Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Chem ; 89: 107400, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33068917

RESUMEN

A series of alkylated benzimidazole derivatives was synthesized and screened for their anti-HIV, anti-YFV, and broad-spectrum antiviral properties. The physicochemical parameters and drug-like properties of the compounds were assessed first, and then docking studies and MD simulations on HIV-RT allosteric sites were conducted to find the possible mode of their action. DFT analysis was also performed to confirm the nature of the hydrogen bonding interaction of active compounds. The in silico studies indicated that the molecules behaved like possible NNRTIs. The nature - polar or non-polar and position of the substituent present at fifth, sixth, and N-1 positions of the benzimidazole moiety played an important role in determining the antiviral properties of the compounds. Among the various compounds, 2-(5,6-dibromo-2-chloro-1H-benzimidazol-1-yl)ethan-1-ol (3a) showed anti-HIV activity with an appreciably low IC50 value as 0.386 × 10-5µM. Similarly, compound 2b, 3-(2-chloro-5-nitro-1H-benzimidazol-1-yl) propan-1-ol, showed excellent inhibitory property against the yellow fever virus (YFV) with EC50 value as 0.7824 × 10-2µM.


Asunto(s)
Bencimidazoles/farmacología , VIH/efectos de los fármacos , Inhibidores de la Transcriptasa Inversa/farmacología , Virus de la Fiebre Amarilla/efectos de los fármacos , Animales , Bencimidazoles/síntesis química , Bencimidazoles/farmacocinética , Dominio Catalítico , Chlorocebus aethiops , Teoría Funcional de la Densidad , VIH/enzimología , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Químicos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/farmacocinética , Relación Estructura-Actividad , Células Vero , Virus de la Fiebre Amarilla/enzimología
2.
Biochim Biophys Acta Gen Subj ; 1864(4): 129521, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31931019

RESUMEN

BACKGROUND: The Yellow Fever virus (YFV) is transmitted by mosquitos and causes an infection with symptoms including fever, headaches and nausea. In 20-50% of the cases, the disease may evolve to a visceral stage, reaching high mortality rates. YFV NS2B-NS3 protease has been identified as an important drug target. METHODS: Herein, we describe the crystal structure of the NS2B-NS3 protease from the 2017 YFV Brazilian circulating strain using X-ray crystallography. Furthermore, we used a combination of biochemical and biophysical assays to characterize the enzyme and investigate the impact of the polymorphisms observed in different YFV circulating strains. RESULTS: Surprisingly, the crystal structure of YFV protease seems to adopt the closed conformation without the presence of a binding partner. Although D88E and K121R mutants exhibited a lower affinity for the substrate, both revealed to be more processive, resulting in a similar catalytic efficiency in relation to the WT protease. Still, both mutants showed an accentuated decrease in stability when compared with the WT. CONCLUSIONS: The crystal structure of YFV NS2B-NS3 in closed conformation might be an important tool for the development of new drugs, as well as understanding the activation mechanism of viral proteases. Biochemical analyses indicate that the NS2B-NS3 protease of the circulating strain of YFV is more stable than previous strains. GENERAL SIGNIFICANCE: The YFV NS2B-NS3 protease is the first flaviviral structure described in its closed conformation when in a free form, implying that external factors might induce the activation of the enzyme.


Asunto(s)
Polimorfismo de Nucleótido Simple/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Virus de la Fiebre Amarilla/enzimología , Brasil , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/metabolismo
3.
Immunity ; 43(1): 1-2, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26200004

RESUMEN

The innate immune sensor RIG-I recognizes viral RNA while avoiding unwanted activation by self RNA. In this issue of Immunity, Schuberth-Wagner et al. (2015) show that a histidine residue in the RNA binding pocket of RIG-I sterically excludes the cap1 structure of self RNA, thereby preventing downstream activation.


Asunto(s)
ARN Helicasas DEAD-box/genética , Tolerancia Inmunológica/genética , Procesamiento Postranscripcional del ARN/genética , ARN/genética , Virus de la Fiebre Amarilla/enzimología , Animales , Humanos
4.
Immunity ; 43(1): 41-51, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26187414

RESUMEN

The cytosolic helicase retinoic acid-inducible gene-I (RIG-I) initiates immune responses to most RNA viruses by detecting viral 5'-triphosphorylated RNA (pppRNA). Although endogenous mRNA is also 5'-triphosphorylated, backbone modifications and the 5'-ppp-linked methylguanosine ((m7)G) cap prevent immunorecognition. Here we show that the methylation status of endogenous capped mRNA at the 5'-terminal nucleotide (N1) was crucial to prevent RIG-I activation. Moreover, we identified a single conserved amino acid (H830) in the RIG-I RNA binding pocket as the mediator of steric exclusion of N1-2'O-methylated RNA. H830A alteration (RIG-I(H830A)) restored binding of N1-2'O-methylated pppRNA. Consequently, endogenous mRNA activated the RIG-I(H830A) mutant but not wild-type RIG-I. Similarly, knockdown of the endogenous N1-2'O-methyltransferase led to considerable RIG-I stimulation in the absence of exogenous stimuli. Studies involving yellow-fever-virus-encoded 2'O-methyltransferase and RIG-I(H830A) revealed that viruses exploit this mechanism to escape RIG-I. Our data reveal a new role for cap N1-2'O-methylation in RIG-I tolerance of self-RNA.


Asunto(s)
ARN Helicasas DEAD-box/genética , Tolerancia Inmunológica/genética , Procesamiento Postranscripcional del ARN/genética , ARN/genética , Virus de la Fiebre Amarilla/enzimología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Proteína 58 DEAD Box , Activación Enzimática/genética , Activación Enzimática/inmunología , Histidina/genética , Humanos , Metilación , Metiltransferasas/genética , Ratones , Estructura Terciaria de Proteína , ARN/química , ARN/inmunología , ARN Viral/inmunología , Receptores Inmunológicos , Virus de la Fiebre Amarilla/genética
5.
Biochem Biophys Res Commun ; 407(4): 640-4, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21419753

RESUMEN

Here we report the hydrolytic behavior of recombinant YFV NS2B/NS3 protease against FRET substrates mimicking the prime and non-prime region of the natural polyprotein cleavage sites. While the P2-P'1 motif is the main factor associated with the catalytic efficiency of Dengue (DV) and West Nile Virus (WNV) protease, we show that the k(cat)/K(m) of YFV NS2B/NS3 varied by more than two orders of magnitude, despite the presence of the same motif in all natural substrates. The catalytic significance of this homogeneity - a unique feature among worldwide prominent flavivirus - was kinetically analyzed using FRET peptides containing all possible combinations of two and three basic amino acids in tandem, and Arg and Lys residues produced distinct effects on k(cat)/K(m). The parallel of our data with those obtained in vivo by Chambers et al. (1991) restrains the idea that these sites co-evolved with the NS2B/NS3 protease to promote highly efficient hydrolysis and supports the notion that secondary substrate interaction distant from cleavage sites are the main factor associated with the different hydrolytic rates on YFV NS2B-NS3pro natural substrates.


Asunto(s)
Proteínas no Estructurales Virales/química , Virus de la Fiebre Amarilla/enzimología , Secuencias de Aminoácidos , Concentración de Iones de Hidrógeno , Hidrólisis , Péptidos/química , ARN Helicasas/química , ARN Helicasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Especificidad por Sustrato , Proteínas no Estructurales Virales/genética
6.
Virus Res ; 141(1): 101-4, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19185594

RESUMEN

Serine/Threonine phosphorylation of the nonstructural protein 5 (NS5) is a conserved feature of flaviviruses, but the identity and function(s) of the responsible kinase(s) remain unknown. Serine 56 in the methyltransferase domain of NS5 can be phosphorylated intracellularly, is conserved in all flaviviruses, and is a critical residue in the catalytic mechanism. A negative charge at this residue inactivates the 2'-0 methyltransferase activity necessary to form a 5' cap structure of the viral RNA. Here we show pharmacologic inhibition of Casein Kinase 1 (CK1) suppresses yellow fever virus (YFV) production. We also demonstrate the alpha isoform of Casein Kinase 1 (CK1alpha), a kinase previously identified as phosphorylating Hepatitis C Virus NS5A protein, also phosphorylates serine 56 of YFV methyltransferase. Overall these results suggest CK1 activity can influence flaviviral replication.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Infecciones por Flavivirus/enzimología , Metiltransferasas/metabolismo , Proteínas Virales/metabolismo , Virus de la Fiebre Amarilla/enzimología , Quinasa de la Caseína I/química , Quinasa de la Caseína I/genética , Línea Celular , Flavivirus/química , Flavivirus/enzimología , Flavivirus/fisiología , Humanos , Metiltransferasas/química , Metiltransferasas/genética , Fosforilación , Especificidad por Sustrato , Proteínas Virales/química , Proteínas Virales/genética , Replicación Viral , Virus de la Fiebre Amarilla/química , Virus de la Fiebre Amarilla/fisiología
7.
J Gen Virol ; 88(Pt 8): 2223-2227, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17622626

RESUMEN

A recombinant form of yellow fever virus (YFV) NS3 protease, linked via a nonapeptide to the minimal NS2B co-factor sequence (CF40-gly-NS3pro190), was expressed in Escherichia coli and shown to be catalytically active. It efficiently cleaved the fluorogenic tetrapeptide substrate Bz-norleucine-lysine-arginine-arginine-AMC, which was previously optimized for dengue virus NS2B/3 protease. A series of small peptidic inhibitors based on this substrate sequence readily inhibited its enzymic activity. To understand the structure-activity relationship of the inhibitors, they were docked into a homology model of the YFV NS2B/NS3 protease structure. The results revealed that the P1 and P2 positions are most important for inhibitor binding, whilst the P3 and P4 positions have much less effect. These findings indicate that the characteristics of YFV protease are very similar to those reported for dengue and West Nile virus proteases, and suggest that pan-flavivirus NS3 protease drugs may be developed for flaviviral diseases.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Oligopéptidos/metabolismo , Proteínas no Estructurales Virales/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Virus de la Fiebre Amarilla/enzimología , Secuencia de Aminoácidos , Antivirales/farmacología , Sitios de Unión/fisiología , Cinética , Datos de Secuencia Molecular , Oligopéptidos/química , ARN Helicasas/química , ARN Helicasas/efectos de los fármacos , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Serina Endopeptidasas/química , Serina Endopeptidasas/efectos de los fármacos , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Especificidad por Sustrato , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
8.
J Virol ; 79(16): 10268-77, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16051820

RESUMEN

Yellow fever virus (YFV), a member of the Flavivirus genus, has a plus-sense RNA genome encoding a single polyprotein. Viral protein NS3 includes a protease and a helicase that are essential to virus replication and to RNA capping. The 1.8-A crystal structure of the helicase region of the YFV NS3 protein includes residues 187 to 623. Two familiar helicase domains bind nucleotide in a triphosphate pocket without base recognition, providing a site for nonspecific hydrolysis of nucleoside triphosphates and RNA triphosphate. The third, C-terminal domain has a unique structure and is proposed to function in RNA and protein recognition. The organization of the three domains indicates that cleavage of the viral polyprotein NS3-NS4A junction occurs in trans.


Asunto(s)
Flavivirus/enzimología , Proteínas no Estructurales Virales/química , Virus del Nilo Occidental/enzimología , Virus de la Fiebre Amarilla/enzimología , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , ARN/metabolismo , ARN Helicasas/química , ARN Helicasas/fisiología , Serina Endopeptidasas/química , Serina Endopeptidasas/fisiología , Proteínas no Estructurales Virales/fisiología
9.
J Gen Virol ; 86(Pt 5): 1403-1413, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15831952

RESUMEN

A series of 46 charged-to-alanine mutations in the yellow fever virus NS2B-NS3 protease, previously characterized in cell-free and transient cellular expression systems, was tested for their effects on virus recovery. Four distinct plaque phenotypes were observed in cell culture: parental plaque-size (13 mutants), reduced plaque-size (17 mutants), small plaque-size (8 mutants) and no plaque-formation (8 mutants). No mutants displayed any temperature sensitivity based on recovery of virus after RNA transfection at 32 versus 37 degrees C. Most small plaque-mutants were defective in growth efficiency compared with parental virus. However not all small plaque-mutants had defective 2B/3 cleavage, with some showing selective defects at other non-structural protein cleavage sites. Revertant viruses were recovered for six mutations that caused reduced plaque sizes. Same-site and second-site mutations occurred in NS2B, and one second-site mutation occurred in the NS3 protease domain. Some reversion mutations ameliorated defects in cleavage activity and plaque size caused by the original mutation. These data indicate that certain mutations that reduce NS2B-NS3 protease cleavage activity cause growth restriction of yellow fever virus in cell culture. However, for at least two mutations, processing defects other than impaired cleavage activity at the 2B/3 site may account for the mutant phenotype. The existence of reversion mutations primarily in NS2B rather than NS3, suggests that the protease domain is less tolerant of structural perturbation compared with the NS2B protein.


Asunto(s)
Sustitución de Aminoácidos , ARN Helicasas/genética , ARN Helicasas/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virus de la Fiebre Amarilla/enzimología , Análisis Mutacional de ADN , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , ARN Helicasas/química , Serina Endopeptidasas/química , Proteínas no Estructurales Virales/química , Ensayo de Placa Viral , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/crecimiento & desarrollo
10.
J Virol ; 79(3): 1943-7, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15650220

RESUMEN

It is not yet clear to what extent depletion of intracellular GTP pools contributes to the antiviral activity of ribavirin. Therefore, the antiviral activities of (i) ribavirin, (ii) its 5-ethynyl analogue, 5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide (EICAR), and (iii) mycophenolic acid (MPA) (a compound that inhibits only cellular IMP dehydrogenase activity) were studied on the replication of flaviviruses and paramyxoviruses. In addition, the effects of these three compounds on intracellular GTP pools were assessed. A linear correlation was observed over a broad concentration range between the antiviral activities of ribavirin, EICAR, and MPA and the effects of these compounds on GTP pool depletion. When the 50% effective concentrations (EC50s) for the antiviral activities of ribavirin, EICAR, and MPA were plotted against the respective EC50 values for GTP pool depletion, a linear correlation was calculated. These data provide compelling evidence that the predominant mechanism of action of ribavirin in vitro against flavi- and paramyxoviruses is based on inhibition of cellular IMP dehydrogenase activity.


Asunto(s)
Antivirales/farmacología , IMP Deshidrogenasa/antagonistas & inhibidores , Virus de la Parainfluenza 3 Humana/efectos de los fármacos , Ribavirina/farmacología , Virus de la Fiebre Amarilla/efectos de los fármacos , Animales , Antivirales/química , Chlorocebus aethiops , Guanosina Trifosfato/metabolismo , Pruebas de Sensibilidad Microbiana/métodos , Ácido Micofenólico/química , Ácido Micofenólico/farmacología , Virus de la Parainfluenza 3 Humana/enzimología , Ribavirina/química , Ribonucleósidos/química , Ribonucleósidos/farmacología , Células Vero , Replicación Viral/efectos de los fármacos , Virus de la Fiebre Amarilla/enzimología
11.
J Virol ; 78(2): 1032-8, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14694136

RESUMEN

Three consecutive plaque purifications of four chimeric yellow fever virus-dengue virus (ChimeriVax-DEN) vaccine candidates against dengue virus types 1 to 4 were performed. The genome of each candidate was sequenced by the consensus approach after plaque purification and additional passages in cell culture. Our data suggest that the nucleotide sequence error rate for SP6 RNA polymerase used in the in vitro transcription step to initiate virus replication was as high as 1.34 x 10(-4) per copied nucleotide and that the error rate of the yellow fever virus RNA polymerase employed by the chimeras for genome replication in infected cells was as low as 1.9 x 10(-7) to 2.3 x 10(-7). Clustering of beneficial mutations that accumulated after multiple virus passages suggests that the N-terminal part of the prM protein, a specific site in the middle of the E protein, and the NS4B protein may be essential for nucleocapsid-envelope interaction during flavivirus assembly.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Dengue/prevención & control , Virus del Dengue/genética , Análisis de Secuencia de ADN , Pase Seriado , Transcripción Genética , Vacunas Sintéticas , Ensayo de Placa Viral , Vacunas Virales , Ensamble de Virus , Replicación Viral , Virus de la Fiebre Amarilla/enzimología , Virus de la Fiebre Amarilla/genética
12.
Virology ; 275(2): 335-47, 2000 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-10998334

RESUMEN

Charged-to-alanine substitutions and deletions within the yellow fever virus NS2B-NS3(181) protease were analyzed for effects on protease function. During cell-free translation of NS2B-3(181) polyproteins, mutations at three charge clusters markedly impaired cis cleavage activity: a single N-terminal cluster in the conserved domain of NS2B (residues ELKK(52-55)) and two in NS3 (ED(21-22), and residue H(47)). These mutations inhibited other protease-dependent cleavages of a transiently expressed nonstructural polyprotein, although differential effects occurred. NS2B and NS3(181) proteins harboring these mutations were impaired in their ability to associate for trans cleavage activity. N-terminal deletions in NS3 also implicated residues ED(21-22) in the association with NS2B. Deletions within NS2B revealed that the conserved domain alone provided minimal cofactor activity, with optimal function requiring both flanking hydrophobic regions. NS2B-3(181)- and NS3(181)-green fluorescent protein fusion proteins were used to determine the intracellular distribution of the protease complex. The former localized in membrane-based vesicular structures, whereas the latter localized poorly. The data suggest that NS2B-NS3 complex formation requires charge interactions involving the N-terminus of the conserved domain of NS2B and 22 N-terminal residues of NS3. A role for the putative transmembrane regions of NS2B in targeting of NS3 to intracellular membranes is also suggested.


Asunto(s)
Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Virus de la Fiebre Amarilla/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Electroforesis en Gel de Poliacrilamida , Endopeptidasas/genética , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , ARN Helicasas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia , Serina Endopeptidasas , Proteínas no Estructurales Virales/genética , Virus de la Fiebre Amarilla/enzimología
13.
J Virol ; 67(2): 989-96, 1993 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8380474

RESUMEN

The nonstructural protein NS3 of the prototypic flavivirus, yellow fever virus, was investigated for possession of an NTPase activity. The entire NS3 protein coding sequence and an amino-terminal truncated version thereof were engineered into Escherichia coli expression plasmids. Bacteria harboring these plasmids produced the expected polypeptides, which upon cell disruption were found in an insoluble aggregated material considerably enriched for the NS3-related polypeptides. Solubilization and renaturation of these materials, followed by examination of their ability to hydrolyze ATP, revealed an ATPase activity present in both the full-length and amino-terminal truncated NS3 preparations but not in a similarly prepared fraction from E. coli cells engineered to express an unrelated polypeptide. The amino-terminal truncated NS3 polypeptide was further enriched to greater than 95% purity by ion-exchange and affinity chromatography. Throughout the purification scheme, the ATPase activity cochromatographed with the recombinant NS3 polypeptide. The enzymatic activity of the purified material was shown to be a general NTPase and was dramatically stimulated by the presence of particular single-stranded polyribonucleotides. These results are discussed in view of similar activities identified for proteins of other positive-strand RNA viruses.


Asunto(s)
Monoéster Fosfórico Hidrolasas/metabolismo , Polinucleótidos/farmacología , Proteínas no Estructurales Virales/metabolismo , Virus de la Fiebre Amarilla/enzimología , Adenosina Trifosfatasas/efectos de los fármacos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Bases , Clonación Molecular , Escherichia coli/genética , Datos de Secuencia Molecular , Nucleósido-Trifosfatasa , Monoéster Fosfórico Hidrolasas/efectos de los fármacos , Monoéster Fosfórico Hidrolasas/genética , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Proteínas no Estructurales Virales/efectos de los fármacos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/aislamiento & purificación
14.
J Virol ; 65(9): 4749-58, 1991 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-1651406

RESUMEN

The proteins of flaviviruses are translated as a single long polyprotein which is co- and posttranslationally processed by both cellular and viral proteinases. We have studied the processing of flavivirus polyproteins in vitro by a viral proteinase located within protein NS3 that cleaves at least three sites within the nonstructural region of the polyprotein, acting primarily autocatalytically. Recombinant polyproteins in which part of the polyprotein is derived from yellow fever virus and part from dengue virus were used. We found that polyproteins containing the yellow fever virus cleavage sites were processed efficiently by the yellow fever virus enzyme, by the dengue virus enzyme, and by various chimeric enzymes. In contrast, dengue virus cleavage sites were cleaved inefficiently by the dengue virus enzyme and not at all by the yellow fever virus enzyme. Studies with chimeric proteinases and with site-directed mutants provided evidence for a direct interaction between the cleavage sites and the proposed substrate-binding pocket of the enzyme. We also found that the efficiency and order of processing could be altered by site-directed mutagenesis of the proposed substrate-binding pocket.


Asunto(s)
Endopeptidasas/metabolismo , Flavivirus/enzimología , Proteínas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cápside/metabolismo , Clonación Molecular , Análisis Mutacional de ADN , Virus del Dengue/enzimología , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/metabolismo , Especificidad de la Especie , Relación Estructura-Actividad , Especificidad por Sustrato , Proteínas del Núcleo Viral/metabolismo , Proteínas no Estructurales Virales , Virus de la Fiebre Amarilla/enzimología
15.
Proc Natl Acad Sci U S A ; 87(22): 8898-902, 1990 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-2147282

RESUMEN

Sequence homology and molecular modeling studies have suggested that the N-terminal one-third of the flavirvirus nonstructural protein NS3 functions as a trypsin-like serine protease. To examine the putative proteolytic activity of NS3, segments of the yellow fever virus genome were subcloned into plasmid transcription/translation vectors and cell-free translation products were characterized. The results suggest that a protease activity encoded within NS2B and the N-terminal one-third of yellow fever virus NS3 is capable of cis-acting site-specific proteolysis at the NS2B-NS3 cleavage site and dilution-insensitive cleavage of the NS2A-NS2B site. Site-directed mutagenesis of the His-53, Asp-77, and Ser-138 residues of NS3 that compose the proposed catalytic triad implicates this domain as a serine protease. Infectious virus was not recovered from mammalian cells transfected with RNAs transcribed from full-length yellow fever virus cDNA templates containing mutations at Ser-138 (which abolish or dramatically reduce protease activity in vitro), suggesting that the protease is required for viral replication.


Asunto(s)
Cápside/metabolismo , Serina Endopeptidasas/genética , Proteínas del Núcleo Viral/metabolismo , Virus de la Fiebre Amarilla/enzimología , Cápside/genética , Clonación Molecular , Análisis Mutacional de ADN , Genes Virales , Biosíntesis de Proteínas , Precursores de Proteínas/metabolismo , Proteínas del Núcleo Viral/genética , Proteínas no Estructurales Virales , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/genética , Virus de la Fiebre Amarilla/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...