Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 587
Filtrar
1.
Ann Hematol ; 103(6): 2133-2144, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38634917

RESUMEN

BACKGROUND: Empirical use of pharmacogenetic test(PGT) is advocated for many drugs, and resource-rich setting hospitals are using the same commonly. The clinical translation of pharmacogenetic tests in terms of cost and clinical utility is yet to be examined in hospitals of low middle income countries (LMICs). AIM: The present study assessed the clinical utility of PGT by comparing the pharmacogenetically(PGT) guided- versus standard of care(SOC)- warfarin therapy, including the health economics of the two warfarin therapies. METHODS: An open-label, randomized, controlled clinical trial recruited warfarin-receiving patients in pharmacogenetically(PGT) guided- versus standard of care(SOC)- study arms. Pharmacogenetic analysis of CYP2C9*2(rs1799853), CYP2C9*3(rs1057910) and VKORC1(rs9923231) was performed for patients recruited to the PGT-guided arm. PT(Prothrombin Time)-INR(international normalized ratio) testing and dose titrations were allowed as per routine clinical practice. The primary endpoint was the percent time spent in the therapeutic INR range(TTR) during the 90-day observation period. Secondary endpoints were time to reach therapeutic INR(TRT), the proportion of adverse events, and economic comparison between two modes of therapy in a Markov model built for the commonest warfarin indication- atrial fibrillation. RESULTS: The study enrolled 168 patients, 84 in each arm. Per-protocol analysis showed a significantly high median time spent in therapeutic INR in the genotype-guided arm(42.85%; CI 21.4-66.75) as compared to the SOC arm(8.8%; CI 0-27.2)(p < 0.00001). The TRT was less in the PG-guided warfarin dosing group than the standard-of-care dosing warfarin group (17.85 vs. 33.92 days) (p = 0.002). Bleeding and thromboembolic events were similar in the two study groups. Lifetime expenditure was ₹1,26,830 in the PGT arm compared to ₹1,17,907 in the SOC arm. The QALY gain did not differ in the two groups(3.9 vs. 3.65). Compared to SOC, the incremental cost-utility ratio was ₹35,962 per QALY gain with PGT test opting. In deterministic and probabilistic sensitivity analysis, the base case results were found to be insensitive to the variation in model parameters. In the cost-effectiveness-acceptability curve analysis, a 90% probability of cost-effectiveness was reached at a willingness-to-pay(WTP) of ₹ 71,630 well below one time GDP threshold of WTP used. CONCLUSION: Clinical efficacy and the cost-effectiveness of the warfarin pharmacogenetic test suggest its routine use as a point of care investigation for patient care in LMICs.


Asunto(s)
Anticoagulantes , Citocromo P-450 CYP2C9 , Economía Farmacéutica , Relación Normalizada Internacional , Vitamina K Epóxido Reductasas , Warfarina , Humanos , Warfarina/economía , Warfarina/administración & dosificación , Warfarina/uso terapéutico , Femenino , Masculino , Persona de Mediana Edad , Citocromo P-450 CYP2C9/genética , Anciano , Vitamina K Epóxido Reductasas/genética , Anticoagulantes/administración & dosificación , Anticoagulantes/economía , Anticoagulantes/uso terapéutico , Pruebas de Farmacogenómica/economía , Adulto , Farmacogenética/economía , Análisis Costo-Beneficio
2.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674033

RESUMEN

Sarcoidosis is a systemic inflammatory disorder characterized by granuloma formation in various organs. It has been associated with nephrolithiasis. The vitamin K epoxide reductase complex subunit 1 (VKORC1) gene, which plays a crucial role in vitamin K metabolism, has been implicated in the activation of proteins associated with calcification, including in the forming of nephrolithiasis. This study aimed to investigate the VKORC1 C1173T polymorphism (rs9934438) in a Dutch sarcoidosis cohort, comparing individuals with and without a history of nephrolithiasis. Retrospectively, 424 patients with sarcoidosis were divided into three groups: those with a history of nephrolithiasis (Group I: n = 23), those with hypercalcemia without nephrolithiasis (Group II: n = 38), and those without nephrolithiasis or hypercalcemia (Group III: n = 363). Of the 424 sarcoidosis patients studied, 5.4% had a history of nephrolithiasis (Group I), only two of whom possessed no VKORC1 polymorphisms (OR = 7.73; 95% CI 1.79-33.4; p = 0.001). The presence of a VKORC1 C1173T variant allele was found to be a substantial risk factor for the development of nephrolithiasis in sarcoidosis patients. This study provides novel insights into the genetic basis of nephrolithiasis in sarcoidosis patients, identifying VKORC1 C1173T as a potential contributor. Further research is warranted to elucidate the precise mechanisms and explore potential therapeutic interventions based on these genetic findings.


Asunto(s)
Nefrolitiasis , Polimorfismo de Nucleótido Simple , Sarcoidosis , Vitamina K Epóxido Reductasas , Humanos , Femenino , Vitamina K Epóxido Reductasas/genética , Masculino , Sarcoidosis/genética , Sarcoidosis/complicaciones , Persona de Mediana Edad , Nefrolitiasis/genética , Factores de Riesgo , Adulto , Predisposición Genética a la Enfermedad , Estudios Retrospectivos , Anciano , Alelos
3.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673722

RESUMEN

The human Vitamin K Epoxide Reductase Complex (hVKORC1), a key enzyme that converts vitamin K into the form necessary for blood clotting, requires for its activation the reducing equivalents supplied by its redox partner through thiol-disulphide exchange reactions. The functionally related molecular complexes assembled during this process have never been described, except for a proposed de novo model of a 'precursor' complex of hVKORC1 associated with protein disulphide isomerase (PDI). Using numerical approaches (in silico modelling and molecular dynamics simulation), we generated alternative 3D models for each molecular complex bonded either covalently or non-covalently. These models differ in the orientation of the PDI relative to hVKORC1 and in the cysteine residue involved in forming protein-protein disulphide bonds. Based on a comparative analysis of these models' shape, folding, and conformational dynamics, the most probable putative complexes, mimicking the 'precursor', 'intermediate', and 'successor' states, were suggested. In addition, we propose using these complexes to develop the 'allo-network drugs' necessary for treating blood diseases.


Asunto(s)
Simulación de Dinámica Molecular , Proteína Disulfuro Isomerasas , Vitamina K Epóxido Reductasas , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/química , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/metabolismo , Vitamina K Epóxido Reductasas/genética , Humanos , Disulfuros/química , Disulfuros/metabolismo , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo , Modelos Moleculares , Conformación Proteica , Oxidación-Reducción , Unión Proteica
4.
Pharmacogenet Genomics ; 34(4): 105-116, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38470454

RESUMEN

OBJECTIVES: Genetic variation has been a major contributor to interindividual variability of warfarin dosage requirement. The specific genetic factors contributing to warfarin bleeding complications are largely unknown, particularly in Chinese patients. In this study, 896 Chinese patients were enrolled to explore the effect of CYP2C9 and VKORC1 genetic variations on both the efficacy and safety of warfarin therapy. METHODS AND RESULTS: Univariate analyses unveiled significant associations between two specific single nucleotide polymorphisms rs1057910 in CYP2C9 and rs9923231 in VKORC1 and stable warfarin dosage ( P  < 0.001). Further, employing multivariate logistic regression analysis adjusted for age, sex and height, the investigation revealed that patients harboring at least one variant allele in CYP2C9 exhibited a heightened risk of bleeding events compared to those with the wild-type genotype (odds ratio = 2.16, P  = 0.04). Moreover, a meta-analysis conducted to consolidate findings confirmed the associations of both CYP2C9 (rs1057910) and VKORC1 (rs9923231) with stable warfarin dosage. Notably, CYP2C9 variant genotypes were significantly linked to an increased risk of hemorrhagic complications ( P  < 0.00001), VKORC1 did not demonstrate a similar association. CONCLUSION: The associations found between specific genetic variants and both stable warfarin dosage and bleeding risk might be the potential significance of gene detection in optimizing warfarin therapy for improving patient efficacy and safety.


Asunto(s)
Anticoagulantes , Pueblo Asiatico , Citocromo P-450 CYP2C9 , Polimorfismo de Nucleótido Simple , Vitamina K Epóxido Reductasas , Warfarina , Humanos , Citocromo P-450 CYP2C9/genética , Vitamina K Epóxido Reductasas/genética , Warfarina/efectos adversos , Warfarina/administración & dosificación , Femenino , Masculino , Persona de Mediana Edad , Anticoagulantes/efectos adversos , Anticoagulantes/administración & dosificación , Anciano , Pueblo Asiatico/genética , Hemorragia/inducido químicamente , Hemorragia/genética , China , Adulto , Genotipo , Estudios de Asociación Genética , Pueblos del Este de Asia
5.
Pharmacol Rep ; 76(2): 390-399, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38457019

RESUMEN

BACKGROUND: Warfarin is widely used for the prevention and treatment of thrombotic events. This study aimed to examine the influence of gene polymorphisms on the early stage of warfarin therapy in patients following heart valve surgery. METHODS: Nine single nucleotide polymorphisms were genotyped using microarray chips, categorizing patients into three groups: normal responders (Group I), sensitive responders (Group II), and highly sensitive responders (Group III). The primary clinical outcomes examined were time in therapeutic range (TTR) and international normalized ratio (INR) variability. To investigate potential influencing factors, a generalized linear regression model was employed. RESULTS: Among 734 patients, the prevalence of CYP2C9*3-1075A > C, CYP2C19*3-636G > A, and CYP2C19*17-806C > T variants were 11.2%, 9.9%, and 1.9% of patients, respectively. VKORC1-1639G > A or the linked -1173C > T variant was observed in 99.0% of the patients. Generalized linear model analysis revealed an impact of sensitivity grouping on INR variability. Compared to Group I, Group II showed higher TTR values (p = 0.023), while INR variability was poorer in Group II (p < 0.001) and Group III (p < 0.001). Individual gene analysis identified significant associations between CYP2C9*3-1075A > C (p < 0.001), VKORC1-1639G > A or the linked -1173 C > T (p = 0.009) and GGCX-3261G > A (p = 0.019) with INR variability. CONCLUSION: The genotypes of CYP2C9, VKORC1, and GGCX were found to have a significant impact on INR variability during the initial phase of warfarin therapy. However, no significant association was observed between TTR and gene polymorphisms. These findings suggest that focusing on INR variability is crucial in clinical practice, and preoperative detection of gene polymorphisms should be considered to assist in the initiation of warfarin therapy.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Warfarina , Humanos , Warfarina/uso terapéutico , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9/genética , Hidrocarburo de Aril Hidroxilasas/genética , Vitamina K Epóxido Reductasas/genética , Anticoagulantes/uso terapéutico , Polimorfismo de Nucleótido Simple , Genotipo , Relación Normalizada Internacional , Válvulas Cardíacas/cirugía
6.
Sci Rep ; 14(1): 5842, 2024 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462643

RESUMEN

Adverse drug reactions (ADR) represent a significant contributor to morbidity and mortality, imposing a substantial financial burden. Genetic ancestry plays a crucial role in drug response. The aim of this study is to characterize the genetic variability of selected pharmacogenes involved with ADR in Tunisians and Italians, with a comparative analysis against global populations. A cohort of 135 healthy Tunisians and 737 Italians were genotyped using a SNP array. Variants located in 25 Very Important Pharmacogenes implicated in ADR were extracted from the genotyping data. Distribution analysis of common variants in Tunisian and Italian populations in comparison to 24 publicly available worldwide populations was performed using PLINK and R software. Results from Principle Component and ADMIXTURE analyses showed a high genetic similarity among Mediterranean populations, distinguishing them from Sub-Saharan African and Asian populations. The Fst comparative analysis identified 27 variants exhibiting significant differentiation between the studied populations. Among these variants, four SNPs rs622342, rs3846662, rs7294, rs5215 located in SLC22A1, HMGCR, VKORC1 and KCNJ11 genes respectively, are reported to be associated with ethnic variability in drug responses. In conclusion, correlating the frequencies of genotype risk variants with their associated ADRs would enhance drug outcomes and the implementation of personalized medicine in the studied populations.


Asunto(s)
Pueblo Europeo , Pueblo Norteafricano , Polimorfismo de Nucleótido Simple , Medicina de Precisión , Humanos , Frecuencia de los Genes , Genotipo , Italia , Vitamina K Epóxido Reductasas/genética
7.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396721

RESUMEN

The human Vitamin K Epoxide Reductase Complex (hVKORC1), a key enzyme transforming vitamin K into the form necessary for blood clotting, requires for its activation the reducing equivalents delivered by its redox partner through thiol-disulfide exchange reactions. The luminal loop (L-loop) is the principal mediator of hVKORC1 activation, and it is a region frequently harbouring numerous missense mutations. Four L-loop hVKORC1 mutants, suggested in vitro as either resistant (A41S, H68Y) or completely inactive (S52W, W59R), were studied in the oxidised state by numerical approaches (in silico). The DYNASOME and POCKETOME of each mutant were characterised and compared to the native protein, recently described as a modular protein composed of the structurally stable transmembrane domain (TMD) and the intrinsically disordered L-loop, exhibiting quasi-independent dynamics. The DYNASOME of mutants revealed that L-loop missense point mutations impact not only its folding and dynamics, but also those of the TMD, highlighting a strong mutation-specific interdependence between these domains. Another consequence of the mutation-induced effects manifests in the global changes (geometric, topological, and probabilistic) of the newly detected cryptic pockets and the alternation of the recognition properties of the L-loop with its redox protein. Based on our results, we postulate that (i) intra-protein allosteric regulation and (ii) the inherent allosteric regulation and cryptic pockets of each mutant depend on its DYNASOME; and (iii) the recognition of the redox protein by hVKORC1 (INTERACTOME) depend on their DYNASOME. This multifaceted description of proteins produces "omics" data sets, crucial for understanding the physiological processes of proteins and the pathologies caused by alteration of the protein properties at various "omics" levels. Additionally, such characterisation opens novel perspectives for the development of "allo-network drugs" essential for the treatment of blood disorders.


Asunto(s)
Mutación Missense , Vitamina K Epóxido Reductasas , Humanos , Mutación , Oxidación-Reducción , Vitamina K/metabolismo , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo
8.
Clin Pharmacol Ther ; 115(5): 1162-1174, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38344867

RESUMEN

Neutropenia is the major dose-limiting toxicity of irinotecan-based therapy. The objective of this study was to assess whether inclusion of germline genetic variants into a population pharmacokinetic/pharmacodynamic model can improve prediction of irinotecan-induced grade 4 neutropenia and identify novel variants of clinical value. A semimechanistic population pharmacokinetic/pharmacodynamic model was used to predict neutrophil response over time in 197 patients receiving irinotecan. Covariate analysis was performed for demographic/clinical factors and 4,781 genetic variants in 84 drug response- and toxicity-related genes to identify covariates associated with neutrophil response. We evaluated the predictive value of the model for grade 4 neutropenia reflecting different clinical scenarios of available data on identified demographic/clinical covariates, baseline and post-treatment absolute neutrophil counts (ANCs), individual pharmacokinetics, and germline genetic variation. Adding 8 genetic identified covariates (rs10929302 (UGT1A1), rs1042482 (DPYD), rs2859101 (HLA-DQB3), rs61754806 (NR3C1), rs9266271 (HLA-B), rs7294 (VKORC1), rs1051713 (ALOX5), and ABCB1 rare variant burden) to a model using only baseline ANCs improved prediction of irinotecan-induced grade 4 neutropenia from area under the receiver operating characteristic curve (AUC-ROC) of 50-64% (95% confidence interval (CI), 54-74%). Individual pharmacokinetics further improved the prediction to 74% (95% CI, 64-84%). When weekly ANC was available, the identified covariates and individual pharmacokinetics yielded no additional contribution to the prediction. The model including only ANCs at baseline and at week 1 achieved an AUC-ROC of 78% (95% CI, 69-88%). Germline DNA genetic variants may contribute to the prediction of irinotecan-induced grade 4 neutropenia when incorporated into a population pharmacokinetic/pharmacodynamic model. This approach is generalizable to drugs that induce neutropenia and ultimately allows for personalized intervention to enhance patient safety.


Asunto(s)
Neoplasias , Neutropenia , Humanos , Irinotecán/efectos adversos , Genotipo , Neoplasias/tratamiento farmacológico , Neutropenia/inducido químicamente , Neutropenia/genética , Células Germinativas , Glucuronosiltransferasa/genética , Vitamina K Epóxido Reductasas/genética
9.
J Intern Med ; 295(5): 583-598, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38343077

RESUMEN

Pharmacogenomics is the examination of how genetic variation influences drug metabolism and response, in terms of both efficacy and safety. In cardiovascular disease, patient-specific diplotypes determine phenotypes, thereby influencing the efficacy and safety of drug treatments, including statins, antiarrhythmics, anticoagulants and antiplatelets. Notably, polymorphisms in key genes, such as CYP2C9, CYP2C19, VKORC1 and SLCO1B1, significantly impact the outcomes of treatment with clopidogrel, warfarin and simvastatin. Furthermore, the CYP2C19 polymorphism influences the pharmacokinetics and safety of the novel hypertrophic cardiomyopathy inhibitor, mavacamten. In this review, we critically assess the clinical application of pharmacogenomics in cardiovascular disease and delineate present and future utilization of pharmacogenomics. This includes insights into identifying missing heritability, the integration of whole genome sequencing and the application of polygenic risk scores to enhance the precision of personalized drug therapy. Our discussion encompasses health economic analyses that underscore the cost benefits associated with pre-emptive genotyping for warfarin and clopidogrel treatments, albeit acknowledging the need for further research in this area. In summary, we contend that cardiovascular pharmacogenomic analyses are underpinned by a wealth of evidence, and implementation is already occurring for some of these gene-drug pairs, but as with any area of medicine, we need to continually gather more information to optimize the use of pharmacogenomics in clinical practice.


Asunto(s)
Enfermedades Cardiovasculares , Medicina de Precisión , Humanos , Warfarina/uso terapéutico , Pruebas de Farmacogenómica , Clopidogrel/uso terapéutico , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/diagnóstico , Anticoagulantes/uso terapéutico , Farmacogenética , Transportador 1 de Anión Orgánico Específico del Hígado/genética , Vitamina K Epóxido Reductasas/genética
10.
Br J Clin Pharmacol ; 90(3): 769-775, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37940132

RESUMEN

AIMS: The aim of this study was to investigate the association between VKORC1 and CYP2C9 genes polymorphisms and the maintenance dose of warfarin in Peruvian patients. METHODS: An observational study was conducted on outpatients from the Hospital Grau ESSALUD in Lima, Peru. The participants were selected using nonprobabilistic convenience sampling. Inclusion criteria required patients to have been on anticoagulation therapy for >3 months, maintain stable doses of warfarin (consistent dose for at least 3 outpatient visits), and maintain an international normalized ratio within the therapeutic range of 2.5-3.5. DNA samples were obtained from peripheral blood for gene analysis. RESULTS: Seventy patients (mean age of 69.6 ± 13.4 years, 45.7% female) were included in the study. The average weekly warfarin dose was 31.6 ± 15.2 mg. The genotypic frequencies of VKORC1 were as follows: 7.1% (95% confidence interval, 2.4-15.9) for AA; 44.3% (32.4-56.7) for GA; and 48.6% (36.4-60.8) for GG. No deviation from the Hardy-Weinberg equilibrium was observed in the variants studied (P = .56). The mean weekly warfarin doses for AA, GA and GG genotypes were 16.5 ± 2.9, 26.5 ± 9.5 and 37.9 ± 17.1 mg, respectively (P < .001). The genotypic frequencies of CYP2C9 were as follows: 82.8% (72.0-90.8) for CC (*1/*1); 4.3% (1.0-12.0) for CT (*1/*2); and 12.9% (6.1-23.0) for TT (*2/*2). We did not find a significant association between the CYP2C9 gene polymorphism and the dose of warfarin. CONCLUSIONS: The AA genotype of the VKORC1 gene was associated with a lower maintenance dose of warfarin in Peruvian patients.


Asunto(s)
Anticoagulantes , Warfarina , Humanos , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Masculino , Citocromo P-450 CYP2C9/genética , Perú , Anticoagulantes/efectos adversos , Vitamina K Epóxido Reductasas/genética , Polimorfismo Genético , Genotipo , Relación Normalizada Internacional
11.
Biomed Pharmacother ; 170: 115977, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056237

RESUMEN

Warfarin, an oral anticoagulant, has been used for decades to prevent thromboembolic events. The complex interplay between CYP2C9 and VKORC1 genotypes on warfarin PK and PD properties is not fully understood in special sub-groups of patients. This study aimed to externally validate a population pharmacokinetic/pharmacodynamic (PK/PD) model for the effect of warfarin on international normalized ratio (INR) and to evaluate optimal dosing strategies based on the selected covariates in Caribbean Hispanic patients. INR, and CYP2C9 and VKORC1 genotypes from 138 patients were used to develop a population PK/PD model in NONMEM. The structural definition of a previously published PD model for INR was implemented. A numerical evaluation of the parameter-covariate relationship was performed. Simulations were conducted to determine optimal dosing strategies for each genotype combinations, focusing on achieving therapeutic INR levels. Findings revealed elevated IC50 for G/G, G/A, and A/A VKORC1 haplotypes (11.76, 10.49, and 9.22 mg/L, respectively), in this population compared to previous reports. The model-guided dosing analysis recommended daily warfarin doses of 3-5 mg for most genotypes to maintain desired INR levels, although subjects with combination of CYP2C9 and VKORC1 genotypes * 2/* 2-, * 2/* 3- and * 2/* 5-A/A would require only 1 mg daily. This research underscores the potential of population PK/PD modeling to inform personalized warfarin dosing in populations typically underrepresented in clinical studies, potentially leading to improved treatment outcomes and patient safety. By integrating genetic factors and clinical data, this approach could pave the way for more effective and tailored anticoagulation therapy in diverse patient groups.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Warfarina , Humanos , Anticoagulantes/farmacología , Citocromo P-450 CYP2C9/genética , Genotipo , Hispánicos o Latinos/genética , Vitamina K Epóxido Reductasas/genética , Pueblos Caribeños
12.
Br J Clin Pharmacol ; 90(3): 828-836, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37953511

RESUMEN

AIMS: Genotype-guided dosing algorithms can explain about half of the interindividual variability in prothrombin time-international normalized ratio (PT-INR) under warfarin treatment. This study aimed to refine a published kinetic-pharmacodynamic model and guide warfarin dosage for an optimal PT-INR based on renal function. METHODS: Using a retrospective cohort of adult patients (>20 years) who were administered warfarin and underwent PT-INR measurements, we refined the kinetic-pharmacodynamic model with age and the genotypes of cytochrome P450 2C9 and vitamin K epoxide reductase complex subunit 1 using the PRIOR subroutine in the nonlinear-mixed-effect modelling programme. We searched the significant covariates for parameters, such as the dose rate for 50% inhibition of coagulation (EDR50 ), using a stepwise forward and backward method. Monte Carlo simulation determined a required daily dose of warfarin with a target range of PT-INR (2.0-3.0 or 1.6-2.6) based on the significant covariates. RESULTS: A total of 350 patients with 2762 PT-INR measurements were enrolled (estimated glomerular filtration rate [eGFR]: 47.5 [range: 2.6-199.0] mL/min/1.73 m2 ). The final kinetic-pharmacodynamic model showed that the EDR50 changed power functionally with body surface area, serum albumin level and eGFR. Monte Carlo simulation revealed that a lower daily dose of warfarin was required to attain the target PT-INR range as eGFR decreased. CONCLUSIONS: Model-informed precision dosing of warfarin is a valuable approach for estimating its dosage in patients with renal impairment.


Asunto(s)
Anticoagulantes , Warfarina , Adulto , Humanos , Anticoagulantes/farmacocinética , Citocromo P-450 CYP2C9/genética , Genotipo , Relación Normalizada Internacional , Japón , Protrombina , Tiempo de Protrombina , Estudios Retrospectivos , Vitamina K Epóxido Reductasas/genética , Warfarina/farmacocinética
13.
Sci Rep ; 13(1): 21750, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066032

RESUMEN

Patients who receive heart valve surgery need anticoagulation prophylaxis to reduce the risk of thrombosis. Warfarin often is a choice but its dosage varies due to gene and clinical factors. We aim to study, among them, if there is an interaction between acute kidney injury and two gene polymorphisms from this study. We extracted data of heart valve surgery recipients from the electronic health record (EHR) system of a medical center. The primary outcome is about the average daily dose of warfarin, measured as an additive interaction effect (INTadd) between acute kidney injury (AKI) and warfarin-related gene polymorphisms. The confounders, including age, sex, body surface area (BSA), comorbidities (i.e., atrial fibrillation [AF], hypertension [HTN], congestive heart failure [CHF]), serum albumin level, warfarin-relevant gene polymorphism (i.e., CYP2C9, VKORC1), prosthetic valve type (i.e., metal, bio), and warfarin history were controlled via a multivariate-linear regression model. The study included 200 patients, among whom 108 (54.00%) are female. Further, the mean age is 54.45 years, 31 (15.50%) have CHF, and 40 (20.00%) patients were prescribed concomitant amiodarone, which potentially overlays with the warfarin prophylaxis period. During the follow-up, AKI occurred in 30 (15.00%) patients. VKORC1 mutation (1639G>A) occurred in 25 (12.50%) patients and CYPC29 *2 or *3 mutations presented in 20 patients (10.00%). We found a significant additive interaction effect between AKI and VKORC1 (- 1.17, 95% CI - 1.82 to - 0.53, p = 0.0004). This result suggests it is probable that there is an interaction between acute kidney injury and the VKORC1 polymorphism for the warfarin dose during the initial period of anticoagulation prophylaxis.


Asunto(s)
Lesión Renal Aguda , Hidrocarburo de Aril Hidroxilasas , Procedimientos Quirúrgicos Cardíacos , Humanos , Femenino , Persona de Mediana Edad , Masculino , Warfarina , Hidrocarburo de Aril Hidroxilasas/genética , Vitamina K Epóxido Reductasas/genética , Anticoagulantes , Genotipo , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Lesión Renal Aguda/genética , Lesión Renal Aguda/tratamiento farmacológico , Citocromo P-450 CYP2C9/genética , Relación Dosis-Respuesta a Droga
14.
Cardiovasc Ther ; 2023: 8898922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38045109

RESUMEN

Background: Vitamin K epoxide reductase complex subunit 1 (VKORC1) gene encodes a key enzyme with multiple cellular activities, namely, the reduction of vitamin K to its active form. VKORC1-1639G>A (rs9923231) is a common single nucleotide polymorphism with a crucial impact on warfarin dosing and possibly other physiological functions. This study aimed at investigating the frequencies of VKORC1-1639G>A alleles and genotypes in Syrian healthy subjects and patients on warfarin for different indications. Methods: A total of 138 individuals were enrolled in this cross-sectional study. Genomic DNA was extracted from both patients on warfarin and healthy subjects, and polymerase chain reaction (PCR) specific amplicons were genotyped via standard sequencing which also allowed the detection of rs397509427. Comparisons of -1639G>A frequency with other populations were drawn. Results: Of 94 patients on warfarin, 53 (56.38%) were with idiopathic venous thromboembolism (VTE). Despite comparable frequencies of the -1639A allele (47% and 50%), the AA and GA genotypes were at disparate frequencies of 93.2% versus 79.8% in the healthy subjects (n = 44) versus patients on warfarin, respectively. Carriers of the GG genotype were at a four-fold increased risk of VTE in comparison with those of the AA and GA genotypes (odds ratio (OR) = 4, 95% CI = 1.105 - 13.6, P = 0.0469). All study subjects were wild-type for the rs397509427 variant. Conclusions: Our results prove a high -1639A prevalence in Syrian healthy subjects and patients on warfarin at frequencies comparable to other Mediterranean and Middle Eastern populations. The A allele carriers are at a lower VTE risk, whereas a global prevalence gradient of the G allele is suggested to be associated with VTE risk.


Asunto(s)
Tromboembolia Venosa , Warfarina , Humanos , Warfarina/efectos adversos , Estudios Transversales , Voluntarios Sanos , Siria , Vitamina K Epóxido Reductasas/genética , Genotipo , Anticoagulantes/efectos adversos , Citocromo P-450 CYP2C9/genética
15.
Medicine (Baltimore) ; 102(34): e34836, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37653796

RESUMEN

Acute ischemic stroke is a major cause of morbidity and mortality worldwide, and genetic factors play a role in the risk of stroke. Single nucleotide polymorphisms (SNPs) in the VKORC1, CYP4F2, and GGCX genes have been linked to clinical outcomes, such as bleeding and cardiovascular diseases. This study aimed to investigate the association between specific polymorphisms in these genes and the risk of developing the first episode of acute ischemic stroke in patients without a known embolic source. This retrospective, cross-sectional, observational, analytical, case-control study included adult patients diagnosed with acute ischemic stroke. The SNPs in VKORC1 rs9923231, CYP4F2 rs2108622, GGCX rs11676382 genes were genotyped and analyzed together with the demographic and clinical factors of the 2 groups of patients. The presence of SNPs in VKORC1 or CYP4F2 genes significantly increased the risk of ischemic stroke in the context of smoking, arterial hypertension, and carotid plaque burden. The multivariate logistic model revealed that smoking (odds ratio [OR] = 3.920; P < .001), the presence of carotid plaques (OR = 2.661; P < .001) and low-density lipoprotein cholesterol values >77 mg/dL (OR = 2.574; P < .001) were independently associated with stroke. Polymorphisms in the VKORC1 and CYP4F2 genes may increase the risk of ischemic stroke in patients without a determined embolic source. Smoking, the presence of carotid plaques, and high low-density lipoprotein cholesterol levels were reconfirmed as important factors associated with ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Adulto , Humanos , Estudios de Casos y Controles , Estudios Transversales , Estudios Retrospectivos , Polimorfismo de Nucleótido Simple , Accidente Cerebrovascular/genética , LDL-Colesterol , Familia 4 del Citocromo P450/genética , Vitamina K Epóxido Reductasas/genética
16.
Int J Surg ; 109(12): 3861-3871, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37598356

RESUMEN

BACKGROUND AND OBJECTIVES: Due to the high individual variability of anticoagulant warfarin, this study aimed to investigate the effects of vitamin K concentration and gut microbiota on individual variability of warfarin in 246 cardiac surgery patients. METHODS: The pharmacokinetics and pharmacodynamics (PKPD) model predicted international normalized ratio (INR) and warfarin concentration. Serum and fecal samples were collected to detect warfarin and vitamin K [VK1 and menaquinone-4 (MK4)] concentrations and gut microbiota diversity, respectively. In addition, the patient's medical records were reviewed for demographic characteristics, drug history, and CYP2C9, VKORC1, and CYP4F2 genotypes. RESULTS: The PKPD model predicted ideal values of 62.7% for S-warfarin, 70.4% for R-warfarin, and 76.4% for INR. The normal VK1 level was 1.34±1.12 nmol/ml (95% CI: 0.33-4.08 nmol/ml), and the normal MK4 level was 0.22±0.18 nmol/ml (95% CI: 0.07-0.63 nmol/ml). The MK4 to total vitamin K ratio was 16.5±9.8% (95% CI: 4.3-41.5%). The S-warfarin concentration of producing 50% of maximum anticoagulation and the half-life of prothrombin complex activity tended to increase with vitamin K. Further, Prevotella and Eubacterium of gut microbiota identified as the main bacteria associated with individual variability of warfarin. The results suggest that an increase in vitamin K concentration can decrease anticoagulation, and gut microbiota may influence warfarin anticoagulation through vitamin K2 synthesis. CONCLUSION: This study highlights the importance of considering vitamin K concentration and gut microbiota when prescribing warfarin. The findings may have significant implications for the personalized use of warfarin. Further research is needed to understand better the role of vitamin K and gut microbiota in warfarin anticoagulation.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Microbioma Gastrointestinal , Humanos , Warfarina/farmacología , Vitamina K , Familia 4 del Citocromo P450/genética , Vitamina K Epóxido Reductasas/genética , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Genotipo
17.
Sci Total Environ ; 900: 166290, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37586516

RESUMEN

Growing evidence of widespread resistance to anticoagulant rodenticides (ARs) in house mice pose significant challenges to pest control efforts. First-generation ARs were introduced in the early 1950s but resistance to these emerged later that decade. Second-generation rodenticides were then developed, with resistance being reported in the late 1970s. Research has linked resistance to ARs with mutations in the Vkorc1 gene, leading to the use of more toxic and environmentally harmful compounds. In this study, 243 tail tips of house mice from mainland Portugal and Southern Spain, the Azores and Madeira archipelagos were analysed for all 3 exons of the Vkorc1 gene. Mutations L128S, Y139C, along with the so-called spretus genotype Vkorc1spr are considered responsible for reduced susceptibility of house mice to ARs. All these sequence variants were broadly detected throughout the sampling regions. Vkorc1spr was the most often recorded among mainland populations, whereas Y139C was nearly ubiquitous among the insular populations. In contrast, L128S was only detected in mainland Portugal and four islands of the Azores archipelago. All first generation ARs such as warfarin and coumatetralyl are deemed ineffective against all Vkorc1 variants identified in this study. Second-generation bromadiolone and difenacoum should also be discarded to control populations carrying Vkorc1spr, Y139C or L128S mutations. Inadequate use of ARs in regions where resistant animals have been found in large proportions will result in the spreading of rodenticide resistance among rodent populations through the positive selection of non-susceptible individuals. Consequently, ineffectiveness of rodent control will increase and potentiate environmental contamination, hazarding non-target wildlife through secondary poisoning. We highlight the need for Vkorc1 screening as a crucial tool in rodent management, aiding in the selection of the most appropriate control/eradication method in order to prevent misuse of these toxic biocides and the spread of rodenticide resistance among house mouse populations.


Asunto(s)
Rodenticidas , Ratones , Animales , Portugal , Vitamina K Epóxido Reductasas/genética , Mutación , Control de Roedores/métodos , Anticoagulantes , Roedores
18.
Pharmacogenomics ; 24(10): 529-538, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37435666

RESUMEN

Aim: A prospective observational study was conducted to evaluate the feasibility of implementing clinical guidelines for warfarin dosing in black Zimbabwean patients. Methods: CYP2C9*5, CYP2C9*6, CYP2C9*8 and CYP2C9*11 and VKORC1 c. 1639 G>A variations were observed in 62 study patients. Results & Conclusion: Overall, 39/62 (62.90%) participants did not receive a warfarin starting dose as would have been recommended by Clinical Pharmacogenetics Implementation Consortium guidelines. US FDA and Dutch Pharmacogenetics Working Group guidelines are based on CYP2C9*2 and CYP2C9*3 only, hence, unlikely useful in this cohort, where such variants were not detected. Clinical Pharmacogenetics Implementation Consortium guidelines, on the other hand, have a specific recommendation on the African-specific variants CYP2C9*5, CYP2C9*6 and CYP2C9*11, and are hence suitable for implementation in Zimbabwe and would help optimize warfarin doses in patients in the study cohort.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Warfarina , Humanos , Warfarina/uso terapéutico , Zimbabwe , Farmacogenética/métodos , Estudios Prospectivos , Citocromo P-450 CYP2C9/genética , Hidrocarburo de Aril Hidroxilasas/genética , Vitamina K Epóxido Reductasas/genética , Anticoagulantes/uso terapéutico , Genotipo
19.
Cell Metab ; 35(8): 1474-1490.e8, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37467745

RESUMEN

Here, we identified vitamin K epoxide reductase complex subunit 1 like 1 (VKORC1L1) as a potent ferroptosis repressor. VKORC1L1 protects cells from ferroptosis by generating the reduced form of vitamin K, a potent radical-trapping antioxidant, to counteract phospholipid peroxides independent of the canonical GSH/GPX4 mechanism. Notably, we found that VKORC1L1 is also a direct transcriptional target of p53. Activation of p53 induces downregulation of VKORC1L1 expression, thus sensitizing cells to ferroptosis for tumor suppression. Interestingly, a small molecular inhibitor of VKORC1L1, warfarin, is widely prescribed as an FDA-approved anticoagulant drug. Moreover, warfarin represses tumor growth by promoting ferroptosis in both immunodeficient and immunocompetent mouse models. Thus, by downregulating VKORC1L1, p53 executes the tumor suppression function by activating an important ferroptosis pathway involved in vitamin K metabolism. Our study also reveals that warfarin is a potential repurposing drug in cancer therapy, particularly for tumors with high levels of VKORC1L1 expression.


Asunto(s)
Proteína p53 Supresora de Tumor , Warfarina , Animales , Ratones , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Vitamina K/metabolismo , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo , Warfarina/farmacología , Warfarina/uso terapéutico
20.
Medicine (Baltimore) ; 102(30): e34204, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37505171

RESUMEN

Alleles in the VKORC1, CYP2C9, and CYP4F2 genes can influence Warfarin dose requirement. We aimed to determine the frequency of the polymorphisms in these genes in healthy individuals from Cali, Colombia. Observational study where total blood was collected from 107 healthy donors who attended a higher educational institution in Cali, Colombia. Sanger sequencing of exons 2, 3, 5, and 7 of the CYP2C9 gene; the common promoter region of CYP (rs12777823); exon 11 of CPY4F2 and the polymorphism c.-1639G > A in the VKORC1 gene promoter was performed. CYP2C9*2, CYP2C9*3, CYP2C9*8, CYP2C9*9, CYP2C9*11, CYP4F2*3, rs12777823, and VKORC1*2 were detected. The latter had the highest frequency with 80 (74.8%) participants in a heterozygous or homozygous state. The least frequent allele was CYP2C9*11 with only 1 carrier. Combined haplotypes (VKORC1 *1/*2 or *2/*2 and CYP2C9 *1/*2 or *2/*2) were identified in 14 (13.7%) subjects. Both frequencies found in the VKORC1 and CYP2C9 alleles were similar to the ones reported for Latin Americans of European and Native American Ancestry. VKORC1*2 allele, the main genetic contributor to Warfarin dosing requirement, was the variant with the highest frequency (74.8% subjects, with a frequency of the alternative allele (A) of 50%). Our findings provide researchers with a greater insight regarding the frequency of common polymorphisms that affect anticoagulation treatment in the Cali (Colombia) population.


Asunto(s)
Anticoagulantes , Warfarina , Humanos , Warfarina/uso terapéutico , Citocromo P-450 CYP2C9/genética , Anticoagulantes/uso terapéutico , Colombia , Frecuencia de los Genes , Familia 4 del Citocromo P450/genética , Vitamina K Epóxido Reductasas/genética , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...