Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673722

RESUMEN

The human Vitamin K Epoxide Reductase Complex (hVKORC1), a key enzyme that converts vitamin K into the form necessary for blood clotting, requires for its activation the reducing equivalents supplied by its redox partner through thiol-disulphide exchange reactions. The functionally related molecular complexes assembled during this process have never been described, except for a proposed de novo model of a 'precursor' complex of hVKORC1 associated with protein disulphide isomerase (PDI). Using numerical approaches (in silico modelling and molecular dynamics simulation), we generated alternative 3D models for each molecular complex bonded either covalently or non-covalently. These models differ in the orientation of the PDI relative to hVKORC1 and in the cysteine residue involved in forming protein-protein disulphide bonds. Based on a comparative analysis of these models' shape, folding, and conformational dynamics, the most probable putative complexes, mimicking the 'precursor', 'intermediate', and 'successor' states, were suggested. In addition, we propose using these complexes to develop the 'allo-network drugs' necessary for treating blood diseases.


Asunto(s)
Simulación de Dinámica Molecular , Proteína Disulfuro Isomerasas , Vitamina K Epóxido Reductasas , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/química , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/metabolismo , Vitamina K Epóxido Reductasas/genética , Humanos , Disulfuros/química , Disulfuros/metabolismo , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo , Modelos Moleculares , Conformación Proteica , Oxidación-Reducción , Unión Proteica
2.
CPT Pharmacometrics Syst Pharmacol ; 13(5): 853-869, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38487942

RESUMEN

Warfarin is a widely used anticoagulant, and its S-enantiomer has higher potency compared to the R-enantiomer. S-warfarin is mainly metabolized by cytochrome P450 (CYP) 2C9, and its pharmacological target is vitamin K epoxide reductase complex subunit 1 (VKORC1). Both CYP2C9 and VKORC1 have genetic polymorphisms, leading to large variations in the pharmacokinetics (PKs) and pharmacodynamics (PDs) of warfarin in the population. This makes dosage management of warfarin difficult, especially in the case of drug-drug interactions (DDIs). This study provides a whole-body physiologically-based pharmacokinetic/PD (PBPK/PD) model of S-warfarin for predicting the effects of drug-drug-gene interactions on S-warfarin PKs and PDs. The PBPK/PD model of S-warfarin was developed in PK-Sim and MoBi. Drug-dependent parameters were obtained from the literature or optimized. Of the 34 S-warfarin plasma concentration-time profiles used, 96% predicted plasma concentrations within twofold range compared to observed data. For S-warfarin plasma concentration-time profiles with CYP2C9 genotype, 364 of 386 predicted plasma concentration values (~94%) fell within the twofold of the observed values. This model was tested in DDI predictions with fluconazole as CYP2C9 perpetrators, with all predicted DDI area under the plasma concentration-time curve to the last measurable timepoint (AUClast) ratio within twofold of the observed values. The anticoagulant effect of S-warfarin was described using an indirect response model, with all predicted international normalized ratio (INR) within twofold of the observed values. This model also incorporates a dose-adjustment method that can be used for dose adjustment and predict INR when warfarin is used in combination with CYP2C9 perpetrators.


Asunto(s)
Anticoagulantes , Citocromo P-450 CYP2C9 , Interacciones Farmacológicas , Fluconazol , Modelos Biológicos , Vitamina K Epóxido Reductasas , Warfarina , Warfarina/farmacocinética , Warfarina/farmacología , Warfarina/administración & dosificación , Humanos , Fluconazol/farmacología , Fluconazol/farmacocinética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Anticoagulantes/farmacocinética , Anticoagulantes/farmacología , Anticoagulantes/administración & dosificación , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo , Polimorfismo Genético , Relación Normalizada Internacional
3.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396721

RESUMEN

The human Vitamin K Epoxide Reductase Complex (hVKORC1), a key enzyme transforming vitamin K into the form necessary for blood clotting, requires for its activation the reducing equivalents delivered by its redox partner through thiol-disulfide exchange reactions. The luminal loop (L-loop) is the principal mediator of hVKORC1 activation, and it is a region frequently harbouring numerous missense mutations. Four L-loop hVKORC1 mutants, suggested in vitro as either resistant (A41S, H68Y) or completely inactive (S52W, W59R), were studied in the oxidised state by numerical approaches (in silico). The DYNASOME and POCKETOME of each mutant were characterised and compared to the native protein, recently described as a modular protein composed of the structurally stable transmembrane domain (TMD) and the intrinsically disordered L-loop, exhibiting quasi-independent dynamics. The DYNASOME of mutants revealed that L-loop missense point mutations impact not only its folding and dynamics, but also those of the TMD, highlighting a strong mutation-specific interdependence between these domains. Another consequence of the mutation-induced effects manifests in the global changes (geometric, topological, and probabilistic) of the newly detected cryptic pockets and the alternation of the recognition properties of the L-loop with its redox protein. Based on our results, we postulate that (i) intra-protein allosteric regulation and (ii) the inherent allosteric regulation and cryptic pockets of each mutant depend on its DYNASOME; and (iii) the recognition of the redox protein by hVKORC1 (INTERACTOME) depend on their DYNASOME. This multifaceted description of proteins produces "omics" data sets, crucial for understanding the physiological processes of proteins and the pathologies caused by alteration of the protein properties at various "omics" levels. Additionally, such characterisation opens novel perspectives for the development of "allo-network drugs" essential for the treatment of blood disorders.


Asunto(s)
Mutación Missense , Vitamina K Epóxido Reductasas , Humanos , Mutación , Oxidación-Reducción , Vitamina K/metabolismo , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo
4.
Toxicol Lett ; 392: 1-11, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103582

RESUMEN

Sodium dehydroacetate (DHA-S), a potent antifungal and antibacterial agent, is widely used in food, feed and cosmetics. However, recent studies have shown that DHA-S could pose a risk for human and animal health. We had previously reported that DHA-S could cause coagulation disorders in rats and chicken. In the present study, we further confirmed that DHA-S induced blood coagulation via VKORC1 and VKORC1L1 in rats, and elucidated the role played by mTOR/ERK signaling. The in vivo studies demonstrated that PT, APTT, and DHA-S content and relative protein expressions in tissues rebounded after drug withdrawal. In BRL-3A cells, 1.0 mM DHA-S increased the expression levels of mTOR, p-mTOR and p-ERK and decreased the levels of VKORC1, VKORC1L1 and Vitamin K. Rapamycin significantly decreased the expression levels of p-mTOR and p-ERK, while FR180204 (p-ERK Inhibition) lead to a decrease in p-ERK level. Rapamycin and FR180202 attenuated the inhibitory effect of DHA-S on VKORC1, VKORC1L1 and vitamin K levels. In addition, DHA-S increased the expression levels of mTOR, p-mTOR and p-ERK in male and female rat livers and prolonged PT and APTT. In summary, this study indicated that DHA-S induced blood coagulation via the modulation of the mTOR/ERK pathway in rats.


Asunto(s)
Coagulación Sanguínea , Sistema de Señalización de MAP Quinasas , Pironas , Humanos , Ratas , Masculino , Femenino , Animales , Vitamina K Epóxido Reductasas/metabolismo , Vitamina K , Serina-Treonina Quinasas TOR/metabolismo , Sirolimus/farmacología
5.
Trends Endocrinol Metab ; 34(11): 683-684, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37648560

RESUMEN

Ferroptosis holds promise for cancer therapy. A recent study by Yang et al. in Cell Metabolism reveals that VKORC1L1-mediated reduction of vitamin K inhibits ferroptosis and establishes a direct p53-VKORC1L1 link in its regulation. As warfarin can inhibit VKORC1L1, the study further underscores this drug's potential as a cancer therapy.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Warfarina/uso terapéutico , Warfarina/farmacología , Vitamina K Epóxido Reductasas/metabolismo , Neoplasias/tratamiento farmacológico , Vitamina K/metabolismo , Proteína p53 Supresora de Tumor
6.
Cell Metab ; 35(8): 1474-1490.e8, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37467745

RESUMEN

Here, we identified vitamin K epoxide reductase complex subunit 1 like 1 (VKORC1L1) as a potent ferroptosis repressor. VKORC1L1 protects cells from ferroptosis by generating the reduced form of vitamin K, a potent radical-trapping antioxidant, to counteract phospholipid peroxides independent of the canonical GSH/GPX4 mechanism. Notably, we found that VKORC1L1 is also a direct transcriptional target of p53. Activation of p53 induces downregulation of VKORC1L1 expression, thus sensitizing cells to ferroptosis for tumor suppression. Interestingly, a small molecular inhibitor of VKORC1L1, warfarin, is widely prescribed as an FDA-approved anticoagulant drug. Moreover, warfarin represses tumor growth by promoting ferroptosis in both immunodeficient and immunocompetent mouse models. Thus, by downregulating VKORC1L1, p53 executes the tumor suppression function by activating an important ferroptosis pathway involved in vitamin K metabolism. Our study also reveals that warfarin is a potential repurposing drug in cancer therapy, particularly for tumors with high levels of VKORC1L1 expression.


Asunto(s)
Proteína p53 Supresora de Tumor , Warfarina , Animales , Ratones , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Vitamina K/metabolismo , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo , Warfarina/farmacología , Warfarina/uso terapéutico
7.
Nat Metab ; 5(6): 924-932, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37337123

RESUMEN

Vitamin K is essential for several physiological processes, such as blood coagulation, in which it serves as a cofactor for the conversion of peptide-bound glutamate to γ-carboxyglutamate in vitamin K-dependent proteins. This process is driven by the vitamin K cycle facilitated by γ-carboxyglutamyl carboxylase, vitamin K epoxide reductase and ferroptosis suppressor protein-1, the latter of which was recently identified as the long-sought-after warfarin-resistant vitamin K reductase. In addition, vitamin K has carboxylation-independent functions. Akin to ubiquinone, vitamin K acts as an electron carrier for ATP production in some organisms and prevents ferroptosis, a type of cell death hallmarked by lipid peroxidation. In this Perspective, we provide an overview of the diverse functions of vitamin K in physiology and metabolism and, at the same time, offer a perspective on its role in ferroptosis together with ferroptosis suppressor protein-1. A comparison between vitamin K and ubiquinone, from an evolutionary perspective, may offer further insights into the manifold roles of vitamin K in biology.


Asunto(s)
Ferroptosis , Vitamina K , Vitamina K/metabolismo , Ubiquinona , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo , Coagulación Sanguínea
8.
Crit Rev Biochem Mol Biol ; 58(1): 36-49, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37098102

RESUMEN

Disulfide bond formation is a catalyzed reaction essential for the folding and stability of proteins in the secretory pathway. In prokaryotes, disulfide bonds are generated by DsbB or VKOR homologs that couple the oxidation of a cysteine pair to quinone reduction. Vertebrate VKOR and VKOR-like enzymes have gained the epoxide reductase activity to support blood coagulation. The core structures of DsbB and VKOR variants share the architecture of a four-transmembrane-helix bundle that supports the coupled redox reaction and a flexible region containing another cysteine pair for electron transfer. Despite considerable similarities, recent high-resolution crystal structures of DsbB and VKOR variants reveal significant differences. DsbB activates the cysteine thiolate by a catalytic triad of polar residues, a reminiscent of classical cysteine/serine proteases. In contrast, bacterial VKOR homologs create a hydrophobic pocket to activate the cysteine thiolate. Vertebrate VKOR and VKOR-like maintain this hydrophobic pocket and further evolved two strong hydrogen bonds to stabilize the reaction intermediates and increase the quinone redox potential. These hydrogen bonds are critical to overcome the higher energy barrier required for epoxide reduction. The electron transfer process of DsbB and VKOR variants uses slow and fast pathways, but their relative contribution may be different in prokaryotic and eukaryotic cells. The quinone is a tightly bound cofactor in DsbB and bacterial VKOR homologs, whereas vertebrate VKOR variants use transient substrate binding to trigger the electron transfer in the slow pathway. Overall, the catalytic mechanisms of DsbB and VKOR variants have fundamental differences.


Asunto(s)
Bacterias , Cisteína , Cisteína/metabolismo , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/metabolismo , Oxidación-Reducción , Bacterias/metabolismo , Quinonas , Disulfuros/química , Disulfuros/metabolismo , Proteínas Bacterianas/metabolismo
9.
Nat Commun ; 14(1): 828, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788244

RESUMEN

Vitamin K is a vital micronutrient implicated in a variety of human diseases. Warfarin, a vitamin K antagonist, is the most commonly prescribed oral anticoagulant. Patients overdosed on warfarin can be rescued by administering high doses of vitamin K because of the existence of a warfarin-resistant vitamin K reductase. Despite the functional discovery of vitamin K reductase over eight decades ago, its identity remained elusive. Here, we report the identification of warfarin-resistant vitamin K reductase using a genome-wide CRISPR-Cas9 knockout screen with a vitamin K-dependent apoptotic reporter cell line. We find that ferroptosis suppressor protein 1 (FSP1), a ubiquinone oxidoreductase, is the enzyme responsible for vitamin K reduction in a warfarin-resistant manner, consistent with a recent discovery by Mishima et al. FSP1 inhibitor that inhibited ubiquinone reduction and thus triggered cancer cell ferroptosis, displays strong inhibition of vitamin K-dependent carboxylation. Intriguingly, dihydroorotate dehydrogenase, another ubiquinone-associated ferroptosis suppressor protein parallel to the function of FSP1, does not support vitamin K-dependent carboxylation. These findings provide new insights into selectively controlling the physiological and pathological processes involving electron transfers mediated by vitamin K and ubiquinone.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , NAD(P)H Deshidrogenasa (Quinona) , Warfarina , Humanos , Anticoagulantes/farmacología , Sistemas CRISPR-Cas , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Ubiquinona/farmacología , Ubiquinona/metabolismo , Vitamina K/metabolismo , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo , Warfarina/farmacología , Proteínas Reguladoras de la Apoptosis/genética
10.
Poult Sci ; 102(3): 102482, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36706663

RESUMEN

Sodium dehydroacetate (S-DHA) is used widely as a preservative in several products, including poultry feed. The anticoagulation effect of 200 mg/kg S-DHA in rats has been reported to accompany a reduction in hepatic expression of vitamin K epoxide reductase complex 1 (VKORC1). Poultry and mammals have different physiology and coagulation systems, and species differences in VKORC1 expression have been found. The effect of S-DHA on blood clotting of poultry has not been studies deeply. S-DHA was given to yellow-plumage broilers (YBs) as single and multiple administrations. Vitamin K3 (VK3) was injected into YBs 2 wk after S-DHA administration. Then, the prothrombin time (PT), partial activated prothrombin time (APTT), plasma levels of vitamin K (VK), factor IX (FIX), and S-DHA, and hepatic expression of VKORC1 were obtained. Chicken hepatocellular carcinoma (LMH) cells were also exposed to S-DHA, and the cell activity, VK level, and FIX level were measured. S-DHA prolonged the PT or APTT significantly, decreased levels of VK and FIX in blood, and inhibited hepatic expression of VKORC1. The maximum changes were 1.15-fold in the PT, 1.42-fold in the APTT, 0.8-fold in the VK level, 0.7-fold in the FIX level, and 0.35-fold in VKORC1 expression compared with controls. The cell activity, VK level, FIX level, and VKORC1/VKORC1L1 expression of LMH cells were reduced significantly at S-DHA doses of 2.0 to 10.0 mM. Prolongation of the PT/APTT and lower levels of VK/FIX in YBs or the lower cell activity and VK/FIX levels in LMH cells induced by S-DHA therapy were resisted significantly by VK3 treatment. We demonstrated that S-DHA could induce a disorder in coagulation function in YBs or in LMH cells via reduction of VKORC1/VKORC1L1 expression, and that VK could resist this anticoagulation effect.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Pollos , Vitamina K , Animales , Ratas , Anticoagulantes/farmacología , Coagulación Sanguínea/efectos de los fármacos , Pollos/metabolismo , Mamíferos/metabolismo , Vitamina K/metabolismo , Vitamina K/farmacología , Vitamina K/uso terapéutico , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo , Trastornos de la Coagulación Sanguínea/inducido químicamente , Trastornos de la Coagulación Sanguínea/tratamiento farmacológico , Trastornos de la Coagulación Sanguínea/veterinaria
11.
Toxicol In Vitro ; 87: 105518, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36403723

RESUMEN

Sodium dehydroacetate (Na-DHA) is widely used as an antibacterial and preservative additive in food and cosmetics. Previously, we reported that repeated oral administration of Na-DHA induces coagulation disorders, and inhibited liver vitamin K epoxide reductase complex subunit 1 (VKORC1) and VKORC1-like protein 1 (VKORC1L1) in rats. However, the effects of Na-DHA on coagulation factors in rat hepatocytes and the mechanism of VKORC1 and VKORC1L1 signaling in that process are unclear. Here, we constructed stable Vkorc1 and Vkorc1l1 overexpressing cell lines using lentiviruses and transfected small interfering RNAs into buffalo rat liver BRL3A cells for Vkorc1 and Vkorc1l1 overexpression and silencing, respectively. After treatment with 5 mmol/L Na-DHA for 24 h, VKORC1 and VKORC1L1 expression levels were detected by real-time PCR and western blotting. Vitamin K (VK) and factor IX (FIX) contents were detected using enzyme linked immunosorbent assays. We observed that Na-DHA inhibited VKORC1 and VKORC1L1 expression levels and reduced VK and FIX levels in rat hepatocytes. Overexpression or silencing of Vkorc1 and Vkorc1l1 increased or decreased, respectively, the production and secretion of VK and FIX in rat hepatocytes, and alleviated or aggravated the inhibitory effects of Na-DHA on VKORC1 and VKORC1L1 expression levels. Taken together, the results indicated that both VKORC1 and VKORC1L1 signaling play regulatory roles in the effects of Na-DHA on coagulation factors in rat hepatocytes.


Asunto(s)
Hepatocitos , Vitamina K , Ratas , Animales , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo , Vitamina K/metabolismo , Hepatocitos/metabolismo , Factores de Coagulación Sanguínea
12.
Eur J Pharmacol ; 938: 175436, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36481237

RESUMEN

OBJECTIVE: Natural product berberine was reported to inhibit platelet activation and thrombosis by suppressing the class Ⅰ PI3Kß/Rasa3/Rap1 pathway. This study aims to investigate the effects and mechanisms of berberrubine, a main metabolite of berberine, to inhibit thrombus formation. METHODS: Carrageenan-induced mouse tail thrombosis model was used to evaluate the effects of berberrubine hydrochloride (BBB) on thrombus formation in vivo. Non-targeted metabolomics was performed with UPLC-Q-TOF/MS to explore the potential mechanisms of BBB in inhibiting thrombosis. The effects of BBB on bleeding risk and prothrombin time were determined. And molecular docking was used to identify the possible target of BBB. RESULTS: After oral administration, BBB significantly inhibited carrageenan-induced thrombosis in mice without prolonging bleeding time. The results of non-targeted metabolomics showed that oral BBB could regulate 'Phenylalanine, tyrosine and tryptophan biosynthesis' and 'Ubiquinone and other terpenoid-quinone biosynthesis', which is closely related to the vitamin K catalytic cycle. Molecular docking revealed BBB could combine and interact with vitamin K epoxide reductase (VKOR) and γ-Glutamyl carboxylase (GGCX), which was mutually confirmed with the experimental results that oral BBB could significantly prolong prothrombin time. CONCLUSIONS: Integrated metabolomics and molecular docking reveal BBB inhibited thrombosis by regulating the vitamin K catalytic cycle. Our research is helpful in deeply understanding the antithrombotic material basis of oral berberine, and also could provide scientific evidence for developing new antithrombotic drugs based on BBB in the future.


Asunto(s)
Berberina , Trombosis , Animales , Ratones , Vitamina K/metabolismo , Simulación del Acoplamiento Molecular , Berberina/farmacología , Berberina/uso terapéutico , Carragenina , Fibrinolíticos/farmacología , Vitamina K Epóxido Reductasas/metabolismo , Proteínas Activadoras de GTPasa
13.
Ecotoxicol Environ Saf ; 243: 113971, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35981482

RESUMEN

Anticoagulant rodenticides have been widely used to eliminate wild rodents, which as invasive species on remote islands can disturb ecosystems. Since rodenticides can cause wildlife poisoning, it is necessary to evaluate the sensitivity of local mammals and birds to the poisons to ensure the rodenticides are used effectively. The Bonin Islands are an archipelago located 1000 km southeast of the Japanese mainland and are famous for the unique ecosystems. Here the first-generation anticoagulant rodenticide diphacinone has been used against introduced black rats (Rattus rattus). The only land mammal native to the archipelago is the Bonin fruit bat (Pteropus pselaphon), but little is known regarding its sensitivity to rodenticides. In this study, the Egyptian fruit bats (Rousettus aegyptiacus) was used as a model animal for in vivo pharmacokinetics and pharmacodynamics analysis and in vitro enzyme kinetics using their hepatic microsomal fractions. The structure of vitamin K epoxide reductase (VKORC1), the target protein of the rodenticide in the Bonin fruit bat, was predicted from its genome and its binding affinity to rodenticides was evaluated. The Egyptian fruit bats excreted diphacinone slowly and showed similar sensitivity to rats. In contrast, they excreted warfarin, another first-generation rodenticide, faster than rats and recovered from the toxic effect faster. An in silico binding study also indicated that the VKORC1 of fruit bats is relatively tolerant to warfarin, but binds strongly to diphacinone. These results suggest that even chemicals with the same mode of action display different sensitivities in different species: fruit bat species are relatively resistant to warfarin, but vulnerable to diphacinone.


Asunto(s)
Quirópteros , Rodenticidas , Animales , Anticoagulantes/toxicidad , Quirópteros/metabolismo , Ecosistema , Mamíferos/metabolismo , Fenindiona/análogos & derivados , Ratas , Rodenticidas/toxicidad , Toxicocinética , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo , Warfarina/toxicidad
14.
Pest Manag Sci ; 78(6): 2704-2713, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35394111

RESUMEN

BACKGROUND: Some rodent species living in arid areas show elevated physiological tolerance to anti-vitamin K rodenticides (AVKs), which seems to be due to some unknown selective pressures that rodents may experience in desert habitats. Genes involved in the ϒ-carboxylation of blood coagulation, including vitamin K epoxide reductase complex, subunit 1 (Vkorc1), ϒ-glutamyl-carboxylase (Ggcx) and NAD(P)H quinone one dehydrogenase (Nqo1) are associated with anticoagulant resistance, or some levels of elevated tolerance, in rodents. To detect whether the DNA sequences of the three genes are also under natural selection in the desert rodent species, we analyzed the Vkorc1, Ggcx and Nqo1 genes of the desert rodents and compared them with other rodent species. RESULTS: We found an accelerated evolutionary rate in Vkorc1 of desert rodents, especially in Mus spretus, Nannospalax galili and Psammomys obesus. By contrast, signals of positive selection were absent for Ggcx and Nqo1 in all species. Mapping the amino acid variations on the VKORC1 protein three-dimensional model suggested most interspecific amino acid variations occur on the outer surface of the VKORC1 pocket, whereas most intraspecific amino acid changes and known AVK resistance mutations occurred on the inner surface and endoplasmic reticulum luminal loop regions. Some desert-species-specific amino acid variations were found on the positions where known resistance mutations occurred, indicating these variations might be related to the elevated physical tolerance to AVKs in desert rodents. CONCLUSION: The evolution of Vkorc1 has been accelerated in some desert rodent species, indicating genetic preadaptation to anticoagulant rodenticides. Positive selection and relaxed selection have been detected in Psammomys obesus and Nannospalax galili, indicating the two rodent species might also show tolerance to AVKs, which needs further verification. © 2022 Society of Chemical Industry.


Asunto(s)
Rodenticidas , Aminoácidos , Animales , Anticoagulantes/farmacología , Proteínas de la Membrana/genética , Ratones , Roedores/genética , Rodenticidas/farmacología , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo
15.
Biochem Cell Biol ; 100(2): 152-161, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35007172

RESUMEN

Vitamin K epoxide reductase (VKOR) activity is catalyzed by the VKORC1 enzyme. It is a target of vitamin K antagonists (VKA). Numerous mutations of VKORC1 have been reported and are suspected to confer resistance to VKA and (or) affect its velocity. Nevertheless, the results of these studies have been conflicting, and the functional characterization of these mutations in the cell system is complex because of the interweaving of VKOR activity in the vitamin K cycle. In this study, a new cellular approach was implemented to evaluate the vitamin K cycle in HEK293 cells. This global approach was based on the vitamin K quinone/vitamin K epoxide (K/KO) balance. In the presence of VKA or when VKORC1 and VKORC1L1 were knocked out, the K/KO balance decreased significantly due to the accumulation of vitamin KO. In contrast, when VKORC1 was overexpressed, the balance remained unchanged, demonstrating the limitation of VKOR activity. This limitation was shown to be due to insufficient expression of the activation partner of VKORC1, as overexpression of protein disulfide isomerase (PDI) overcomes this limitation. This study is the first to demonstrate the functional interaction between VKORC1 and PDI.


Asunto(s)
Proteína Disulfuro Isomerasas , Vitamina K , Anticoagulantes , Células HEK293 , Humanos , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Vitamina K/metabolismo , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo
16.
Pharmacol Rep ; 73(5): 1405-1417, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33811620

RESUMEN

BACKGROUND: Warfarin is the most commonly evaluated drug in pharmacogenetic-guided dosing studies. However, gaps remain regarding the influence of the genetic polymorphisms of CYP2C9, VKORC1, and CYP4F2 on specific pharmacodynamic parameters like the warfarin sensitivity index (WSI), prothrombin time international normalized ratio (PT-INR), and log-INR variability. METHODS: A cross-sectional study was conducted in non-smoking adults receiving warfarin for at least 6 months. Their demographics, diagnoses, warfarin dosing regimen, concomitant drugs, PT-INR, and bleeding episodes were obtained. CYP2C9 (rs1057910-*3 and rs1799853-*2 alleles), CYP4F2 (rs2108622), and VKORC1 (rs9923231) polymorphisms were assessed using real-time polymerase chain reaction. Three genotype groups (I-III) were defined based on the combined genetic polymorphisms of CYP2C9 and VKORC1 from the FDA's recommendations. Key outcome measures included anticoagulation control, time spent in therapeutic range, stable warfarin dose, WSI, log-INR variability, and Warfarin Composite Measure (WCM). RESULTS: The study recruited 236 patients; 75 (31.8%) carried a functional CYP2C9 variant allele, and, 143 (60.6%) had at least one T allele in CYP4F2 and 133 (56.4%) had at least one T allele in VKORC1. Groups' II and III CYP2C9 and VKORC1 genotypes were observed with reduced stable warfarin dose, increased WSI, higher log-INR variability, and increased bleeding risk. The presence of *2 or *3 allele in CYP2C9 was observed with reduced stable warfarin doses akin to the presence of T alleles in VKORC1; however, the doses increased with T alleles in CYP4F2. CONCLUSION: The evaluated genetic polymorphisms significantly influenced all the pharmacodynamic parameters of warfarin. Evaluating CYP2C9, VKORC1, and CYP4F2 genetic polymorphisms prior to warfarin initiation is likely to optimize therapeutic response.


Asunto(s)
Citocromo P-450 CYP2C9/metabolismo , Familia 4 del Citocromo P450/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Vitamina K Epóxido Reductasas/metabolismo , Warfarina/farmacología , Anticoagulantes/farmacocinética , Anticoagulantes/farmacología , Estudios Transversales , Citocromo P-450 CYP2C9/genética , Familia 4 del Citocromo P450/genética , Relación Dosis-Respuesta a Droga , Humanos , Polimorfismo de Nucleótido Simple , Vitamina K Epóxido Reductasas/genética , Warfarina/administración & dosificación , Warfarina/farmacocinética
17.
Angew Chem Int Ed Engl ; 60(16): 8867-8873, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33751812

RESUMEN

A free-radical footprinting approach is described for integral membrane protein (IMP) that extends, significantly, the "fast photochemical oxidation of proteins" (FPOP) platform. This new approach exploits highly hydrophobic perfluoroisopropyl iodide (PFIPI) together with tip sonication to ensure efficient transport into the micelle interior, allowing laser dissociation and footprinting of the transmembrane domains. In contrast to water soluble footprinters, PFIPI footprints both the hydrophobic intramembrane and the hydrophilic extramembrane domains of the IMP vitamin K epoxide reductase (VKOR). The footprinting is fast, giving high coverage for Tyr (100 %) and Trp. The incorporation of the reagent with sonication does not significantly affect VKOR's enzymatic function, and tyrosine iodination does not compromise protease digestion and the subsequent analysis. The locations for the modifications are largely consistent with the corresponding solvent accessibilities, recommending this approach for future membrane protein footprinting.


Asunto(s)
Detergentes/metabolismo , Vitamina K Epóxido Reductasas/metabolismo , Detergentes/química , Radicales Libres/química , Radicales Libres/metabolismo , Micelas , Estructura Molecular , Fotólisis , Sonicación , Vitamina K Epóxido Reductasas/química
18.
PLoS Comput Biol ; 17(3): e1008805, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33730015

RESUMEN

Thrombosis is a recognized complication of Coronavirus disease of 2019 (COVID-19) and is often associated with poor prognosis. There is a well-recognized link between coagulation and inflammation, however, the extent of thrombotic events associated with COVID-19 warrants further investigation. Poly(A) Binding Protein Cytoplasmic 4 (PABPC4), Serine/Cysteine Proteinase Inhibitor Clade G Member 1 (SERPING1) and Vitamin K epOxide Reductase Complex subunit 1 (VKORC1), which are all proteins linked to coagulation, have been shown to interact with SARS proteins. We computationally examined the interaction of these with SARS-CoV-2 proteins and, in the case of VKORC1, we describe its binding to ORF7a in detail. We examined the occurrence of variants of each of these proteins across populations and interrogated their potential contribution to COVID-19 severity. Potential mechanisms, by which some of these variants may contribute to disease, are proposed. Some of these variants are prevalent in minority groups that are disproportionally affected by severe COVID-19. Therefore, we are proposing that further investigation around these variants may lead to better understanding of disease pathogenesis in minority groups and more informed therapeutic approaches.


Asunto(s)
Coagulación Sanguínea , Proteínas Sanguíneas/genética , COVID-19/metabolismo , Proteína Inhibidora del Complemento C1/genética , Proteínas de Unión a Poli(A)/genética , SARS-CoV-2/metabolismo , Vitamina K Epóxido Reductasas/genética , Anticoagulantes/administración & dosificación , Proteínas Sanguíneas/metabolismo , COVID-19/fisiopatología , COVID-19/virología , Proteína Inhibidora del Complemento C1/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Modelos Moleculares , Mutación , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Proteínas Virales/metabolismo , Vitamina K Epóxido Reductasas/metabolismo , Warfarina/administración & dosificación
19.
Plant Physiol ; 186(2): 964-976, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33620491

RESUMEN

In response to changing light quantity and quality, photosynthetic organisms perform state transitions, a process which optimizes photosynthetic yield and mitigates photo-damage. The serine/threonine-protein kinase STN7 phosphorylates the light-harvesting complex of photosystem II (PSII; light-harvesting complex II), which then migrates from PSII to photosystem I (PSI), thereby rebalancing the light excitation energy between the photosystems and restoring the redox poise of the photosynthetic electron transport chain. Two conserved cysteines forming intra- or intermolecular disulfide bonds in the lumenal domain (LD) of STN7 are essential for the kinase activity although it is still unknown how activation of the kinase is regulated. In this study, we show lumen thiol oxidoreductase 1 (LTO1) is co-expressed with STN7 in Arabidopsis (Arabidopsis thaliana) and interacts with the LD of STN7 in vitro and in vivo. LTO1 contains thioredoxin (TRX)-like and vitamin K epoxide reductase domains which are related to the disulfide-bond formation system in bacteria. We further show that the TRX-like domain of LTO1 is able to oxidize the conserved lumenal cysteines of STN7 in vitro. In addition, loss of LTO1 affects the kinase activity of STN7 in Arabidopsis. Based on these results, we propose that LTO1 helps to maintain STN7 in an oxidized active state in state 2 through redox interactions between the lumenal cysteines of STN7 and LTO1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Vitamina K Epóxido Reductasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Oxidación-Reducción , Fosforilación , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Compuestos de Sulfhidrilo/metabolismo , Vitamina K Epóxido Reductasas/genética
20.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466919

RESUMEN

Redox (reduction-oxidation) reactions control many important biological processes in all organisms, both prokaryotes and eukaryotes. This reaction is usually accomplished by canonical disulphide-based pathways involving a donor enzyme that reduces the oxidised cysteine residues of a target protein, resulting in the cleavage of its disulphide bonds. Focusing on human vitamin K epoxide reductase (hVKORC1) as a target and on four redoxins (protein disulphide isomerase (PDI), endoplasmic reticulum oxidoreductase (ERp18), thioredoxin-related transmembrane protein 1 (Tmx1) and thioredoxin-related transmembrane protein 4 (Tmx4)) as the most probable reducers of VKORC1, a comparative in-silico analysis that concentrates on the similarity and divergence of redoxins in their sequence, secondary and tertiary structure, dynamics, intraprotein interactions and composition of the surface exposed to the target is provided. Similarly, hVKORC1 is analysed in its native state, where two pairs of cysteine residues are covalently linked, forming two disulphide bridges, as a target for Trx-fold proteins. Such analysis is used to derive the putative recognition/binding sites on each isolated protein, and PDI is suggested as the most probable hVKORC1 partner. By probing the alternative orientation of PDI with respect to hVKORC1, the functionally related noncovalent complex formed by hVKORC1 and PDI was found, which is proposed to be a first precursor to probe thiol-disulphide exchange reactions between PDI and hVKORC1.


Asunto(s)
Dominios Proteicos , Pliegue de Proteína , Tiorredoxinas/química , Vitamina K Epóxido Reductasas/química , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Oxidación-Reducción , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Homología de Secuencia de Aminoácido , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...