Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.029
Filtrar
1.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38695722

RESUMEN

High-pathogenicity avian influenza viruses (HPAIVs) of the goose/Guangdong lineage are enzootically circulating in wild bird populations worldwide. This increases the risk of entry into poultry production and spill-over to mammalian species, including humans. Better understanding of the ecological and epizootiological networks of these viruses is essential to optimize mitigation measures. Based on full genome sequences of 26 HPAIV samples from Iceland, which were collected between spring and autumn 2022, as well as 1 sample from the 2023 summer period, we show that 3 different genotypes of HPAIV H5N1 clade 2.3.4.4b were circulating within the wild bird population in Iceland in 2022. Furthermore, in 2023 we observed a novel introduction of HPAIV H5N5 of the same clade to Iceland. The data support the role of Iceland as an utmost northwestern distribution area in Europe that might act also as a potential bridging point for intercontinental spread of HPAIV across the North Atlantic.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Filogenia , Islandia/epidemiología , Animales , Gripe Aviar/virología , Gripe Aviar/epidemiología , Gripe Aviar/transmisión , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Genotipo , Animales Salvajes/virología , Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Genoma Viral , Aves/virología
2.
Emerg Microbes Infect ; 13(1): 2341142, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38581279

RESUMEN

H6N6 avian influenza viruses (AIVs) have been widely detected in wild birds, poultry, and even mammals. Recently, H6N6 viruses were reported to be involved in the generation of H5 and H7 subtype viruses. To investigate the emergence, evolutionary pattern, and potential for an epidemic of H6N6 viruses, the complete genomes of 198 H6N6 viruses were analyzed, including 168 H6N6 viruses deposited in the NCBI and GISAID databases from inception to January 2019 and 30 isolates collected from China between November 2014 and January 2019. Using phylogenetic analysis, the 198 strains of H6N6 viruses were identified as 98 genotypes. Molecular clock analysis indicated that the evolution of H6N6 viruses in China was constant and not interrupted by selective pressure. Notably, the laboratory isolates reassorted with six subtype viruses: H6N2, H5N6, H7N9, H5N2, H4N2, and H6N8, resulting in nine novel H6N6 reassortment events. These results suggested that H6N6 viruses can act as an intermediary in the evolution of H5N6, H6N6, and H7N9 viruses. Animal experiments demonstrated that the 10 representative H6N6 viruses showed low pathogenicity in chickens and were capable of infecting mice without prior adaptation. Our findings suggest that H6N6 viruses play an important role in the evolution of AIVs, and it is necessary to continuously monitor and evaluate the potential epidemic of the H6N6 subtype viruses.


Asunto(s)
Pollos , Evolución Molecular , Genoma Viral , Virus de la Influenza A , Gripe Aviar , Filogenia , Virus Reordenados , Animales , China/epidemiología , Virus Reordenados/genética , Virus Reordenados/clasificación , Virus Reordenados/aislamiento & purificación , Gripe Aviar/virología , Gripe Aviar/epidemiología , Ratones , Pollos/virología , Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Genotipo , Humanos
3.
Viruses ; 16(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38675910

RESUMEN

Influenza A viruses (IAVs) pose a serious threat to global health. On the one hand, these viruses cause seasonal flu outbreaks in humans. On the other hand, they are a zoonotic infection that has the potential to cause a pandemic. The most important natural reservoir of IAVs are waterfowl. In this study, we investigated the occurrence of IAV in birds in the Republic of Buryatia (region in Russia). In 2020, a total of 3018 fecal samples were collected from wild migratory birds near Lake Baikal. Of these samples, 11 were found to be positive for the H13N8 subtype and whole-genome sequencing was performed on them. All samples contained the same virus with the designation A/Unknown/Buryatia/Arangatui-1/2020. To our knowledge, virus A/Unknown/Buryatia/Arangatui-1/2020 is the first representative of the H13N8 subtype collected on the territory of Russia, the sequence of which is available in the GenBank database. An analysis of reassortments based on the genome sequences of other known viruses has shown that A/Unknown/Buryatia/Arangatui-1/2020 arose as a result of reassortment. In addition, a reassortment most likely occurred several decades ago between the ancestors of the viruses recently collected in China, the Netherlands, the United States and Chile. The presence of such reassortment emphasizes the ongoing evolution of the H13N8 viruses distributed in Europe, North and East Asia, North and South America and Australia. This study underscores the importance of the continued surveillance and research of less-studied influenza subtypes.


Asunto(s)
Aves , Genoma Viral , Virus de la Influenza A , Gripe Aviar , Filogenia , Virus Reordenados , Secuenciación Completa del Genoma , Animales , Virus Reordenados/genética , Virus Reordenados/clasificación , Virus Reordenados/aislamiento & purificación , Gripe Aviar/virología , Gripe Aviar/epidemiología , Federación de Rusia/epidemiología , Aves/virología , Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Heces/virología , Animales Salvajes/virología
4.
Viruses ; 16(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675939

RESUMEN

The flyways of many different wild waterfowl pass through the Caspian Sea region. The western coast of the middle Caspian Sea is an area with many wetlands, where wintering grounds with large concentrations of birds are located. It is known that wild waterfowl are a natural reservoir of the influenza A virus. In the mid-2000s, in the north of this region, the mass deaths of swans, gulls, and pelicans from high pathogenicity avian influenza virus (HPAIV) were noted. At present, there is still little known about the presence of avian influenza virus (AIVs) and different avian paramyxoviruses (APMVs) in the region's waterfowl bird populations. Here, we report the results of monitoring these viruses in the wild waterfowl of the western coast of the middle Caspian Sea from 2017 to 2020. Samples from 1438 individuals of 26 bird species of 7 orders were collected, from which 21 strains of AIV were isolated, amounting to a 1.46% isolation rate of the total number of samples analyzed (none of these birds exhibited external signs of disease). The following subtypes were determined and whole-genome nucleotide sequences of the isolated strains were obtained: H1N1 (n = 2), H3N8 (n = 8), H4N6 (n = 2), H7N3 (n = 2), H8N4 (n = 1), H10N5 (n = 1), and H12N5 (n = 1). No high pathogenicity influenza virus H5 subtype was detected. Phylogenetic analysis of AIV genomes did not reveal any specific pattern for viruses in the Caspian Sea region, showing that all segments belong to the Eurasian clades of classic avian-like influenza viruses. We also did not find the amino acid substitutions in the polymerase complex (PA, PB1, and PB2) that are critical for the increase in virulence or adaptation to mammals. In total, 23 hemagglutinating viruses not related to influenza A virus were also isolated, of which 15 belonged to avian paramyxoviruses. We were able to sequence 12 avian paramyxoviruses of three species, as follows: Newcastle disease virus (n = 4); Avian paramyxovirus 4 (n = 5); and Avian paramyxovirus 6 (n = 3). In the Russian Federation, the Newcastle disease virus of the VII.1.1 sub-genotype was first isolated from a wild bird (common pheasant) in the Caspian Sea region. The five avian paramyxovirus 4 isolates obtained belonged to the common clade in Genotype I, whereas phylogenetic analysis of three isolates of Avian paramyxovirus 6 showed that two isolates, isolated in 2017, belonged to Genotype I and that an isolate identified in 2020 belonged to Genotype II. The continued regular monitoring of AIVs and APMVs, the obtaining of data on the biological properties of isolated strains, and the accumulation of information on virus host species will allow for the adequate planning of epidemiological measures, suggest the most likely routes of spread of the virus, and assist in the prediction of the introduction of the viruses in the western coastal region of the middle Caspian Sea.


Asunto(s)
Animales Salvajes , Avulavirus , Aves , Virus de la Influenza A , Gripe Aviar , Filogenia , Animales , Gripe Aviar/virología , Gripe Aviar/epidemiología , Aves/virología , Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/patogenicidad , Animales Salvajes/virología , Avulavirus/genética , Avulavirus/clasificación , Avulavirus/aislamiento & purificación , Avulavirus/patogenicidad , Genoma Viral , Infecciones por Avulavirus/veterinaria , Infecciones por Avulavirus/virología , Infecciones por Avulavirus/epidemiología
5.
Viruses ; 16(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675967

RESUMEN

Inactivated influenza A virus (IAV) vaccines help reduce clinical disease in suckling piglets, although endemic infections still exist. The objective of this study was to evaluate the detection of IAV in suckling and nursery piglets from IAV-vaccinated sows from farms with endemic IAV infections. Eight nasal swab collections were obtained from 135 two-week-old suckling piglets from four farms every other week from March to September 2013. Oral fluid samples were collected from the same group of nursery piglets. IAV RNA was detected in 1.64% and 31.01% of individual nasal swabs and oral fluids, respectively. H1N2 was detected most often, with sporadic detection of H1N1 and H3N2. Whole-genome sequences of IAV isolated from suckling piglets revealed an H1 hemagglutinin (HA) from the 1B.2.2.2 clade and N2 neuraminidase (NA) from the 2002A clade. The internal gene constellation of the endemic H1N2 was TTTTPT with a pandemic lineage matrix. The HA gene had 97.59% and 97.52% nucleotide and amino acid identities, respectively, to the H1 1B.2.2.2 used in the farm-specific vaccine. A similar H1 1B.2.2.2 was detected in the downstream nursery. These data demonstrate the low frequency of IAV detection in suckling piglets and downstream nurseries from farms with endemic infections in spite of using farm-specific IAV vaccines in sows.


Asunto(s)
Granjas , Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Filogenia , Enfermedades de los Porcinos , Animales , Porcinos , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/prevención & control , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/epidemiología , Virus de la Influenza A/genética , Virus de la Influenza A/inmunología , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/clasificación , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Animales Lactantes , Vacunación/veterinaria , Enfermedades Endémicas/veterinaria , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , ARN Viral/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N2 del Virus de la Influenza A/inmunología , Genoma Viral
6.
Nature ; 628(8009): 835-843, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600381

RESUMEN

Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.


Asunto(s)
Lesión Pulmonar , Necroptosis , Infecciones por Orthomyxoviridae , Inhibidores de Proteínas Quinasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Femenino , Humanos , Masculino , Ratones , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/virología , Células Epiteliales Alveolares/metabolismo , Virus de la Influenza A/clasificación , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Lesión Pulmonar/complicaciones , Lesión Pulmonar/patología , Lesión Pulmonar/prevención & control , Lesión Pulmonar/virología , Ratones Endogámicos C57BL , Necroptosis/efectos de los fármacos , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/prevención & control , Síndrome de Dificultad Respiratoria/virología
7.
J Virol ; 98(4): e0194123, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38470143

RESUMEN

Influenza A viruses (IAVs) can overcome species barriers by adaptation of the receptor-binding site of the hemagglutinin (HA). To initiate infection, HAs bind to glycan receptors with terminal sialic acids, which are either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc); the latter is mainly found in horses and pigs but not in birds and humans. We investigated the influence of previously identified equine NeuGc-adapting mutations (S128T, I130V, A135E, T189A, and K193R) in avian H7 IAVs in vitro and in vivo. We observed that these mutations negatively affected viral replication in chicken cells but not in duck cells and positively affected replication in horse cells. In vivo, the mutations reduced virus virulence and mortality in chickens. Ducks excreted high viral loads longer than chickens, although they appeared clinically healthy. To elucidate why these viruses infected chickens and ducks despite the absence of NeuGc, we re-evaluated the receptor binding of H7 HAs using glycan microarray and flow cytometry studies. This re-evaluation demonstrated that mutated avian H7 HAs also bound to α2,3-linked NeuAc and sialyl-LewisX, which have an additional fucose moiety in their terminal epitope, explaining why infection of ducks and chickens was possible. Interestingly, the α2,3-linked NeuAc and sialyl-LewisX epitopes were only bound when presented on tri-antennary N-glycans, emphasizing the importance of investigating the fine receptor specificities of IAVs. In conclusion, the binding of NeuGc-adapted H7 IAV to tri-antennary N-glycans enables viral replication and shedding by chickens and ducks, potentially facilitating interspecies transmission of equine-adapted H7 IAVs.IMPORTANCEInfluenza A viruses (IAVs) cause millions of deaths and illnesses in birds and mammals each year. The viral surface protein hemagglutinin initiates infection by binding to host cell terminal sialic acids. Hemagglutinin adaptations affect the binding affinity to these sialic acids and the potential host species targeted. While avian and human IAVs tend to bind to N-acetylneuraminic acid (sialic acid), equine H7 viruses prefer binding to N-glycolylneuraminic acid (NeuGc). To better understand the function of NeuGc-specific adaptations in hemagglutinin and to elucidate interspecies transmission potential NeuGc-adapted viruses, we evaluated the effects of NeuGc-specific mutations in avian H7 viruses in chickens and ducks, important economic hosts and reservoir birds, respectively. We also examined the impact on viral replication and found a binding affinity to tri-antennary N-glycans containing different terminal epitopes. These findings are significant as they contribute to the understanding of the role of receptor binding in avian influenza infection.


Asunto(s)
Pollos , Patos , Caballos , Virus de la Influenza A , Gripe Aviar , Ácidos Neuramínicos , Animales , Humanos , Pollos/genética , Pollos/metabolismo , Pollos/virología , Patos/genética , Patos/metabolismo , Patos/virología , Epítopos/química , Epítopos/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Caballos/genética , Caballos/metabolismo , Caballos/virología , Virus de la Influenza A/química , Virus de la Influenza A/clasificación , Virus de la Influenza A/metabolismo , Gripe Aviar/genética , Gripe Aviar/transmisión , Gripe Aviar/virología , Mutación , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , Porcinos/virología , Zoonosis Virales/metabolismo , Zoonosis Virales/transmisión , Zoonosis Virales/virología
8.
J Virol ; 98(3): e0170323, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38353535

RESUMEN

The increased detection of H3 C-IVA (1990.4.a) clade influenza A viruses (IAVs) in US swine in 2019 was associated with a reassortment event to acquire an H1N1pdm09 lineage nucleoprotein (pdmNP) gene, replacing a TRIG lineage NP (trigNP). We hypothesized that acquiring the pdmNP conferred a selective advantage over prior circulating H3 viruses with a trigNP. To investigate the role of NP reassortment in transmission, we identified two contemporary 1990.4.a representative strains (NC/19 and MN/18) with different evolutionary origins of the NP gene. A reverse genetics system was used to generate wild-type (wt) strains and swap the pdm and TRIG lineage NP genes, generating four viruses: wtNC/19-pdmNP, NC/19-trigNP, wtMN/18-trigNP, and MN/18-pdmNP. The pathogenicity and transmission of the four viruses were compared in pigs. All four viruses infected 10 primary pigs and transmitted to five indirect contact pigs per group. Pigs infected via contact with MN/18-pdmNP shed virus 2 days earlier than pigs infected with wtMN/18-trigNP. The inverse did not occur for wtNC/19-pdmNP and NC/19-trigNP. This suggests that pdmNP reassortment resulted in a combination of genes that improved transmission efficiency when paired with the 1990.4.a hemagglutinin (HA). This is likely a multigenic trait, as replacing the trigNP gene did not diminish the transmission of a wild-type IAV in swine. This study demonstrates how reassortment and evolutionary change of internal genes can result in more transmissible viruses that influence HA clade detection frequency. Thus, rapidly identifying novel reassortants paired with dominant hemagglutinin/neuraminidase may improve the prediction of strains to include in vaccines.IMPORTANCEInfluenza A viruses (IAVs) are composed of eight non-continuous gene segments that can reassort during coinfection of a host, creating new combinations. Some gene combinations may convey a selective advantage and be paired together preferentially. A reassortment event was detected in swine in the United States that involved the exchange of two lineages of nucleoprotein (NP) genes (trigNP to pdmNP) that became a predominant genotype detected in surveillance. Using a transmission study, we demonstrated that exchanging the trigNP for a pdmNP caused the virus to shed from the nose at higher levels and transmit to other pigs more rapidly. Replacing a pdmNP with a trigNP did not hinder transmission, suggesting that transmission efficiency depends on interactions between multiple genes. This demonstrates how reassortment alters IAV transmission and that reassortment events can provide an explanation for why genetically related viruses with different internal gene combinations experience rapid fluxes in detection frequency.


Asunto(s)
Virus de la Influenza A , Proteínas de la Nucleocápside , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Hemaglutininas , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/genética , Porcinos , Estados Unidos , Proteínas de la Nucleocápside/metabolismo
9.
J Virol ; 98(2): e0149423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38294251

RESUMEN

Influenza B viruses (IBV) cocirculate with influenza A viruses (IAV) and cause periodic epidemics of disease, yet antibody and cellular responses following IBV infection are less well understood. Using the ferret model for antisera generation for influenza surveillance purposes, IAV resulted in robust antibody responses following infection, whereas IBV required an additional booster dose, over 85% of the time, to generate equivalent antibody titers. In this study, we utilized primary differentiated ferret nasal epithelial cells (FNECs) which were inoculated with IAV and IBV to study differences in innate immune responses which may result in differences in adaptive immune responses in the host. FNECs were inoculated with IAV (H1N1pdm09 and H3N2 subtypes) or IBV (B/Victoria and B/Yamagata lineages) and assessed for 72 h. Cells were analyzed for gene expression by quantitative real-time PCR, and apical and basolateral supernatants were assessed for virus kinetics and interferon (IFN), respectively. Similar virus kinetics were observed with IAV and IBV in FNECs. A comparison of gene expression and protein secretion profiles demonstrated that IBV-inoculated FNEC expressed delayed type-I/II IFN responses and reduced type-III IFN secretion compared to IAV-inoculated cells. Concurrently, gene expression of Thymic Stromal Lymphopoietin (TSLP), a type-III IFN-induced gene that enhances adaptive immune responses, was significantly downregulated in IBV-inoculated FNECs. Significant differences in other proinflammatory and adaptive genes were suppressed and delayed following IBV inoculation. Following IBV infection, ex vivo cell cultures derived from the ferret upper respiratory tract exhibited reduced and delayed innate responses which may contribute to reduced antibody responses in vivo.IMPORTANCEInfluenza B viruses (IBV) represent nearly one-quarter of all human influenza cases and are responsible for significant clinical and socioeconomic impacts but do not pose the same pandemic risks as influenza A viruses (IAV) and have thus received much less attention. IBV accounts for greater severity and deaths in children, and vaccine efficacy remains low. The ferret can be readily infected with human clinical isolates and demonstrates a similar course of disease and immune responses. IBV, however, generates lower antibodies in ferrets than IAV following the challenge. To determine whether differences in initial innate responses following infection may affect the development of robust adaptive immune responses, ferret respiratory tract cells were isolated, infected with IAV/IBV, and compared. Understanding the differences in the initial innate immune responses to IAV and IBV may be important in the development of more effective vaccines and interventions to generate more robust protective immune responses.


Asunto(s)
Inmunidad Adaptativa , Células Epiteliales , Hurones , Inmunidad Innata , Virus de la Influenza A , Virus de la Influenza B , Interferones , Mucosa Nasal , Animales , Niño , Humanos , Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Células Epiteliales/citología , Células Epiteliales/inmunología , Células Epiteliales/virología , Hurones/inmunología , Hurones/virología , Virus de la Influenza A/clasificación , Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/clasificación , Virus de la Influenza B/crecimiento & desarrollo , Virus de la Influenza B/inmunología , Vacunas contra la Influenza , Gripe Humana/virología , Interferones/inmunología , Mucosa Nasal/citología , Mucosa Nasal/inmunología , Mucosa Nasal/virología , Linfopoyetina del Estroma Tímico/genética , Linfopoyetina del Estroma Tímico/inmunología , Células Cultivadas
10.
J Virol ; 97(11): e0137023, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37877722

RESUMEN

The H6 subtype of avian influenza virus (AIV) is a pervasive subtype that is ubiquitously found in both wild bird and poultry populations across the globe. Recent investigations have unveiled its capacity to infect mammals, thereby expanding its host range beyond that of other subtypes and potentially facilitating its global transmission. This heightened breadth also endows H6 AIVs with the potential to serve as a genetic reservoir for the emergence of highly pathogenic avian influenza strains through genetic reassortment and adaptive mutations. Furthermore, alterations in key amino acid loci within the H6 AIV genome foster the evolution of viral infection mechanisms, which may enable the virus to surmount interspecies barriers and infect mammals, including humans, thus posing a potential threat to human well-being. In this review, we summarize the origins, dissemination patterns, geographical distribution, cross-species transmission dynamics, and genetic attributes of H6 influenza viruses. This study holds implications for the timely detection and surveillance of H6 AIVs.


Asunto(s)
Aves , Especificidad del Huésped , Virus de la Influenza A , Gripe Aviar , Mamíferos , Zoonosis Virales , Animales , Humanos , Aves/virología , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Gripe Aviar/virología , Mamíferos/virología , Aves de Corral/virología , Zoonosis Virales/transmisión , Zoonosis Virales/virología
11.
Nature ; 619(7969): 338-347, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37380775

RESUMEN

Spillover events of avian influenza A viruses (IAVs) to humans could represent the first step in a future pandemic1. Several factors that limit the transmission and replication of avian IAVs in mammals have been identified. There are several gaps in our understanding to predict which virus lineages are more likely to cross the species barrier and cause disease in humans1. Here, we identified human BTN3A3 (butyrophilin subfamily 3 member A3)2 as a potent inhibitor of avian IAVs but not human IAVs. We determined that BTN3A3 is expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts primarily at the early stages of the virus life cycle by inhibiting avian IAV RNA replication. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F or, rarely, 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, avian IAV serotypes, such as H7 and H9, that spilled over into humans also evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure3. Thus, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses.


Asunto(s)
Aves , Interacciones Microbiota-Huesped , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Zoonosis Virales , Animales , Humanos , Aves/virología , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Gripe Aviar/virología , Gripe Humana/prevención & control , Gripe Humana/transmisión , Gripe Humana/virología , Primates , Sistema Respiratorio/metabolismo , Sistema Respiratorio/virología , Medición de Riesgo , Zoonosis Virales/prevención & control , Zoonosis Virales/transmisión , Zoonosis Virales/virología , Replicación Viral
12.
Nature ; 618(7965): 590-597, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258672

RESUMEN

Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.


Asunto(s)
Anticuerpos Antivirales , Especificidad de Anticuerpos , Virus de la Influenza A , Virus de la Influenza B , Vacunas contra la Influenza , Gripe Humana , Imitación Molecular , Neuraminidasa , Animales , Humanos , Ratones , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Especificidad de Anticuerpos/inmunología , Arginina/química , Dominio Catalítico , Hemaglutininas Virales/inmunología , Virus de la Influenza A/clasificación , Virus de la Influenza A/enzimología , Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/enzimología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/clasificación , Virus de la Influenza B/enzimología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/inmunología , Gripe Humana/prevención & control , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Estaciones del Año , Ácidos Siálicos/química
13.
Biophys J ; 122(1): 90-98, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36403086

RESUMEN

The M2 proton channel of influenza A is embedded into the viral envelope and allows acidification of the virion when the external pH is lowered. In contrast, no outward proton conductance is observed when the internal pH is lowered, although outward current is observed at positive voltage. Residues Trp41 and Asp44 are known to play a role in preventing pH-driven outward conductance, but the mechanism for this is unclear. We investigate this issue using classical molecular dynamics simulations with periodic proton hops. When all key His37 residues are neutral, inward proton movement is much more facile than outward movement if the His are allowed to shuttle the proton. The preference for inward movement increases further as the charge on the His37 increases. Analysis of the trajectories reveals three factors accounting for this asymmetry. First, in the outward direction, Asp44 traps the hydronium by strong electrostatic interactions. Secondly, Asp44 and Trp41 orient the hydronium with the protons pointing inward, hampering outward Grotthus hopping. As a result, the effective barrier is lower in the inward direction. Trp41 adds to the barrier by weakly H-bonding to potential H+ acceptors. Finally, for charged His, the H3O+ in the inner vestibule tends to get trapped at lipid-lined fenestrations of the cone-shaped channel. Simulations qualitatively reproduce the experimentally observed higher outward conductance of mutants. The ability of positive voltage, unlike proton gradient, to induce an outward current appears to arise from its ability to bias H3O+ and the waters around it toward more H-outward orientations.


Asunto(s)
Virus de la Influenza A , Protones , Proteínas de la Matriz Viral , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Proteínas de la Matriz Viral/química , Virus de la Influenza A/clasificación
14.
PLoS Pathog ; 18(8): e1010755, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36006890

RESUMEN

Annual influenza vaccination is recommended to update the variable hemagglutinin antigens. Here, we first designed a virus-like particle (VLP) displaying consensus multi-neuraminidase (NA) subtypes (cN1, cN2, B cNA) and M2 ectodomain (M2e) tandem repeat (m-cNA-M2e VLP). Vaccination of mice with m-cNA-M2e VLP induced broad NA inhibition (NAI), and M2e antibodies as well as interferon-gamma secreting T cell responses. Mice vaccinated with m-cNA-M2e VLP were protected against influenza A (H1N1, H5N1, H3N2, H9N2, H7N9) and influenza B (Yamagata and Victoria lineage) viruses containing substantial antigenic variations. Protective immune contributors include cellular and humoral immunity as well as antibody-dependent cellular cytotoxicity. Furthermore, comparable cross protection by m-cNA-M2e VLP vaccination was induced in aged mice. This study supports a novel strategy of developing a universal vaccine against influenza A and B viruses potentially in both young and aged populations by inducing multi-NA subtype and M2e immunity with a single VLP entity.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Antivirales , Humanos , Virus de la Influenza A/clasificación , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/prevención & control , Proteínas de la Matriz Viral/genética
15.
Viruses ; 14(2)2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216008

RESUMEN

Avian influenza virus (AIV) variants emerge frequently, which challenges rapid diagnosis. Appropriate diagnosis reaching the sub- and pathotype level is the basis of combatting notifiable AIV infections. Real-time RT-PCR (RT-qPCR) has become a standard diagnostic tool. Here, a total of 24 arrayed RT-qPCRs is introduced for full subtyping of 16 hemagglutinin and nine neuraminidase subtypes of AIV. This array, designated Riems Influenza A Typing Array version 2 (RITA-2), represents an updated and economized version of the RITA-1 array previously published by Hoffmann et al. RITA-2 provides improved integration of assays (24 instead of 32 parallel reactions) and reduced assay volume (12.5 µL). The technique also adds RT-qPCRs to detect Newcastle Disease (NDV) and Infectious Bronchitis viruses (IBV). In addition, it maximizes inclusivity (all sequences within one subtype) and exclusivity (no intersubtypic cross-reactions) as shown in validation runs using a panel of 428 AIV reference isolates, 15 reference samples each of NDV and IBV, and 122 clinical samples. The open format of RITA-2 is particularly tailored to subtyping influenza A virus of avian hosts and Eurasian geographic origin. Decoupling and re-arranging selected RT-qPCRs to detect specific AIV variants causing epizootic outbreaks with a temporal and/or geographic restriction is possible.


Asunto(s)
Virus de la Bronquitis Infecciosa/genética , Virus de la Influenza A/genética , Virus de la Enfermedad de Newcastle/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Aves/virología , Equidae/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Virus de la Bronquitis Infecciosa/aislamiento & purificación , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Neuraminidasa/genética , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Sensibilidad y Especificidad , Porcinos/virología
16.
Viruses ; 14(1)2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35062320

RESUMEN

The past two decades have seen the emergence of highly pathogenic avian influenza (HPAI) infections that are characterized as extremely contagious, with a high fatality rate in chickens, and humans; this has sparked considerable concerns for global health. Generally, the new variant of the HPAI virus crossed into various countries through wild bird migration, and persisted in the local environment through the interactions between wild and farmed birds. Nevertheless, no studies have found informative cases associated with connecting local persistence and long-range dispersal. During the 2016-2017 HPAI H5N6 epidemic in South Korea, we observed several waterfowls with avian influenza infection under telemetric monitoring. Based on the telemetry records and surveillance data, we conducted a case study to test hypotheses related to the transmission pathway between wild birds and poultry. One sedentary wildfowl naturally infected with HPAI H5N6, which overlapped with the home range of one migratory bird with H5-specific antibody-positive, showed itself to be phylogenetically close to the isolates from a chicken farm located within its habitat. Our study is the first observational study that provides scientific evidence supporting the hypothesis that the HPAI spillover into poultry farms is caused by local persistence in sedentary birds, in addition to its long-range dispersal by sympatric migratory birds.


Asunto(s)
Brotes de Enfermedades/veterinaria , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/virología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Animales , Animales Salvajes/virología , Pollos , Epidemias , Granjas , Humanos , Virus de la Influenza A/clasificación , Filogenia , Aves de Corral/virología , República de Corea/epidemiología
17.
Nat Commun ; 12(1): 6680, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795239

RESUMEN

The relationship between age and seroprevalence can be used to estimate the annual attack rate of an infectious disease. For pathogens with multiple serologically distinct strains, there is a need to describe composite exposure to an antigenically variable group of pathogens. In this study, we assay 24,402 general-population serum samples, collected in Vietnam between 2009 to 2015, for antibodies to eleven human influenza A strains. We report that a principal components decomposition of antibody titer data gives the first principal component as an appropriate surrogate for seroprevalence; this results in annual attack rate estimates of 25.6% (95% CI: 24.1% - 27.1%) for subtype H3 and 16.0% (95% CI: 14.7% - 17.3%) for subtype H1. The remaining principal components separate the strains by serological similarity and associate birth cohorts with their particular influenza histories. Our work shows that dimensionality reduction can be used on human antibody profiles to construct an age-seroprevalence relationship for antigenically variable pathogens.


Asunto(s)
Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunoglobulina G/inmunología , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Algoritmos , Anticuerpos Antivirales/sangre , Geografía , Humanos , Inmunoglobulina G/sangre , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Virus de la Influenza A/clasificación , Virus de la Influenza A/fisiología , Gripe Humana/epidemiología , Gripe Humana/virología , Modelos Teóricos , Estudios Seroepidemiológicos , Factores de Tiempo , Vietnam/epidemiología , Replicación Viral/inmunología
18.
Antiviral Res ; 196: 105208, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34793841

RESUMEN

To suppress serious influenza infections in persons showing insufficient protection from the vaccines, antiviral drugs are of vital importance. There is a need for novel agents with broad activity against influenza A (IAV) and B (IBV) viruses and with targets that differ from those of the current antivirals. We here report a new small molecule influenza virus inhibitor referred to as CPD A (chemical name: N-(pyridin-3-yl)thiophene-2-carboxamide). In an influenza virus minigenome assay, this non-nucleoside compound inhibited RNA synthesis of IAV and IBV with EC50 values of 2.3 µM and 2.6 µM, respectively. Robust in vitro activity was noted against a broad panel of IAV (H1N1 and H3N2) and IBV strains, with a median EC50 value of 0.20 µM, which is 185-fold below the 50% cytotoxic concentration. The action point in the viral replication cycle was located between 1 and 5 h p.i., showing a similar profile as ribavirin. Like this nucleoside analogue, CPD A was shown to cause strong depletion of the cellular GTP pool and, accordingly, its antiviral activity was antagonized when this pool was restored with exogenous guanosine. This aligns with the observed inhibition in a cell-based IMP dehydrogenase (IMPDH) assay, which seems to require metabolic activation of CPD A since no direct inhibition was seen in an enzymatic IMPDH assay. The combination of CPD A with ribavirin, another IMPDH inhibitor, proved strongly synergistic. To conclude, we established CPD A as a new inhibitor of influenza A and B virus replication and RNA synthesis, and support the potential of IMPDH inhibitors for influenza therapy with acceptable safety profile.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , IMP Deshidrogenasa/antagonistas & inhibidores , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Ribavirina/farmacología , Línea Celular , Sinergismo Farmacológico , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/clasificación , Gripe Humana/tratamiento farmacológico
19.
Vet Microbiol ; 263: 109268, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34781191

RESUMEN

Low pathogenic avian influenza virus, H5 or H7 subtype, possesses the potential capability to change to highly pathogenic variant, which damages wild waterfowl, domestic poultry, and mammalian hosts. In regular active surveillance of avian influenza virus from wild birds in China in 2020, we isolated six H5 avian influenza viruses, including one H5N2, two H5N3, and three H5N8. Phylogenetic analysis indicated that the H5N2 and H5N3 isolates clustered into Eurasian lineage, whereas the H5N8 viruses were originated in North America. The HA proteins of six viruses carried the cleavage-site motif PQRETR↓GLF, which indicated low pathogenicity of the viruses in chickens. However, the N30D, I43M, and T215A mutations in M1 protein and the P42S, I106M, and C138F residues changed in NS1 protein, implying all viruses could exhibit increased virulence in mice. Viral replication kinetics in mammalian cells demonstrated that the three representative viruses had the ability to replicate in both MDCK cells and A549 cells with low titers. Even though two of three representatives, WS/SX/S3-620/2020(H5N3) and ML/AH/A3-770/2020(H5N8), did not replicate and transmit efficiently in poultry (chickens), they did replicate and transmit efficiently in waterfowl (ducks). Viral pathogenicity in mice indicated that both H5N2 and H5N3 viruses are able to replicate in the nasal turbinates and lungs of mice without prior adaptation, while the H5N8 virus could not. The intercontinental and cross-species transmission of viruses may continuously exist in China, thereby providing constant opportunities for virus reassortment with local resident AIVs. Thus, it is crucial to continuously monitor migration routes for AIVs by systematic surveillance.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Pollos , China , Subtipo H5N2 del Virus de la Influenza A/clasificación , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/clasificación , Subtipo H5N8 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Ratones , Filogenia
20.
Am J Trop Med Hyg ; 106(1): 127-131, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34715677

RESUMEN

This article aims to understand the changes in the detection rates of H5, H7, and H9 subtypes of avian influenza viruses (AIVs) in the live poultry markets (LPMs) in Nanchang City, Jiangxi Province, before and after the outbreak of the COVID-19. From 2019 to 2020, we monitored the LPM and collected specimens, using real-time reverse transcription polymerase chain reaction technology to detect the nucleic acid of type A AIV in the samples. The H5, H7, and H9 subtypes of influenza viruses were further classified for positive results. We analyzed 1,959 samples before and after the outbreak and found that the positive rates of avian influenza A virus (39.69%) and H9 subtype (30.66%) after the outbreak were significantly higher than before the outbreak (26.84% and 20.90%, respectively; P < 0.001). In various LPMs, the positive rate of H9 subtypes has increased significantly (P ≤ 0.001). Positive rates of the H9 subtype in duck, fecal, daub, and sewage samples, but not chicken samples, have increased to varying degrees. This study shows that additional measures are needed to strengthen the control of AIVs now that LPMs have reopened after the relaxing of COVID-19-related restrictions.


Asunto(s)
COVID-19/prevención & control , Brotes de Enfermedades/prevención & control , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Animales , COVID-19/epidemiología , China/epidemiología , Patos/virología , Microbiología Ambiental , Heces/virología , Humanos , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/clasificación , Aves de Corral , Aguas del Alcantarillado/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...