Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.867
Filtrar
1.
J Chromatogr A ; 1726: 464968, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38723492

RESUMEN

The steric mass-action (SMA) model has been widely reported to describe the adsorption of proteins in different types of chromatographic adsorbents. Here in the present work, a pore-blocking steric mass-action model (PB-SMA) was developed for the adsorption of large-size bioparticles, which usually exhibit the unique pore-blocking characteristic on the adsorbent and thus lead to a fraction of ligands in the deep channels physically inaccessible to bioparticles adsorption, instead of being shielded due to steric hindrance by adsorbed bioparticles. This unique phenomenon was taken into account by introducing an additional parameter, Lin, which is defined as the inaccessible ligand densities in the physically blocked pore area, into the PB-SMA model. This fraction of ligand densities (Lin) will be deducted from the total ligand (Lt) for model development, thus the steric factor (σ) in the proposed PB-SMA will reflect the steric shielding effect on binding sites by adsorbed bioparticles more accurately than the conventional SMA model, which assumes that all ligands on the adsorbent have the same accessibility to the bioparticles. Based on a series of model assumptions, a PB-SMA model was firstly developed for inactivated foot-and-mouth disease virus (iFMDV) adsorption on immobilized metal affinity chromatography (IMAC) adsorbents. Model parameters for static adsorption including equilibrium constant (K), characteristic number of binding sites (n), and steric factor (σ) were determined. Compared with those derived from the conventional SMA model, the σ values derived from the PB-SMA model were dozens of times smaller and much closer to the theoretical maximum number of ligands shielded by a single adsorbed iFMDV, indicating the modified model was more accurate for bioparticles adsorption. The applicability of the PB-SMA model was further validated by the adsorption of hepatitis B surface antigen virus-like particles (HBsAg VLPs) on an ion exchange adsorbent with reasonably improved accuracy. Thus, it is considered that the PB-SMA model would be more accurate in describing the adsorption of bioparticles on different types of chromatographic adsorbents.


Asunto(s)
Cromatografía de Afinidad , Adsorción , Cromatografía de Afinidad/métodos , Virus de la Fiebre Aftosa/química , Ligandos , Porosidad , Modelos Químicos
3.
Antiviral Res ; 226: 105900, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705200

RESUMEN

BACKGROUND & AIMS: The spread of foot-and-mouth disease virus (FMDV) through aerosol droplets among cloven-hoofed ungulates in close contact is a major obstacle for successful animal husbandry. Therefore, the development of suitable mucosal vaccines, especially nasal vaccines, to block the virus at the initial site of infection is crucial. PATIENTS AND METHODS: Here, we constructed eukaryotic expression plasmids containing the T and B-cell epitopes (pTB) of FMDV in tandem with the molecular mucosal adjuvant Fms-like tyrosine kinase receptor 3 ligand (Flt3 ligand, FL) (pTB-FL). Then, the constructed plasmid was electrostatically attached to mannose-modified chitosan-coated poly(lactic-co-glycolic) acid (PLGA) nanospheres (MCS-PLGA-NPs) to obtain an active nasal vaccine targeting the mannose-receptor on the surface of antigen-presenting cells (APCs). RESULTS: The MCS-PLGA-NPs loaded with pTB-FL not only induced a local mucosal immune response, but also induced a systemic immune response in mice. More importantly, the nasal vaccine afforded an 80% protection rate against a highly virulent FMDV strain (AF72) when it was subcutaneously injected into the soles of the feet of guinea pigs. CONCLUSIONS: The nasal vaccine prepared in this study can effectively induce a cross-protective immune response against the challenge with FMDV of same serotype in animals and is promising as a potential FMDV vaccine.


Asunto(s)
Administración Intranasal , Quitosano , Virus de la Fiebre Aftosa , Fiebre Aftosa , Nanosferas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Vacunas Virales , Animales , Quitosano/química , Quitosano/administración & dosificación , Virus de la Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/genética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Fiebre Aftosa/prevención & control , Fiebre Aftosa/inmunología , Ratones , Nanosferas/química , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Ratones Endogámicos BALB C , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Femenino , Ácidos Nucleicos/administración & dosificación , Inmunidad Mucosa , Sistemas de Liberación de Medicamentos
4.
Sci Rep ; 14(1): 10289, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704437

RESUMEN

Myocarditis is considered a fatal form of foot-and-mouth disease (FMD) in suckling calves. In the present study, a total of 17 calves under 4 months of age and suspected clinically for FMD were examined for clinical lesions, respiratory rate, heart rate, and heart rhythm. Lesion samples, saliva, nasal swabs, and whole blood were collected from suspected calves and subjected to Sandwich ELISA and reverse transcription multiplex polymerase chain reaction (RT-mPCR) for detection and serotyping of FMD virus (FMDV). The samples were found to be positive for FMDV serotype "O". Myocarditis was suspected in 6 calves based on tachypnoea, tachycardia, and gallop rhythm. Serum aspartate aminotransferase (AST), creatinine kinase myocardial band (CK-MB) and lactate dehydrogenase (LDH), and cardiac troponins (cTnI) were measured. Mean serum AST, cTn-I and LDH were significantly higher (P < 0.001) in < 2 months old FMD-infected calves showing clinical signs suggestive of myocarditis (264.833 ± 4.16; 11.650 ± 0.34 and 1213.33 ± 29.06) than those without myocarditis (< 2 months old: 110.00 ± 0.00, 0.06 ± 0.00, 1050.00 ± 0.00; > 2 months < 4 months: 83.00 ± 3.00, 0.05 ± 0.02, 1159.00 ± 27.63) and healthy control groups (< 2 months old: 67.50 ± 3.10, 0.047 ± 0.01, 1120.00 ± 31.62; > 2 months < 4 months: 72.83 ± 2.09, 0.47 ± 0.00, 1160.00 ± 18.44). However, mean serum CK-MB did not differ significantly amongst the groups. Four calves under 2 months old died and a necropsy revealed the presence of a pathognomic gross lesion of the myocardial form of FMD known as "tigroid heart". Histopathology confirmed myocarditis. This study also reports the relevance of clinical and histopathological findings and biochemical markers in diagnosing FMD-related myocarditis in suckling calves.


Asunto(s)
Fiebre Aftosa , Miocarditis , Animales , Bovinos , Miocarditis/veterinaria , Miocarditis/virología , Miocarditis/patología , Fiebre Aftosa/virología , Fiebre Aftosa/patología , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/sangre , Enfermedades de los Bovinos/patología , Virus de la Fiebre Aftosa/patogenicidad , Virus de la Fiebre Aftosa/aislamiento & purificación , Animales Lactantes , Factores de Edad , Aspartato Aminotransferasas/sangre , Masculino , L-Lactato Deshidrogenasa/sangre
5.
Prev Vet Med ; 226: 106192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564991

RESUMEN

Foot-and-mouth disease is a controlled disease in accordance with the South African Animal Diseases Act (Act 35 of 1984). The country was classified by the World Organisation for Animal Health (WOAH) as having a FMD free zone without vaccination in 1996. However, this status was suspended in 2019 due to a FMD outbreak outside the controlled zones. FMD control in South Africa includes animal movement restrictions placed on cloven-hoofed species and products, prophylactic vaccination of cattle, clinical surveillance of susceptible species, and disease control fencing to separate livestock from wildlife reservoirs. The objectives of this study were to evaluate differences in identifying high-risk areas for FMD using risk factor and expert opinion elicitation analysis. Differences in risk between FMD introduction and FMD spread within the FMD protection zone with vaccination (PZV) of South Africa (2007-2016) were also investigated. The study was conducted in the communal farming area of the FMD PZV, which is adjacent to wildlife reserves and characterised by individual faming units. Eleven risk factors that were considered important for FMD occurrence and spread were used to build a weighted linear combination (WLC) score based on risk factor data and expert opinion elicitation. A multivariable conditional logistic regression model was also used to calculate predicted probabilities of a FMD outbreak for all dip-tanks within the study area. Smoothed Bayesian kriged maps were generated for 11 individual risk factors, overall WLC scores for FMD occurrence and spread and for predicted probabilities of a FMD outbreak based on the conditional logistic regression model. Descriptively, vaccine matching was believed to have a great influence on both FMD occurrence and spread. Expert opinion suggested that FMD occurrence was influenced predominantly by proximity to game reserves and cattle density. Cattle populations and vaccination practices were considered most important for FMD spread. Highly effective cattle inspections were observed within areas that previously reported FMD outbreaks, indicating the importance of cattle inspection (surveillance) as a necessary element of FMD outbreak detection. The multivariable conditional logistic regression analysis, which was consistent with expert opinion elicitation; identified three factors including cattle population density (OR 3.87, 95% CI 1.47-10.21) and proximities to game reserve fences (OR 0.82, 95% CI 0.73-0.92) and rivers (OR 1.04, 95% CI 1.01-1.07) as significant factors for reported FMD outbreaks. Regaining and maintaining an FMD-free status without vaccination requires frequent monitoring of high-risk areas and designing targeted surveillance.


Asunto(s)
Enfermedades de los Bovinos , Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Bovinos , Fiebre Aftosa/epidemiología , Fiebre Aftosa/prevención & control , Sudáfrica/epidemiología , Teorema de Bayes , Testimonio de Experto , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/prevención & control , Animales Salvajes , Factores de Riesgo , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/veterinaria
6.
Arch Virol ; 169(5): 101, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630189

RESUMEN

Foot-and-mouth disease is a highly contagious disease affecting cloven-hoofed animals, resulting in considerable economic losses. Its causal agent is foot-and-mouth disease virus (FMDV), a picornavirus. Due to its error-prone replication and rapid evolution, the transmission and evolutionary dynamics of FMDV can be studied using genomic epidemiological approaches. To analyze FMDV evolution and identify possible transmission routes in an Argentinean region, field samples that tested positive for FMDV by PCR were obtained from 21 farms located in the Mar Chiquita district. Whole FMDV genome sequences were obtained by PCR amplification in seven fragments and sequencing using the Sanger technique. The genome sequences obtained from these samples were then analyzed using phylogenetic, phylogeographic, and evolutionary approaches. Three local transmission clusters were detected among the sampled viruses. The dataset was analyzed using Bayesian phylodynamic methods with appropriate coalescent and relaxed molecular clock models. The estimated mean viral evolutionary rate was 1.17 × 10- 2 substitutions/site/year. No significant differences in the rate of viral evolution were observed between farms with vaccinated animals and those with unvaccinated animals. The most recent common ancestor of the sampled sequences was dated to approximately one month before the first reported case in the outbreak. Virus transmission started in the south of the district and later dispersed to the west, and finally arrived in the east. Different transmission routes among the studied herds, such as non-replicating vectors and close contact contagion (i.e., aerosols), may be responsible for viral spread.


Asunto(s)
Virus de la Fiebre Aftosa , Picornaviridae , Animales , Virus de la Fiebre Aftosa/genética , Argentina/epidemiología , Teorema de Bayes , Filogenia
7.
Viruses ; 16(4)2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38675855

RESUMEN

The foot-and-mouth disease virus is a highly contagious and economically devastating virus of cloven-hooved animals, including cattle, buffalo, sheep, and goats, causing reduced animal productivity and posing international trade restrictions. For decades, chemically inactivated vaccines have been serving as the most effective strategy for the management of foot-and-mouth disease. Inactivated vaccines are commercially produced in cell culture systems, which require successful propagation and adaptation of field isolates, demanding a high cost and laborious time. Cell culture adaptation is chiefly indebted to amino acid substitutions in surface-exposed capsid proteins, altering the necessity of RGD-dependent receptors to heparan sulfate macromolecules for virus binding. Several amino acid substations in VP1, VP2, and VP3 capsid proteins of FMDV, both at structural and functional levels, have been characterized previously. This literature review combines frequently reported amino acid substitutions in virus capsid proteins, their critical roles in virus adaptation, and functional characterization of the substitutions. Furthermore, this data can facilitate molecular virologists to develop new vaccine strains against the foot-and-mouth disease virus, revolutionizing vaccinology via reverse genetic engineering and synthetic biology.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de la Cápside , Virus de la Fiebre Aftosa , Fiebre Aftosa , Tropismo Viral , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/metabolismo , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Fiebre Aftosa/virología , Receptores Virales/metabolismo , Receptores Virales/genética , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Técnicas de Cultivo de Célula
8.
Virulence ; 15(1): 2333562, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38622757

RESUMEN

The Picornaviridae are a large group of positive-sense, single-stranded RNA viruses, and most research has focused on the Enterovirus genus, given they present a severe health risk to humans. Other picornaviruses, such as foot-and-mouth disease virus (FMDV) and senecavirus A (SVA), affect agricultural production with high animal mortality to cause huge economic losses. The 3Dpol protein of picornaviruses is widely known to be used for genome replication; however, a growing number of studies have demonstrated its non-polymerase roles, including modulation of host cell biological processes, viral replication complex assembly and localization, autophagy, and innate immune responses. Currently, there is no effective vaccine to control picornavirus diseases widely, and clinical therapeutic strategies have limited efficiency in combating infections. Many efforts have been made to develop different types of drugs to prohibit virus survival; the most important target for drug development is the virus polymerase, a necessary element for virus replication. For picornaviruses, there are also active efforts in targeted 3Dpol drug development. This paper reviews the interaction of 3Dpol proteins with the host and the progress of drug development targeting 3Dpol.


Asunto(s)
Enterovirus , Virus de la Fiebre Aftosa , Infecciones por Picornaviridae , Animales , Humanos , Productos del Gen pol/metabolismo , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/metabolismo , Replicación Viral , ARN Viral/genética
9.
Virology ; 595: 110070, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657363

RESUMEN

Foot-and-mouth disease is a highly contagious and infectious disease affecting cloven-hoofed animals. Disease control is complicated by its highly contagious nature and antigenic diversity. Host microRNAs (miRNAs) are post-transcriptional regulators that either promote or repress viral replications in virus infection. In the present study, we found that ssc-miR-7139-3p (Sus scrofa miR-7139-3p) was significantly up-regulated in host cells during foot-and-mouth disease virus (FMDV) infection. Overexpression of miR-7139-3p attenuated FMDV replication, whereas inhibition promoted FMDV replication. In addition, the survival rate of FMDV infected suckling mice was increased through injection of miR-7139-3p agomiR. Further studies revealed that miR-7139-3p targets Bcl-2 to initiate the apoptotic pathway and caspase-3 cleaved 3Cpro behind the 174th aspartic acid (D174), which eventually promotes the degradation of 3Cpro. Overall, our findings demonstrate that miR-7139-3p suppresses FMDV replication by promoting degradation of 3Cpro through targeting the apoptosis-negative regulatory gene Bcl-2.


Asunto(s)
Apoptosis , Virus de la Fiebre Aftosa , Fiebre Aftosa , MicroARNs , Proteínas Proto-Oncogénicas c-bcl-2 , Replicación Viral , Animales , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Fiebre Aftosa/virología , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Porcinos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteasas Virales 3C/metabolismo , Línea Celular , Sus scrofa , Interacciones Huésped-Patógeno , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Proteolisis , Caspasa 3/metabolismo , Caspasa 3/genética
10.
Sci Rep ; 14(1): 7929, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575673

RESUMEN

Foot and mouth disease (FMD) is a highly contagious, endemic, and acute viral cattle ailment that causes major economic damage in Ethiopia. Although several serotypes of the FMD virus have been detected in Ethiopia, there is no documented information about the disease's current serostatus and serotypes circulating in the Wolaita zone. Thus, from March to December 2022, a cross-sectional study was conducted to evaluate FMDV seroprevalence, molecular detection, and serotype identification in three Wolaita Zone sites. A multistage sample procedure was used to choose three peasant associations from each study region, namely Wolaita Sodo, Offa district, and Boloso sore district. A systematic random sampling technique was employed to pick 384 cattle from the population for the seroprevalence research, and 10 epithelial tissue samples were purposefully taken from outbreak individuals for molecular detection of FMDV. The sera were examined using 3ABC FMD NSP Competition ELISA to find antibodies against FMDV non-structural proteins, whereas epithelial tissue samples were analyzed for molecular detection using real-time RT-PCR, and sandwich ELISA was used to determine the circulating serotypes. A multivariable logistic regression model was used to evaluate the associated risk variables. The total seroprevalence of FMD in cattle was 46.88% (95% CI 41.86-51.88), with Wolaita Sodo Town having the highest seroprevalence (63.28%). As a consequence, multivariable logistic regression analysis revealed that animal age, herd size, and interaction with wildlife were all substantially related to FMD seroprevalence (p < 0.05). During molecular detection, only SAT-2 serotypes were found in 10 tissue samples. Thus, investigating FMD outbreaks and identifying serotypes and risk factors for seropositivity are critical steps in developing effective control and prevention strategies based on the kind of circulating serotype. Moreover, further research for animal species other than cattle was encouraged.


Asunto(s)
Enfermedades de los Bovinos , Virus de la Fiebre Aftosa , Fiebre Aftosa , Humanos , Bovinos , Animales , Virus de la Fiebre Aftosa/genética , Estudios Seroepidemiológicos , Estudios Transversales , Etiopía/epidemiología , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/epidemiología , Fiebre Aftosa/diagnóstico , Fiebre Aftosa/epidemiología , Serogrupo , Brotes de Enfermedades/veterinaria , Animales Salvajes , Anticuerpos Antivirales
11.
Emerg Microbes Infect ; 13(1): 2348526, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38683015

RESUMEN

The foot-and-mouth disease virus (FMDV) Leader proteinase Lpro inhibits host mRNA translation and blocks the interferon response which promotes viral survival. Lpro is not required for viral replication in vitro but serotype A FMDV lacking Lpro has been shown to be attenuated in cattle and pigs. However, it is not known, whether leaderless viruses can cause persistent infection in vivo after simulated natural infection and whether the attenuated phenotype is the same in other serotypes. We have generated an FMDV O/FRA/1/2001 variant lacking most of the Lpro coding region (ΔLb). Cattle were inoculated intranasopharyngeally and observed for 35 days to determine if O FRA/1/2001 ΔLb is attenuated during the acute phase of infection and whether it can maintain a persistent infection in the upper respiratory tract. We found that although this leaderless virus can replicate in vitro in different cell lines, it is unable to establish an acute infection with vesicular lesions and viral shedding nor is it able to persistently infect bovine pharyngeal tissues.


Asunto(s)
Enfermedades de los Bovinos , Virus de la Fiebre Aftosa , Fiebre Aftosa , Infección Persistente , Serogrupo , Replicación Viral , Animales , Bovinos , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/fisiología , Virus de la Fiebre Aftosa/clasificación , Virus de la Fiebre Aftosa/patogenicidad , Virus de la Fiebre Aftosa/aislamiento & purificación , Fiebre Aftosa/virología , Enfermedades de los Bovinos/virología , Infección Persistente/virología , Línea Celular , Endopeptidasas/genética , Endopeptidasas/metabolismo , Esparcimiento de Virus
12.
Sci Rep ; 14(1): 8931, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637656

RESUMEN

Whether mice can be used as a foot-and-mouth disease (FMD) model has been debated for a long time. However, the major histocompatibility complex between pigs and mice is very different. In this study, the protective effects of FMD vaccines in different animal models were analyzed by a meta-analysis. The databases PubMed, China Knowledge Infrastructure, EMBASE, and Baidu Academic were searched. For this purpose, we evaluated evidence from 14 studies that included 869 animals with FMD vaccines. A random effects model was used to combine effects using Review Manager 5.4 software. A forest plot showed that the protective effects in pigs were statistically non-significant from those in mice [MH = 0.56, 90% CI (0.20, 1.53), P = 0.26]. The protective effects in pigs were also statistically non-significant from those in guinea pigs [MH = 0.67, 95% CI (0.37, 1.21), P = 0.18] and suckling mice [MH = 1.70, 95% CI (0.10, 28.08), P = 0.71]. Non-inferiority test could provide a hypothesis that the models (mice, suckling mice and guinea pigs) could replace pigs as FMDV vaccine models to test the protective effect of the vaccine. Strict standard procedures should be established to promote the assumption that mice and guinea pigs should replace pigs in vaccine evaluation.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Cobayas , Ratones , Fiebre Aftosa/prevención & control , Anticuerpos Antivirales , Modelos Animales
13.
Prev Vet Med ; 227: 106197, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613943

RESUMEN

The use of virus-neutralizing (VN) and nonstructural protein (NSP) antibody tests in a serosurveillance program for foot-and-mouth disease (FMD) can identify pig herds that are adequately vaccinated, with a high percentage of pigs with VN positive antibody titers; these tests can also help identify pigs with NSP-positivity that have previously been or are currently infected even in vaccinated herds. To identify infected herds and manage infection, the combination of VN and NSP antibody tests was used in Taiwan's serosurveillance program implemented simultaneously with the compulsory FMD vaccination program. The result was the eradication of FMD: Taiwan was recognized by the World Organization for Animal Health as an FMD-free country without vaccination in 2020. Evaluation of the compulsory vaccination program incorporated in the FMD control program in Taiwan revealed that the vaccine quality was satisfactory and the vaccination program was effective during the period of compulsory vaccination (2010-2017). Sound immunological coverage was achieved, with 89.1% of pigs having VN antibody titers exceeding 1:16 in 2016. This level of immunological coverage would be expected to substantially reduce or prevent FMD transmission, which was borne out by the results of the NSP tests. We identified farms having positive NSP reactors (very low annual prevalence) before the cessation of FMD vaccination in July 2018; however, detailed serological and clinical investigations of pigs of all ages in suspect herds demonstrated that no farms were harboring infected animals after the second half of 2013. Thus, the results revealed no evidence of FMD circulation in the field, and Taiwan regained FMD-free status.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Virus de la Fiebre Aftosa , Fiebre Aftosa , Enfermedades de los Porcinos , Proteínas no Estructurales Virales , Animales , Fiebre Aftosa/epidemiología , Fiebre Aftosa/prevención & control , Taiwán/epidemiología , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Proteínas no Estructurales Virales/inmunología , Estudios Seroepidemiológicos , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/sangre , Virus de la Fiebre Aftosa/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunación/veterinaria
14.
Viruses ; 16(4)2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675963

RESUMEN

Southern Africa Territories 2 (SAT2) foot-and-mouth disease (FMD) has crossed long-standing regional boundaries in recent years and entered the Middle East. However, the existing vaccines offer poor cross-protection against the circulating strains in the field. Therefore, there is an urgent need for an alternative design approach for vaccines in anticipation of a pandemic of SAT2 Foot-and-mouth disease virus (FMDV). The porcine parvovirus (PPV) VP2 protein can embed exogenous epitopes into the four loops on its surface, assemble into virus-like particles (VLPs), and induce antibodies and cytokines to PPV and the exogenous epitope. In this study, chimeric porcine parvovirus VP2 VLPs (chimeric PPV-SAT2-VLPs) expressing the T-and/or B-cell epitopes of the structural protein VP1 of FMDV SAT2 were produced using the recombinant pFastBac™ Dual vector of baculoviruses in Sf9 and HF cells We used the Bac-to-Bac system to construct the recombinant baculoviruses. The VP2-VLP--SAT2 chimeras displayed chimeric T-cell epitope (amino acids 21-40 of VP1) and/or the B-cell epitope (amino acids 135-174) of SAT FMDV VP1 by substitution of the corresponding regions at the N terminus (amino acids 2-23) and/or loop 2 and/or loop 4 of the PPV VP2 protein, respectively. In mice, the chimeric PPV-SAT2-VLPs induced specific antibodies against PPV and the VP1 protein of SAT2 FMDV. The VP2-VLP-SAT2 chimeras induced specific antibodies to PPV and the VP1 protein specific epitopes of FMDV SAT2. In this study, as a proof-of-concept, successfully generated chimeric PPV-VP2 VLPs expressing epitopes of the structural protein VP1 of FMDV SAT2 that has a potential to prevent FMDV SAT2 and PPV infection in pigs.


Asunto(s)
Anticuerpos Antivirales , Antígenos Virales , Proteínas de la Cápside , Virus de la Fiebre Aftosa , Fiebre Aftosa , Parvovirus Porcino , Vacunas de Partículas Similares a Virus , Vacunas Virales , Animales , Virus de la Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/genética , Ratones , Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Fiebre Aftosa/virología , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Parvovirus Porcino/inmunología , Parvovirus Porcino/genética , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/genética , Porcinos , Inmunidad Humoral , Inmunidad Celular , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/genética , Serogrupo , Ratones Endogámicos BALB C , Femenino , Epítopos/inmunología , Epítopos/genética , Células Sf9 , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre
15.
PLoS Pathog ; 20(3): e1012104, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38512977

RESUMEN

The interaction between foot-and-mouth disease virus (FMDV) and the host is extremely important for virus infection, but there are few researches on it, which is not conducive to vaccine development and FMD control. In this study, we designed a porcine genome-scale CRISPR/Cas9 knockout library containing 93,859 single guide RNAs targeting 16,886 protein-coding genes, 25 long ncRNAs, and 463 microRNAs. Using this library, several previously unreported genes required for FMDV infection are highly enriched post-FMDV selection in IBRS-2 cells. Follow-up studies confirmed the dependency of FMDV on these genes, and we identified a functional role for one of the FMDV-related host genes: TOB1 (Transducer of ERBB2.1). TOB1-knockout significantly inhibits FMDV infection by positively regulating the expression of RIG-I and MDA5. We further found that TOB1-knockout led to more accumulation of mRNA transcripts of transcription factor CEBPA, and thus its protein, which further enhanced transcription of RIG-I and MDA5 genes. In addition, TOB1-knockout was shown to inhibit FMDV adsorption and internalization mediated by EGFR/ERBB2 pathway. Finally, the FMDV lethal challenge on TOB1-knockout mice confirmed that the deletion of TOB1 inhibited FMDV infection in vivo. These results identify TOB1 as a key host factor involved in FMDV infection in pigs.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Ratones , Receptores ErbB/metabolismo , Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/genética , Regulación de la Expresión Génica , ARN Guía de Sistemas CRISPR-Cas , Porcinos
16.
Cells ; 13(6)2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38534383

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious and economically important disease of cloven-hoofed animals that hampers trade and production. To ensure effective infection, the foot-and-mouth disease virus (FMDV) evades host antiviral pathways in different ways. Although the effect of histone deacetylase 5 (HDAC5) on the innate immune response has previously been documented, the precise molecular mechanism underlying HDAC5-mediated FMDV infection is not yet clearly understood. In this study, we found that silencing or knockout of HDAC5 promoted FMDV replication, whereas HDAC5 overexpression significantly inhibited FMDV propagation. IFN-ß and IFN-stimulated response element (ISRE) activity was strongly activated through the overexpression of HDAC5. The silencing and knockout of HDAC5 led to an increase in viral replication, which was evident by decreased IFN-ß, ISG15, and ISG56 production, as well as a noticeable reduction in IRF3 phosphorylation. Moreover, the results showed that the FMDV capsid protein VP1 targets HDAC5 and facilitates its degradation via the proteasomal pathway. In conclusion, this study highlights that HDAC5 acts as a positive modulator of IFN-ß production during viral infection, while FMDV capsid protein VP1 antagonizes the HDAC5-mediated antiviral immune response by degrading HDAC5 to facilitate viral replication.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Interferón Tipo I , Animales , Proteínas de la Cápside/metabolismo , Transducción de Señal , Fiebre Aftosa/metabolismo , Inmunidad Innata , Interferón Tipo I/metabolismo
17.
Microbiol Spectr ; 12(4): e0337223, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38466127

RESUMEN

Foot-and-mouth disease (FMD) is one of the most devastating diseases of livestock which can cause significant economic losses, especially when introduced to FMD-free countries. FMD virus (FMDV) belongs to the family Picornaviridae and is antigenically heterogeneous with seven established serotypes. The prevailing preventive and control strategies are limited to restriction of animal movement and elimination of infected or exposed animals, which can be potentially combined with vaccination. However, FMD vaccination has limitations including delayed protection and lack of cross-protection against different serotypes. Recently, antiviral drug use for FMD outbreaks has increasingly been recognized as a potential tool to augment the existing early response strategies, but limited research has been reported on potential antiviral compounds for FMDV. FMDV 3C protease (3Cpro) cleaves the viral-encoded polyprotein into mature and functional proteins during viral replication. The essential role of viral 3Cpro in viral replication and the high conservation of 3Cpro among different FMDV serotypes make it an excellent target for antiviral drug development. We have previously reported multiple series of inhibitors against picornavirus 3Cpro or 3C-like proteases (3CLpros) encoded by coronaviruses or caliciviruses. In this study, we conducted structure-activity relationship studies for our in-house focused compound library containing 3Cpro or 3CLpro inhibitors against FMDV 3Cpro using enzyme and cell-based assays. Herein, we report the discovery of aldehyde and α-ketoamide inhibitors of FMDV 3Cpro with high potency. These data inform future preclinical studies that are related to the advancement of these compounds further along the drug development pathway.IMPORTANCEFood-and-mouth disease (FMD) virus (FMDV) causes devastating disease in cloven-hoofed animals with a significant economic impact. Emergency response to FMD outbreaks to limit FMD spread is critical, and the use of antivirals may overcome the limitations of existing control measures by providing immediate protection for susceptible animals. FMDV encodes 3C protease (3Cpro), which is essential for virus replication and an attractive target for antiviral drug discovery. Here, we report a structure-activity relationship study on multiple series of protease inhibitors and identified potent inhibitors of FMDV 3Cpro. Our results suggest that these compounds have the potential for further development as FMD antivirals.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Virus de la Fiebre Aftosa/metabolismo , Péptido Hidrolasas/metabolismo , Serogrupo , Fiebre Aftosa/tratamiento farmacológico , Fiebre Aftosa/prevención & control , Endopeptidasas/metabolismo , Proteasas Virales 3C , Antivirales/farmacología
18.
J Virol Methods ; 326: 114906, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479084

RESUMEN

Foot-and-mouth disease (FMD) is a contagious viral disease of cloven-footed animals. Immunization with inactivated virus vaccine is effective to control the disease. Six-monthly vaccination regimen in endemic regions has proven to be effective. To enable the differentiation of infected animals from those vaccinated, non-structural proteins (NSPs) are excluded during vaccine production. While the antibodies to structural proteins (SPs) could be observed both in vaccinated and infected animals, NSP antibodies are detectable only in natural infection. Quality control assays that detect NSPs in vaccine antigen preparations, are thus vital in the FMD vaccine manufacturing process. In this study, we designed a chemiluminescence dot blot assay to detect the 3A and 3B NSPs of FMDV. It is sensitive enough to detect up to 20 ng of the NSP, and exhibited specificity as it does not react with the viral SPs. This cost-effective assay holds promise in quality control assessment in FMD vaccine manufacturing.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Fiebre Aftosa/diagnóstico , Fiebre Aftosa/prevención & control , Luminiscencia , Anticuerpos Antivirales , Proteínas no Estructurales Virales , Sensibilidad y Especificidad , Ensayo de Inmunoadsorción Enzimática
19.
Cell Mol Life Sci ; 81(1): 148, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509419

RESUMEN

Propagation of viruses requires interaction with host factors in infected cells and repression of innate immune responses triggered by the host viral sensors. Cytosolic DNA sensing pathway of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) is a major component of the antiviral response to DNA viruses, also known to play a relevant role in response to infection by RNA viruses, including foot-and-mouth disease virus (FMDV). Here, we provide supporting evidence of cGAS degradation in swine cells during FMDV infection and show that the two virally encoded proteases, Leader (Lpro) and 3Cpro, target cGAS for cleavage to dampen the cGAS/STING-dependent antiviral response. The specific target sequence sites on swine cGAS were identified as Q140/T141 for the FMDV 3Cpro and the KVKNNLKRQ motif at residues 322-330 for Lpro. Treatment of swine cells with inhibitors of the cGAS/STING pathway or depletion of cGAS promoted viral infection, while overexpression of a mutant cGAS defective for cGAMP synthesis, unlike wild type cGAS, failed to reduce FMDV replication. Our findings reveal a new mechanism of RNA viral antagonism of the cGAS-STING innate immune sensing pathway, based on the redundant degradation of cGAS through the concomitant proteolytic activities of two proteases encoded by an RNA virus, further proving the key role of cGAS in restricting FMDV infection.


Asunto(s)
Virus de la Fiebre Aftosa , Animales , Porcinos , Virus de la Fiebre Aftosa/metabolismo , Péptido Hidrolasas/metabolismo , Transducción de Señal , Inmunidad Innata , Endopeptidasas/genética , Endopeptidasas/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Antivirales/metabolismo
20.
Front Cell Infect Microbiol ; 14: 1331779, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510965

RESUMEN

Background: Commercial foot-and-mouth disease (FMD) vaccines have limitations, such as local side effects, periodic vaccinations, and weak host defenses. To overcome these limitations, we developed a novel FMD vaccine by combining an inactivated FMD viral antigen with the small molecule isoprinosine, which served as an adjuvant (immunomodulator). Method: We evaluated the innate and adaptive immune responses elicited by the novel FMD vaccine involved both in vitro and in vivo using mice and pigs. Results: We demonstrated isoprinosine-mediated early, mid-term, and long-term immunity through in vitro and in vivo studies and complete host defense against FMD virus (FMDV) infection through challenge experiments in mice and pigs. We also elucidated that isoprinosine induces innate and adaptive (cellular and humoral) immunity via promoting the expression of immunoregulatory gene such as pattern recognition receptors [PRRs; retinoic acid-inducible gene (RIG)-I and toll like receptor (TLR)9], transcription factors [T-box transcription factor (TBX)21, eomesodermin (EOMES), and nuclear factor kappa B (NF-kB)], cytokines [interleukin (IL)-12p40, IL-23p19, IL-23R, and IL-17A)], and immune cell core receptors [cluster of differentiation (CD)80, CD86, CD28, CD19, CD21, and CD81] in pigs. Conclusion: These findings present an attractive strategy for constructing novel FMD vaccines and other difficult-to-control livestock virus vaccine formulations based on isoprinosine induced immunomodulatory functions.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Inosina Pranobex , Vacunas Virales , Animales , Ratones , Porcinos , Adyuvantes de Vacunas , Anticuerpos Antivirales , Adyuvantes Inmunológicos , Interleucinas , Inmunidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...