Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Adv Exp Med Biol ; 1451: 301-316, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38801586

RESUMEN

The smallpox infection with the variola virus was one of the most fatal disorders until a global eradication was initiated in the twentieth century. The last cases were reported in Somalia 1977 and as a laboratory infection in the UK 1978; in 1980, the World Health Organization (WHO) declared smallpox for extinct. The smallpox virus with its very high transmissibility and mortality is still a major biothreat, because the vaccination against smallpox was stopped globally in the 1980s. For this reason, new antivirals (cidofovir, brincidofovir, and tecovirimat) and new vaccines (ACAM2000, LC16m8 and Modified Vaccine Ankara MVA) were developed. For passive immunization, vaccinia immune globulin intravenous (VIGIV) is available. Due to the relationships between orthopox viruses such as vaccinia, variola, mpox (monkeypox), cowpox, and horsepox, the vaccines (LC16m8 and MVA) and antivirals (brincidofovir and tecovirimat) could also be used in the mpox outbreak with positive preliminary data. As mutations can result in drug resistance against cidofovir or tecovirimat, there is need for further research. Further antivirals (NIOCH-14 and ST-357) and vaccines (VACΔ6 and TNX-801) are being developed in Russia and the USA. In conclusion, further research for treatment and prevention of orthopox infections is needed and is already in progress. After a brief introduction, this chapter presents the smallpox and mpox disease and thereafter full overviews on antiviral treatment and vaccination including the passive immunization with vaccinia immunoglobulins.


Asunto(s)
Antivirales , Mpox , Vacuna contra Viruela , Viruela , Viruela/prevención & control , Viruela/epidemiología , Viruela/inmunología , Viruela/historia , Humanos , Antivirales/uso terapéutico , Vacuna contra Viruela/inmunología , Vacuna contra Viruela/uso terapéutico , Mpox/epidemiología , Mpox/prevención & control , Mpox/inmunología , Vacunación/métodos , Virus de la Viruela/inmunología , Virus de la Viruela/genética , Animales , Citosina/análogos & derivados , Citosina/uso terapéutico , Monkeypox virus/inmunología , Monkeypox virus/patogenicidad , Monkeypox virus/genética , Inmunización Pasiva/métodos , Organofosfonatos/uso terapéutico , Isoindoles/uso terapéutico , Cidofovir/uso terapéutico , Inmunoglobulinas Intravenosas/uso terapéutico , Benzamidas , Ftalimidas
2.
Microbiol Spectr ; 12(6): e0046524, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38700327

RESUMEN

Smallpox is a highly contagious human disease caused by the variola virus. Although the disease was eliminated in 1979 due to its highly contagious nature and historical pathogenicity, with a mortality rate of up to 30%, this virus is an important candidate for biological weapons. Currently, vaccines are the critical measures to prevent this virus infection and spread. In this study, we designed a peptide vaccine using immunoinformatics tools, which have the potential to activate human immunity against variola virus infection efficiently. The design of peptides derives from vaccine-candidate proteins showing protective potential in vaccinia WR strains. Potential non-toxic and nonallergenic T-cell and B-cell binding and cytokine-inducing epitopes were then screened through a priority prediction using special linkers to connect B-cell epitopes and T-cell epitopes, and an appropriate adjuvant was added to the vaccine construction to enhance the immunogenicity of the peptide vaccine. The 3D structure display, docking, and free energy calculation analysis indicate that the binding affinity between the vaccine peptide and Toll-like receptor 3 is high, and the vaccine receptor complex is highly stable. Notably, the vaccine we designed is obtained from the protective protein of the vaccinia and combined with preventive measures to avoid side effects. This vaccine is highly likely to produce an effective and safe immune response against the variola virus infection in the body. IMPORTANCE: In this work, we designed a vaccine with a cluster of multiple T-cell/B-cell epitopes, which should be effective in inducing systematic immune responses against variola virus infection. Besides, this work also provides a reference in vaccine design for preventing monkeypox virus infection, which is currently prevalent.


Asunto(s)
Biología Computacional , Epítopos de Linfocito B , Epítopos de Linfocito T , Vacuna contra Viruela , Viruela , Vacunas de Subunidad , Virus de la Viruela , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/química , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/química , Vacunas de Subunidad/genética , Humanos , Vacuna contra Viruela/inmunología , Virus de la Viruela/inmunología , Virus de la Viruela/genética , Viruela/prevención & control , Viruela/inmunología , Linfocitos T/inmunología , Linfocitos B/inmunología , Simulación del Acoplamiento Molecular , Péptidos/inmunología , Péptidos/química , Inmunoinformática
3.
Expert Rev Vaccines ; 20(9): 1059-1063, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34365880

RESUMEN

INTRODUCTION: The Development of the SARS-CoV-2 virus vaccine and its update on an ongoing pandemic is the first subject of the world health agenda. AREAS COVERED: First, we will scrutinize the biological features of the measles virus (MV), variola virus (smallpox virus), influenza virus, and their vaccines to compare them with the SARS-CoV-2 virus and vaccine. Next, we will discuss the statistical details of measuring the effectiveness of an improved vaccine. EXPERT OPINION: Amidst the pandemic, we ought to acknowledge our prior experiences with respiratory viruses and vaccines. In the planning stage of observational Phase-III vaccine effectiveness studies, the sample size, sampling method, statistical model, and selection of variables are crucial in obtaining high-quality and valid results.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunidad Celular/inmunología , SARS-CoV-2/inmunología , COVID-19/patología , Humanos , Vacunas contra la Influenza/inmunología , Vacunación Masiva/métodos , Virus del Sarampión/inmunología , Vacuna contra el Sarampión-Parotiditis-Rubéola/inmunología , Orthomyxoviridae/inmunología , Vacuna contra Viruela/inmunología , Vacunación , Vacunas Atenuadas/inmunología , Virus de la Viruela/inmunología
4.
Multimedia | Recursos Multimedia | ID: multimedia-4314

RESUMEN

Originally broadcast live on 08 May 2020, the daily press briefing on coronavirus COVID-19, direct from WHO Headquarters, Geneva Switzerland with Dr Tedros WHO Director-General, Dr Micheal Ryan, Executive Director of the Health Emergencies Programme, and Dr Maria Van Kerkhove, Technical lead COVID-19, WHO Health Emergencies Programme.


Asunto(s)
Betacoronavirus , Neumonía Viral/prevención & control , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Cuarentena/organización & administración , Virus de la Viruela/inmunología , Vacunas , Erradicación de la Enfermedad/instrumentación , Control de Enfermedades Transmisibles/instrumentación , Sistemas de Salud/organización & administración
5.
Virus Res ; 275: 197772, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31593747

RESUMEN

Numerous animal models of systemic orthopoxvirus disease have been developed to evaluate therapeutics against variola virus (VARV), the causative agent of smallpox. These animal models do not resemble the disease presentation in human smallpox and most used surrogate Orthopoxviruses. A rodent model using VARV has a multitude of advantages, and previous investigations identified the CAST/EiJ mouse as highly susceptible to monkeypox virus infection, making it of interest to determine if these rodents are also susceptible to VARV infection. In this study, we inoculated CAST/EiJ mice with a range of VARV doses (102-106 plaque forming units). Some animals had detectable viable VARV from the oropharynx between days 3 and 12 post inoculation. Despite evidence of disease, the CAST/EiJ mouse does not provide a model for clinical smallpox due to mild signs of morbidity and limited skin lesions. However, in contrast to previous rodent models using VARV challenge (i.e. prairie dogs and SCID mice), a robust immune response was observed in the CAST/EiJ mice (measured by Immunoglobulin G enzyme-linked immunosorbent assay). This is an advantage of this model for the study of VARV and presents a unique potential for the study of the immunomodulatory pathways following VARV infection.


Asunto(s)
Modelos Animales de Enfermedad , Ratones , Viruela/inmunología , Virus de la Viruela/inmunología , Virus de la Viruela/patogenicidad , Animales , Femenino , Humanos , Ratones SCID , Viruela/fisiopatología , Viruela/virología
6.
Temperamentum (Granada) ; 16: e12980-e12980, 2020. tab, graf
Artículo en Español | IBECS | ID: ibc-194761

RESUMEN

En este artículo se estudia la mortalidad causada por la viruela en Jerez de la Frontera (Cádiz, España), en un amplio periodo de tiempo (1880-1895), enfermedad endémica en la ciudad que afectó sobre todo en las primeras edades de la vida; asimismo se estudia la epidemia que causó esta enfermedad en la citada localidad en el año 1882, tanto en los aspectos de morbilidad como de mortalidad; epidemia que se produce en el contexto de una crisis social y económica que afectó a la ciudad. Se han utilizado diversas fuentes documentales procedentes principalmente del Archivo Municipal y de Bibliotecas Públicas de Jerez, destacando los libros de registro del Cementerio, así como informes o escritos de médicos como José María Escudero Franco y Manuel Ruiz de la Rabia, haciendo hincapié en las medidas preventivas propuestas y especialmente en el problema de las vacunaciones y revacunaciones, desde la década de los sesenta a la de los ochenta del siglo XIX


We have studied in this article the mortality caused by smallpox in Jerez de la Frontera (Cádiz, Spain), over a long period of time (1880-1895), an endemic disease in the city that especially affected in the first ages of life. The epidemic that caused this disease, in the aforementioned locality in 1882, has also been studied both in its morbidity and mortality aspects. The epidemic took place in the context of a social and economic crisis that hit the city. We have used various documentary sources, mainly from the Municipal Archive and from the Jerez Public Libraries, highlighting the Cemetery register log books, as well as reports or writings by doctors such as José María Escudero Franco and Manuel Ruiz de la Rabia, with special emphasis on proposals for preventive measures, especially in the problem of vaccinations and revaccinations, from the sixties to the eighties of the nineteenth century


Asunto(s)
Humanos , Masculino , Femenino , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Historia del Siglo XIX , Viruela/historia , Viruela/mortalidad , Vacuna contra Viruela/historia , Vacuna contra Viruela/uso terapéutico , Viruela/epidemiología , Virus de la Viruela/inmunología , Mortalidad Infantil , Causas de Muerte , Indicadores de Morbimortalidad
7.
Vopr Virusol ; 64(5): 206-214, 2019.
Artículo en Ruso | MEDLINE | ID: mdl-32167685

RESUMEN

The review contains a brief analysis of the results of investigations conducted during 40 years after smallpox eradication and directed to study genomic organization and evolution of variola virus (VARV) and development of modern diagnostics, vaccines and chemotherapies of smallpox and other zoonotic orthopoxviral infections of humans. Taking into account that smallpox vaccination in several cases had adverse side effects, WHO recommended ceasing this vaccination after 1980 in all countries of the world. The result of this decision is that the mankind lost the collective immunity not only to smallpox, but also to other zoonotic orthopoxvirus infections. The ever more frequently recorded human cases of zoonotic orthopoxvirus infections force to renew consideration of the problem of possible smallpox reemergence resulting from natural evolution of these viruses. Analysis of the available archive data on smallpox epidemics, the history of ancient civilizations, and the newest data on the evolutionary relationship of orthopoxviruses has allowed us to hypothesize that VARV could have repeatedly reemerged via evolutionary changes in a zoonotic ancestor virus and then disappeared because of insufficient population size of isolated ancient civilizations. Only the historically last smallpox pandemic continued for a long time and was contained and stopped in the 20th century thanks to the joint efforts of medics and scientists from many countries under the aegis of WHO. Thus, there is no fundamental prohibition on potential reemergence of smallpox or a similar human disease in future in the course of natural evolution of the currently existing zoonotic orthopoxviruses. Correspondingly, it is of the utmost importance to develop and widely adopt state-of-the-art methods for efficient and rapid species-specific diagnosis of all orthopoxvirus species pathogenic for humans, VARV included. It is also most important to develop new safe methods for prevention and therapy of human orthopoxvirus infections.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Infecciones por Poxviridae/epidemiología , Viruela/epidemiología , Vacunación/métodos , Virus de la Viruela/patogenicidad , Zoonosis/epidemiología , Animales , Antivirales/uso terapéutico , Benzamidas/uso terapéutico , Búfalos/virología , Bovinos , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/virología , Evolución Molecular , Caballos/virología , Humanos , Inmunidad Colectiva , Isoindoles/uso terapéutico , Orthopoxvirus/genética , Orthopoxvirus/inmunología , Orthopoxvirus/patogenicidad , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/virología , Viruela/inmunología , Viruela/prevención & control , Viruela/virología , Vacuna contra Viruela/administración & dosificación , Vacuna contra Viruela/biosíntesis , Virus de la Viruela/genética , Virus de la Viruela/inmunología , Zoonosis/inmunología , Zoonosis/virología
9.
Antiviral Res ; 152: 18-25, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29427674

RESUMEN

In this study, five phage display antibodies (pdAbs) against ectromelia virus (ECTV) were selected from vaccinia virus (VACV)-immune phage-display library of human single chain variable fragments (scFv). ELISA demonstrated that selected pdAbs could recognize ECTV, VACV, and cowpox virus (CPXV). Atomic force microscopy visualized binding of the pdAbs to VACV. Three of the selected pdAbs neutralized variola virus (VARV) in the plaque reduction neutralization test. Western blot analysis of ECTV, VARV, VACV, and CPXV proteins indicated that neutralizing pdAbs bound orthopoxvirus 35 kDa proteins, which are encoded by the open reading frames orthologous to the ORF H3L in VACV. The fully human antibody fh1A was constructed on the base of the VH and VL domains of pdAb, which demonstrated a dose-dependent inhibition of plaque formation after infection with VARV, VACV, and CPXV. To determine the p35 region responsible for binding to neutralizing pdAbs, a panel of truncated p35 proteins was designed and expressed in Escherichia coli cells, and a minimal p35 fragment recognized by selected neutralizing pdAbs was identified. In addition, peptide phage-display combinatorial libraries were applied to localize the epitope. The obtained data indicated that the epitope responsible for recognition by the neutralizing pdAbs is discontinuous and amino acid residues located within two p35 regions, 15-19 aa and 232-237 aa, are involved in binding with neutralizing anti-p35 antibodies.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Virus de la Ectromelia/inmunología , Virus de la Viruela/inmunología , Proteínas del Envoltorio Viral/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , Virus de la Ectromelia/genética , Mapeo Epitopo , Humanos , Pruebas de Neutralización , Biblioteca de Péptidos , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Viruela/inmunología , Viruela/virología , Virus de la Viruela/química , Virus de la Viruela/genética , Virus de la Viruela/fisiología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética
10.
Vaccine ; 35(52): 7222-7230, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29137821

RESUMEN

For almost 150 years after Edward Jenner had published the "Inquiry" in 1798, it was generally assumed that the cowpox virus was the vaccine against smallpox. It was not until 1939 when it was shown that vaccinia, the smallpox vaccine virus, was serologically related but different from the cowpox virus. In the absence of a known natural host, vaccinia has been considered to be a laboratory virus that may have originated from mutational or recombinational events involving cowpox virus, variola viruses or some unknown ancestral Orthopoxvirus. A favorite candidate for a vaccinia ancestor has been the horsepox virus. Edward Jenner himself suspected that cowpox derived from horsepox and he also believed that "matter" obtained from either disease could be used as preventative of smallpox. During the 19th century, inoculation with cowpox (vaccination) was used in Europe alongside with inoculation with horsepox (equination) to prevent smallpox. Vaccine-manufacturing practices during the 19th century may have resulted in the use of virus mixtures, leading to different genetic modifications that resulted in present-day vaccinia strains. Horsepox, a disease previously reported only in Europe, has been disappearing on that continent since the beginning of the 20th century and now seems to have become extinct, although the virus perhaps remains circulating in an unknown reservoir. Genomic sequencing of a horsepox virus isolated in Mongolia in 1976 indicated that, while closely related to vaccinia, this horsepox virus contained additional, potentially ancestral sequences absent in vaccinia. Recent genetic analyses of extant vaccinia viruses have revealed that some strains contain ancestral horsepox virus genes or are phylogenetically related to horsepox virus. We have recently reported that a commercially produced smallpox vaccine, manufactured in the United States in 1902, is genetically highly similar to horsepox virus, providing a missing link in this 200-year-old mystery.


Asunto(s)
Viruela Vacuna/inmunología , Orthopoxvirus/inmunología , Vacuna contra Viruela/inmunología , Animales , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Orthopoxvirus/genética , Filogenia , Viruela/prevención & control , Vacuna contra Viruela/administración & dosificación , Vacuna contra Viruela/historia , Vacunación/historia , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Virus Vaccinia/aislamiento & purificación , Virus de la Viruela/inmunología
11.
Vaccine ; 35(44): 6007-6014, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28629922

RESUMEN

Smallpox is a disease caused by Variola virus (VARV). Although eradicated by WHO in 1980, the threat of using VARV on a bioterror attack has increased. The current smallpox vaccine ACAM2000, which consists of live vaccinia virus (VACV), causes complications in individuals with a compromised immune system or with previously reported skin diseases. Thus, a safer and efficacious vaccine needs to be developed. Previously, we reported that our virus-free DNA vaccine formulation, a pVAX1 plasmid encoding codon-optimized VACV A27L gene (pA27LOPT) with and without Imiquimod adjuvant, stimulates A27L-specific production of IFN-γ and increases humoral immunity 7days post-vaccination. Here, we investigated the immune response of our novel vaccine by measuring the frequency of splenocytes producing IFN-γ by ELISPOT, the TH1 and TH2 cytokine profiles, and humoral immune responses two weeks post-vaccination, when animals were challenged with VACV. In all assays, the A27-based DNA vaccine conferred protective immune responses. Specifically, two weeks after vaccination, mice were challenged intranasally with vaccinia virus, and viral titers in mouse lungs and ovaries were significantly lower in groups immunized with pA27LOPT and pA27LOPT+Imiquimod. These results demonstrate that our vaccine formulation decreases viral replication and dissemination in a virus-free DNA vaccine platform, and provides an alternative towards a safer an efficacious vaccine.


Asunto(s)
Codón/inmunología , Plásmidos/inmunología , Virus Vaccinia/inmunología , Proteínas Virales/inmunología , Replicación Viral/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Antivirales/inmunología , Ensayo de Immunospot Ligado a Enzimas/métodos , Femenino , Inmunidad Humoral/inmunología , Ratones , Ratones Endogámicos BALB C , Viruela/inmunología , Viruela/prevención & control , Vacuna contra Viruela/inmunología , Vacunación/métodos , Vacunas de ADN/inmunología , Virus de la Viruela/inmunología
12.
Cell ; 167(3): 684-694.e9, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768891

RESUMEN

Monkeypox (MPXV) and cowpox (CPXV) are emerging agents that cause severe human infections on an intermittent basis, and variola virus (VARV) has potential for use as an agent of bioterror. Vaccinia immune globulin (VIG) has been used therapeutically to treat severe orthopoxvirus infections but is in short supply. We generated a large panel of orthopoxvirus-specific human monoclonal antibodies (Abs) from immune subjects to investigate the molecular basis of broadly neutralizing antibody responses for diverse orthopoxviruses. Detailed analysis revealed the principal neutralizing antibody specificities that are cross-reactive for VACV, CPXV, MPXV, and VARV and that are determinants of protection in murine challenge models. Optimal protection following respiratory or systemic infection required a mixture of Abs that targeted several membrane proteins, including proteins on enveloped and mature virion forms of virus. This work reveals orthopoxvirus targets for human Abs that mediate cross-protective immunity and identifies new candidate Ab therapeutic mixtures to replace VIG.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos , Infecciones por Poxviridae/inmunología , Viruela Vacuna/inmunología , Virus de la Viruela Vacuna/inmunología , Reacciones Cruzadas , Humanos , Leucocitos Mononucleares/inmunología , Mpox/inmunología , Monkeypox virus/inmunología , Viruela/inmunología , Vaccinia/inmunología , Virus Vaccinia/inmunología , Virus de la Viruela/inmunología
13.
J Immunol Res ; 2015: 738020, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26605344

RESUMEN

Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes.


Asunto(s)
Antígenos Virales/inmunología , Biología Computacional/métodos , Epítopos de Linfocito T/inmunología , Orthopoxvirus/inmunología , Programas Informáticos , Linfocitos T/inmunología , Virus de la Viruela/inmunología , Secuencia de Aminoácidos , Antígenos Virales/química , Reactividad Cruzada/inmunología , Bases de Datos de Proteínas , Epítopos de Linfocito T/química , Humanos , Vacunas Virales/inmunología , Navegador Web
14.
PLoS One ; 10(4): e0123113, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25875833

RESUMEN

BACKGROUND: The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. METHODS: We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. RESULTS: The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. CONCLUSION: These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.


Asunto(s)
Factores Inmunológicos/administración & dosificación , Vacuna contra Viruela/inmunología , Viruela/inmunología , Virus de la Viruela/inmunología , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ensayo de Immunospot Ligado a Enzimas , Mapeo Epitopo , Femenino , Inmunidad Celular , Inmunidad Humoral , Isotipos de Inmunoglobulinas/inmunología , Ratones , Viruela/metabolismo , Viruela/prevención & control , Vacuna contra Viruela/genética , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
15.
Dynamis (Granada) ; 35(2): 459-480, 2015.
Artículo en Español | IBECS | ID: ibc-144235

RESUMEN

El contenido del conjunto documental conocido como «Papeles sobre la vacuna» archivado en la Real Academia Nacional de Medicina y generado por Ignacio María Ruiz de Luzuriaga (1763-1822) no ha sido estudiado hasta la fecha de forma exhaustiva. Como parte de una amplia investigación sobre estos manuscritos se describe el hallazgo de un texto inédito producido en 1801 por Ruiz de Luzuriaga que, con forma de ensayo, pretendía recopilar los conocimientos sobre el método vacunal sugerido por Edward Jenner durante los inicios de su introducción en España. Su objetivo era establecer un corpus científico y académico sobre la vacuna que facilitara su comprensión, asimilación y buena práctica entre los vacunadores españoles. El texto, contenido en el volumen 3 de los «Papeles», fue consecutivo a otros dos inmediatamente anteriores, la «Carta a D. Luis» y el «Informe imparcial sobre la vacuna». Este estudio analiza el origen y destinatarios de los tres textos, revelando la identidad de «D. Luis» y describiendo los contenidos del «Ensayo», documento hasta ahora desconocido y en el que destaca por su valor historiográfico la primera traducción al español del «Inquiry» de Jenner, realizada por Ruiz de Luzuriaga (AU)


No disponible


Asunto(s)
Historia del Siglo XVII , Historia del Siglo XVIII , Vacunas/economía , Vacunas/historia , Virus de la Viruela/inmunología , Virus Vaccinia/inmunología , Viruela/inmunología , Vacuna contra Viruela/administración & dosificación , Vacuna contra Viruela/economía , Vacuna contra Viruela/historia , Viruela Vacuna/historia , Viruela Vacuna/inmunología , Productos Biológicos/historia , Academias e Institutos/historia , Vacunación/historia , Programas de Inmunización/historia
17.
Vet Rec ; 173(11): 272-3, 2013 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-24057497

RESUMEN

Mystery surrounds the extent to which horsepox virus may have contributed to the vaccinia virus used to eradicate smallpox. With few documented cases of horsepox in recent years it may never be solved, says José Esparza, who seeks to raise awareness of the potential historical and  scientific importance of identifying new cases.


Asunto(s)
Enfermedades de los Caballos/epidemiología , Vacuna contra Viruela , Viruela/veterinaria , Vacunación/veterinaria , Virus de la Viruela/inmunología , Animales , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Enfermedades de los Caballos/prevención & control , Caballos , Viruela/epidemiología , Viruela/prevención & control , Vacuna contra Viruela/historia , Vacunación/historia , Virus Vaccinia/inmunología
18.
Vaccine ; 31(29): 3025-33, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23664987

RESUMEN

INTRODUCTION: Reintroduction of Variola major as an agent of bioterrorism remains a concern. A shortened dosing schedule of Bavarian Nordic's (BN) IMVAMUNE(®) (modified vaccinia Ankara vaccine against smallpox) was compared to the currently recommended 0- and 28-day schedule for non-inferiority by evaluating the magnitude and kinetics of the immune responses. METHODS: Subjects were assigned to receive IMVAMUNE or placebo administered subcutaneously on Days 0 and 7, Days 0 and 28, or Day 0. Blood was collected for antibody and cell-mediated immune assays. Subjects were followed for safety for 12 months after last vaccination. RESULTS: The primary endpoint of this study was the geometric mean antibody titers (GMT) at 14 days post last vaccination. Of 208 subjects enrolled, 191 received vaccine (Group: 0+7, Group: 0+28 and Group: 0) and 17 received placebo. Moderate/severe systemic reactogenicity after any vaccination were reported by 31.1%, 25.4%, and 28.6% of the subjects for Group: 0+7, Group: 0+28, and Group: 0, respectively (Chi-square test, P=0.77). Based on BN's Plaque Reduction Assay GMTs, Group: 0+7 was non-inferior to Group: 0+28 at Day 4, 180, and 365 after the second vaccination. On Day 14, Group: 0+7 and Group: 0+28 GMT were 10.8 (CI: 9.0, 12.9) and 30.2 (CI: 22.1, 41.1), respectively. Based on BN's Enzyme-linked immunosorbent assay, the proportion of subjects with positive titers for Group: 0+28 was significantly greater than that for Group: 0+7 after second vaccination at Days 4 and 180. By Day 14 after the second dose, the IFN-γ enzyme-linked immunosorbent spot (ELISPOT) responses were similar for Group: 0+28 and Group: 0+7. CONCLUSION: Overall, a standard dose of IMVAMUNE (0.5 mL of 1 x 10(8) TCID/mL) administered subcutaneously was safe and well tolerated. A second dose of IMVAMUNE at Day 28 compared to Day 7 provided greater antibody responses and the maximal number of responders. By Day 14 after the second dose, IFN-γ ELISPOT responses were similar for Group: 0+28 and Group: 0+7.


Asunto(s)
Bioterrorismo , Vacuna contra Viruela/efectos adversos , Vacuna contra Viruela/inmunología , Viruela/prevención & control , Adolescente , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunidad Celular/inmunología , Masculino , Vacuna contra Viruela/administración & dosificación , Vacunación/efectos adversos , Vacunación/métodos , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/inmunología , Virus de la Viruela/inmunología , Adulto Joven
19.
Adv Exp Med Biol ; 785: 77-86, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23456840

RESUMEN

Memory CD8⁺ T cells play an essential role in controlling pathogenic infections. Therefore generating protective memory CD8⁺ T cells by vaccination is an attractive strategy for preventing and treating a variety of human diseases. Understanding what comprises a protective memory CD8⁺ T cell response will help optimize vaccine-induced CD8⁺ T cell immunity. Here we discuss essential antiviral effector functions and highlight how recall expansion of memory CD8⁺ T cells may affect the primary response.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Viruela/prevención & control , Vacunación , Inmunidad Adaptativa , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/virología , Proliferación Celular , Humanos , Viruela/inmunología , Viruela/virología , Virus de la Viruela/inmunología
20.
Vaccine ; 31(39): 4235-40, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23523402

RESUMEN

Modified Vaccinia virus Ankara (MVA) is a tissue culture-derived, highly attenuated strain of vaccinia virus (VACV) exhibiting characteristic defective replication in cells from mammalian hosts. In the 1960s MVA was originally generated as a candidate virus for safer vaccination against smallpox. Now, MVA is widely used in experimental vaccine development targeting important infectious diseases and cancer. Versatile technologies for genetic engineering, large-scale production, and quality control facilitate R&D of recombinant and non-recombinant MVA vaccines matching today's requirements for new biomedical products. Such vaccines are attractive candidates for delivering antigens from pathogens against which no, or no effective vaccine is available, including emerging infections caused by highly pathogenic influenza viruses, chikungunya virus, West Nile virus or zoonotic orthopoxviruses. Other directions are seeking valuable vaccines against highly complex diseases such as AIDS, malaria, and tuberculosis. Here, we highlight examples of MVA candidate vaccines against infectious diseases, and review the efforts made to assess both the efficacy of vaccination and immune correlates of protection in preclinical studies.


Asunto(s)
Vacunas Virales/inmunología , Síndrome de Inmunodeficiencia Adquirida/prevención & control , Animales , Ingeniería Genética , Humanos , Malaria/prevención & control , Viruela/prevención & control , Tuberculosis/prevención & control , Vacunación , Vacunas Atenuadas , Vacunas de ADN , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Virus de la Viruela/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA