastle disease virus infection. Hematochemical parameters were measured during three treatment phases: acute heat stress, chronic heat stress, and chronic heat stress combined with NDV infection. Significant changes in blood parameters were recorded for 11 parameters (sodium (Na+, potassium (K+), ionized calcium (iCa2+), glucose (Glu), pH, carbon dioxide partial pressure (PCO2), oxygen partial pressure (PO2), total carbon dioxide (TCO2), bicarbonate (HCO3), base excess (BE), and oxygen saturation (sO2)) across the three treatments. The GWAS revealed 39 significant SNPs (p < 0.05) for seven parameters, located on Gallus gallus chromosomes (GGA) 1, 3, 4, 6, 11, and 12. The significant genomic regions were further investigated to examine if the genes within the regions were associated with the corresponding traits under heat stress. A candidate gene list including genes in the identified genomic regions that were also differentially expressed in chicken tissues under heat stress was generated. Understanding the correlation between genetic variants and resilience to heat stress is an important step towards improving heat tolerance in poultry.


Asunto(s)
Pollos , Enfermedad de Newcastle , Animales , Pollos/genética , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo , Dióxido de Carbono , Respuesta al Choque Térmico , Enfermedad de Newcastle/genética , Genómica , Virus de la Enfermedad de Newcastle/genética
10.
J Gen Virol ; 105(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38376490

RESUMEN

Reactive oxygen species (ROS) accumulation inside the cells instigates oxidative stress, activating stress-responsive genes. The viral strategies for promoting stressful conditions and utilizing the induced host proteins to enhance their replication remain elusive. The present work investigates the impact of oxidative stress responses on Newcastle disease virus (NDV) pathogenesis. Here, we show that the progression of NDV infection varies with intracellular ROS levels. Additionally, the results demonstrate that NDV infection modulates the expression of oxidative stress-responsive genes, majorly sirtuin 7 (SIRT7), a NAD+-dependent deacetylase. The modulation of SIRT7 protein, both through overexpression and knockdown, significantly impacts the replication dynamics of NDV in DF-1 cells. The activation of SIRT7 is found to be associated with the positive regulation of cellular protein deacetylation. Lastly, the results suggested that NDV-driven SIRT7 alters NAD+ metabolism in vitro and in ovo. We concluded that the elevated expression of NDV-mediated SIRT7 protein with enhanced activity metabolizes the NAD+ to deacetylase the host proteins, thus contributing to high virus replication.


Asunto(s)
Virus de la Enfermedad de Newcastle , Sirtuinas , Animales , NAD , Virus de la Enfermedad de Newcastle/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno , Sirtuinas/genética , Pollos , Línea Celular
11.
PLoS Pathog ; 20(2): e1012027, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377149

RESUMEN

Newcastle disease virus (NDV) has been extensively studied as a promising oncolytic virus for killing tumor cells in vitro and in vivo in clinical trials. However, the viral components that regulate the oncolytic activity of NDV remain incompletely understood. In this study, we systematically compared the replication ability of different NDV genotypes in various tumor cells and identified NP protein determines the oncolytic activity of NDV. On the one hand, NDV strains with phenylalanine (F) at the 450th amino acid position of the NP protein (450th-F-NP) exhibit a loss of oncolytic activity. This phenotype is predominantly associated with genotype VII NDVs. In contrast, the NP protein with a leucine amino acid at this site in other genotypes (450th-L-NP) can facilitate the loading of viral mRNA onto ribosomes more effectively than 450th-F-NP. On the other hand, the NP protein from NDV strains that exhibit strong oncogenicity interacts with eIF4A1 within its 366-489 amino acid region, leading to the inhibition of cellular mRNA translation with a complex 5' UTR structure. Our study provide mechanistic insights into how highly oncolytic NDV strains selectively promote the translation of viral mRNA and will also facilitate the screening of oncolytic strains for oncolytic therapy.


Asunto(s)
Virus de la Enfermedad de Newcastle , Virus Oncolíticos , Animales , Virus de la Enfermedad de Newcastle/genética , Aminoácidos , Leucina , Virus Oncolíticos/genética , ARN Mensajero/genética , Biosíntesis de Proteínas
12.
PLoS Negl Trop Dis ; 18(2): e0011639, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38408125

RESUMEN

Vaccination of the reservoir species is a key component in the global fight against rabies. For wildlife reservoir species and hard to reach spillover species (e. g. ruminant farm animals), oral vaccination is the only solution. In search for a novel potent and safe oral rabies vaccine, we generated a recombinant vector virus based on lentogenic Newcastle disease virus (NDV) strain Clone 30 that expresses the glycoprotein G of rabies virus (RABV) vaccine strain SAD L16 (rNDV_GRABV). Transgene expression and virus replication was verified in avian and mammalian cells. To test immunogenicity and viral shedding, in a proof-of-concept study six goats and foxes, representing herbivore and carnivore species susceptible to rabies, each received a single dose of rNDV_GRABV (108.5 TCID50/animal) by direct oral application. For comparison, three animals received the similar dose of the empty viral vector (rNDV). All animals remained clinically inconspicuous during the trial. Viral RNA could be isolated from oral and nasal swabs until four (goats) or seven days (foxes) post vaccination, while infectious NDV could not be re-isolated. After four weeks, three out of six rNDV_GRABV vaccinated foxes developed RABV binding and virus neutralizing antibodies. Five out of six rNDV_GRABV vaccinated goats displayed RABV G specific antibodies either detected by ELISA or RFFIT. Additionally, NDV and RABV specific T cell activity was demonstrated in some of the vaccinated animals by detecting antigen specific interferon γ secretion in lymphocytes isolated from pharyngeal lymph nodes. In conclusion, the NDV vectored rabies vaccine rNDV_GRABV was safe and immunogenic after a single oral application in goats and foxes, and highlight the potential of NDV as vector for oral vaccines in mammals.


Asunto(s)
Vacunas Antirrábicas , Rabia , Animales , Anticuerpos Antivirales , Zorros , Cabras , Inmunidad , Inmunización , Virus de la Enfermedad de Newcastle/genética , Rabia/prevención & control , Rabia/veterinaria , Vacunación/veterinaria
13.
Vet Res ; 55(1): 16, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317245

RESUMEN

Numerous infectious diseases in cattle lead to reductions in body weight, milk production, and reproductive performance. Cattle are primarily vaccinated using inactivated vaccines due to their increased safety. However, inactivated vaccines generally result in weaker immunity compared with live attenuated vaccines, which may be insufficient in certain cases. Over the last few decades, there has been extensive research on the use of the Newcastle disease virus (NDV) as a live vaccine vector for economically significant livestock diseases. A single vaccination dose of NDV can sufficiently induce immunity; therefore, a booster vaccination dose is expected to yield limited induction of further immune response. We previously developed recombinant chimeric NDV (rNDV-2F2HN), in which its hemagglutinin-neuraminidase (HN) and fusion (F) proteins were replaced with those of avian paramyxovirus 2 (APMV-2). In vitro analysis revealed that rNDV-2F2HN expressing human interferon-gamma had potential as a cancer therapeutic tool, particularly for immunized individuals. In the present study, we constructed rNDV-2F2HN expressing the bovine rotavirus antigen VP6 (rNDV-2F2HN-VP6) and evaluated its immune response in mice previously immunized with NDV. Mice primarily inoculated with recombinant wild-type NDV expressing VP6 (rNDV-WT-VP6), followed by a booster inoculation of rNDV-2F2HN-VP6, showed a significantly stronger immune response than that in mice that received rNDV-WT-VP6 as both primary and booster inoculations. Therefore, our findings suggest that robust immunity could be obtained from the effects of chimeric rNDV-2F2HN expressing the same or a different antigen of a particular pathogen as a live attenuated vaccine vector.


Asunto(s)
Avulavirus , Enfermedades de los Bovinos , Enfermedad de Newcastle , Enfermedades de los Roedores , Rotavirus , Vacunas Virales , Animales , Bovinos , Humanos , Ratones , Virus de la Enfermedad de Newcastle/genética , Pollos , Anticuerpos Antivirales , Vectores Genéticos , Avulavirus/genética , Proteínas Virales/genética , Vacunas de Productos Inactivados , Inmunidad
14.
Virol J ; 21(1): 7, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178138

RESUMEN

BACKGROUND: Oncolytic viruses are being studied and developed as novel cancer treatments. Using directed evolution technology, structural modification of the viral surface protein increases the specificity of the oncolytic virus for a particular cancer cell. Newcastle disease virus (NDV) does not show specificity for certain types of cancer cells during infection; therefore, it has low cancer cell specificity. Hemagglutinin is an NDV receptor-binding protein on the cell surface that determines host cell tropism. NDV selectivity for specific cancer cells can be increased by artificial amino acid changes in hemagglutinin neuraminidase HN proteins via directed evolution, leading to improved therapeutic effects. METHODS: Sialic acid-binding sites (H domains) of the HN protein mutant library were generated using error-prone PCR. Variants of the H domain protein were screened by enzyme-linked immunosorbent assay using HCT 116 cancer cell surface molecules. The mutant S519G H domain protein showed the highest affinity for the surface protein of HCT 116 cells compared to that of different types of cancer cells. This showed that the S519G mutant H domain protein gene replaced the same part of the original HN protein gene, and S519G mutant recombinant NDV (rNDV) was constructed and recovered. S519G rNDV cancer cell killing effects were tested using the MTT assay with various cancer cell types, and the tumor suppression effect of the S519G mutant rNDV was tested in a xenograft mouse model implanted with cancer cells, including HCT 116 cells. RESULTS: S519G rNDV showed increased specificity and enhanced killing ability of HCT 116 cells among various cancer cells and a stronger suppressive effect on tumor growth than the original recombinant NDV. Directed evolution using an artificial amino acid change in the NDV HN (S519G mutant) protein increased its specificity and oncolytic effect in colorectal cancer without changing its virulence. CONCLUSION: These results provide a new methodology for the use of directed evolution technology for more effective oncolytic virus development.


Asunto(s)
Neoplasias Colorrectales , Virus Oncolíticos , Humanos , Animales , Ratones , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/metabolismo , Proteína HN/genética , Proteína HN/metabolismo , Neuraminidasa/genética , Neuraminidasa/metabolismo , Hemaglutininas , Ácido N-Acetilneuramínico/metabolismo , Células HCT116 , Virus Oncolíticos/genética , Modelos Animales de Enfermedad , Proteínas de la Membrana , Neoplasias Colorrectales/terapia
15.
Virus Res ; 341: 199309, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38181903

RESUMEN

Newcastle disease virus (NDV) is an avian virus and a promising vector for the development of vaccines for veterinary and human use. The optimal vaccine vector performance requires a stable high-level expression of a transgene. The foreign genes are usually incorporated in the genome of NDV as individual transcription units, whose transcription and subsequent translation of the mRNA are regulated by the 5' and 3' untranslated regions (UTRs) flanking the open reading frame of the transgene. Here, we investigated if the UTRs derived from the cognate NDV genes would increase the expression of a model protective antigene from an NDV vector. Our results show that in chicken DF1 cells, none of the UTRs tested significantly outperformed generic short sequences flanking the transgene, while in human HeLa cells, UTRs derived from the M gene of NDV statistically significantly increased the expression of the transgene. The UTRs derived from the HN gene significantly downregulated the transgene expression in both cell cultures. Further experiments demonstrated that NDV UTRs differently affect the mRNA abundance and translation efficacy. While both M and HN UTRs decreased the level of the transgene mRNA in infected cells compared to the mRNA flanked by generic UTRs, M, and particularly, HN UTRs strongly increased the mRNA translation efficacy. The major determinants of translation enhancement are localized in the 5'UTR of HN. Thus, our data reveal a direct role of NDV UTRs in translational regulation, and inform future optimization of NDV vectors for vaccine and therapeutic use.


Asunto(s)
Enfermedad de Newcastle , Vacunas , Vacunas Virales , Animales , Humanos , Virus de la Enfermedad de Newcastle/genética , Células HeLa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regiones no Traducidas 3' , Vacunas/metabolismo , Transgenes , Pollos , Enfermedad de Newcastle/genética
16.
Avian Pathol ; 53(3): 194-198, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38288967

RESUMEN

We report the first North American origin class I avian orthoavulavirus 1 (AOAV-1) isolated from a faecal dropping of wild Eurasian teal (Anas crecca) in South Korea. Whole genome sequencing and comparative phylogenetic analysis revealed that the AOAV-1/Eurasian teal/South Korea/KU1405-3/2017 virus belongs to the sub-genotype 1.2 of class I AOAV-1. Phylogenetic analysis suggested multiple introductions of the North American sub-genotype 1.2 viruses into Asia and its establishment in the wild bird population in East Asia since May 2011. These results provide information on the epidemiology of AOAV-1, particularly the role of migratory wild birds in exchanging viruses between the Eurasian and North American continents. Enhanced genomic surveillance is required to improve our understanding on the evolution and transmission dynamics of AOAV-1 in wild birds.


Asunto(s)
Patos , Gripe Aviar , Animales , Filogenia , Aves , Animales Salvajes/genética , Virus de la Enfermedad de Newcastle/genética , República de Corea/epidemiología , Secuenciación Completa del Genoma/veterinaria , América del Norte/epidemiología
17.
Microb Pathog ; 188: 106542, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199445

RESUMEN

Oil-based inactivated ND vaccines are a commonly used control strategy for this endemic disease in Egypt. One of the major limitations of these inactivated vaccines is the time taken to develop a protective response in vaccinated birds. In the present study, we aimed to formulate an inactivated oil-based ND vaccine incorporated with lipopolysaccharide (LPS) that stimulates the early onset innate response to inactivated vaccines via proinflammatory cytokine production. Five groups of 21-day old SPF chicks were reared in isolators and were treated as follows: G1: Montanoid ISA71 adjuvanted NDV vaccinated group, G2: LPS and Montanoid ISA71 adjuvanted NDV vaccinated group, G3: LPS and Montanoid ISA71 with phosphate buffer saline received group and two non-vaccinated control groups. NDV specific antibodies and cell mediated immune responses were evaluated by hemagglutination inhibition and lymphocyte proliferation tests, respectively. Transcriptional responses of the TLR4, IFN-γ and IL-2 genes were analyzed in peripheral blood mononuclear cells (PBMCs) following vaccination by qRT-PCR. Protection % was determined after challenge with a lethal strain of NDV 106 EID50/0.5 ml. Viral shedding was assessed on oropharyngeal swabs by qRT-PCR and infectivity titration on SPF-ECE. The results revealed that the incorporation of LPS with ISA71 in the oil-based ND vaccine induced a synergistic response confirmed by significant humoral and lymphoproliferative responses with a significant increase in Th1 cytokine transcripts. The simultaneous use of both adjuvants in G2 demonstrated complete protection and a significant reduction in viral shedding compared to the ISA71-adjuvated ND vaccine in G1, which conferred 90 % protection.


Asunto(s)
Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Enfermedad de Newcastle/prevención & control , Virus de la Enfermedad de Newcastle/genética , Lipopolisacáridos , Citocinas , Leucocitos Mononucleares , Pollos , Adyuvantes Inmunológicos , Vacunas de Productos Inactivados , Anticuerpos Antivirales , Esparcimiento de Virus , Enfermedades de las Aves de Corral/prevención & control
18.
Vet Microbiol ; 290: 109973, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211361

RESUMEN

Newcastle disease virus (NDV) is an RNA virus that can promote its own replication through the inhibition of cellular mitochondrial fusion. The proteins involved in mitochondrial fusion, namely mitofusin 1 (Mfn1) and optic atrophy 1 (OPA1) are associated with interferon-beta (IFN-ß) secretion during NDV infection. However, the precise mechanism by which NDV modulates the Mfn1-mediated or OPA1-mediated fusion of mitochondria, thereby impacting IFN-ß, remains elusive. This study revealed that the downregulation of the mitochondrial protein known as coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) exerts a negative regulatory effect on OPA1 and Mfn1 in human lung adenocarcinoma (A549) cells during the late stage of NDV infection. This reduction in CHCHD10 expression impeded cellular mitochondrial fusion, subsequently leading to a decline in the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-κB), ultimately resulting in diminished secretion of IFN-ß. In contrast, the overexpression of CHCHD10 alleviated infection-induced detrimental effect in mitochondrial fusion, thereby impeding viral proliferation. In summary, NDV enhances its replication by inhibiting the CHCHD10 protein, which impedes mitochondrial fusion and suppresses IFN-ß production through the activation of IRF3 and NF-κB.


Asunto(s)
FN-kappa B , Virus de la Enfermedad de Newcastle , Humanos , Animales , Virus de la Enfermedad de Newcastle/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Dinámicas Mitocondriales , Interferón beta/genética , Interferón beta/metabolismo , Proliferación Celular , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
19.
Vet Microbiol ; 290: 109986, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244394

RESUMEN

Newcastle disease (ND) is a disease that threatens the world's poultry industry, which is caused by virulent Newcastle disease virus (NDV). As its pathogenic mechanism remains not fully clear, the proteomics of NDV-infected cells were analyzed. The results revealed that coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) protein displayed a significant decrease at the late stage of NDV infection. To investigate the function of CHCHD10 in NDV infection, its expression after NDV infection was detected both in vivo and in vitro. Besides, the tissue viral loads and pathological damage of C57BL/6 mice with CHCHD10 differently expressed were also investigated. The results showed that the CHCHD10 expression was significantly decreased both in vivo and in vitro at the late stage of NDV infection. The viral loads were significantly higher in CHCHD10 silenced C57BL/6 mice, along with more severe pathological damage and vice versa.


Asunto(s)
Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Enfermedades de los Roedores , Ratones , Animales , Virus de la Enfermedad de Newcastle/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ratones Endogámicos C57BL , Aves de Corral , Pollos
20.
Vaccine ; 42(2): 332-338, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38065771

RESUMEN

Newcastle disease (ND) and infectious bursal disease (IBD) pose significant threats to the chicken industry, causing substantial economic losses. Currently, immunization through vaccination is the most effective strategy to prevent ND and IBD but currently used traditional vaccines, including inactivated or attenuated vaccines, face challenges in achieving a balance between immunogenicity and safety. To develop a green and efficient novel vaccine for ND and IBD, we developed a bivalent chimeric virus-like particle vaccine (ND-IBD cVLPs) displaying the ND virus (NDV) HN protein and the IBD virus (IBDV) VP2 protein based on the ND VLPs carrier platform and insect baculovirus expression system. This study aimed to evaluate the immunogenicity and protective efficacy of ND-IBD cVLPs in specific pathogen-free chickens. Chickens were immunized with 50 µg of purified ND-IBD cVLPs at 7 days old, boosted at 21 days old, and challenged at 42 days old. The results demonstrated that ND-IBD cVLPs stimulated highly effective hemagglutination inhibition antibody levels against NDV HN protein and enzyme-linked immunosorbent assay antibody levels against the IBDV VP2 protein. Furthermore, ND-IBD cVLPs provided complete protection against virulent NDV and IBDV challenges and mitigated pathological damage to the lung caused by NDV infection and the bursa of Fabricius caused by IBDV infection. These findings suggest that ND-IBD cVLPs hold promise as a safe and efficient novel vaccine candidate for the effective prevention of ND and IBD, extending the development of a foreign protein delivery platform of ND VLPs.


Asunto(s)
Infecciones por Birnaviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Vacunas de Partículas Similares a Virus , Vacunas Virales , Animales , Pollos , Proteína HN , Anticuerpos Antivirales , Virus de la Enfermedad de Newcastle/genética , Enfermedad de Newcastle/prevención & control , Infecciones por Birnaviridae/prevención & control , Infecciones por Birnaviridae/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...