Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.944
Filtrar
1.
Plant Cell Rep ; 43(6): 136, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709311

RESUMEN

KEY MESSAGE: In our study, we discovered a fragment duplication autoregulation mechanism in 'ZS-HY', which may be the reason for the phenotype of red foliage and red flesh in grapes. In grapes, MYBA1 and MYBA2 are the main genetic factors responsible for skin coloration which are located at the color loci on chromosome 2, but the exact genes responsible for color have not been identified in the flesh. We used a new teinturier grape germplasm 'ZhongShan-HongYu' (ZS-HY) which accumulate anthocyanin both in skin and flesh as experimental materials. All tissues of 'ZS-HY' contained cyanidin 3-O-(6″-p-coumaroyl glucoside), and pelargonidins were detected in skin, flesh, and tendril. Through gene expression analysis at different stage of flesh, significant differences in the expression levels of VvMYBA1 were found. Gene amplification analysis showed that the VvMYBA1 promoter is composed of two alleles, VvMYBA1a and 'VvMYBA1c-like'. An insertion of a 408 bp repetitive fragment was detected in the allele 'VvMYBA1c-like'. In this process, we found the 408 bp repetitive fragment was co-segregated with red flesh and foliage phenotype. Our results revealed that the 408 bp fragment replication insertion in promoter of 'VvMYBA1c-like' was the target of its protein, and the number of repeat fragments was related to the increase of trans-activation of VvMYBA1 protein. The activation of promoter by VvMYBA1 was enhanced by the addition of VvMYC1. In addition, VvMYBA1 interacted with VvMYC1 to promote the expression of VvGT1 and VvGST4 genes in 'ZS-HY'. The discovery of this mutation event provides new insights into the regulation of VvMYBA1 on anthocyanin accumulation in red-fleshed grape, which is of great significance for molecular breeding of red-fleshed table grapes.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Fenotipo , Proteínas de Plantas , Regiones Promotoras Genéticas , Factores de Transcripción , Vitis , Vitis/genética , Vitis/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antocianinas/metabolismo , Antocianinas/genética , Pigmentación/genética , Frutas/genética , Frutas/metabolismo , Alelos
2.
Int J Mol Sci ; 25(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38732247

RESUMEN

To explore the impact of shade treatment on grape berries, 'Marselan' grape berries were bagged under different light transmission rates (100% (CK), 75% (A), 50% (B), 25% (C), 0% (D)). It was observed that this treatment delayed the ripening of the grape berries. The individual weight of the grape berries, as well as the content of fructose, glucose, soluble sugars, and organic acids in the berries, was measured at 90, 100, and 125 days after flowering (DAF90, DAF100, DAF125). The results revealed that shading treatment reduced the sugar content in grape berries; the levels of fructose and glucose were higher in the CK treatment compared to the other treatments, and they increased with the duration of the shading treatment. Conversely, the sucrose content exhibited the opposite trend. Additionally, as the weight of the grape berries increased, the content of soluble solids and soluble sugars in the berries also increased, while the titratable acidity decreased. Furthermore, 16 differentially expressed genes (DEGs) were identified in the photosynthesis-antenna protein pathway from the transcriptome sequencing data. Correlation analysis revealed that the expression levels of genes VIT_08s0007g02190 (Lhcb4) and VIT_15s0024g00040 (Lhca3) were positively correlated with sugar content in the berries at DAF100, but negatively correlated at DAF125. qRT-PCR results confirmed the correlation analysis. This indicates that shading grape clusters inhibits the expression of genes in the photosynthesis-antenna protein pathway in the grape berries, leading to a decrease in sugar content. This finding contributes to a deeper understanding of the impact mechanisms of grape cluster shading on berry quality, providing important scientific grounds for improving grape berry quality.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Proteínas de Plantas , Azúcares , Vitis , Vitis/genética , Vitis/metabolismo , Vitis/efectos de la radiación , Frutas/genética , Frutas/metabolismo , Frutas/efectos de la radiación , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Azúcares/metabolismo , Luz
3.
Methods Mol Biol ; 2787: 183-197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656490

RESUMEN

PacBio long-read sequencing is a third-generation technology that generates long reads up to 20 kilobases (kb), unlike short-read sequencing instruments that produce up to 600 bases. Long-read sequencing is particularly advantageous in higher organisms, such as humans and plants, where repetitive regions in the genome are more abundant. The PacBio long-read sequencing uses a single molecule, real-time approach where the SMRT cells contain several zero-mode waveguides (ZMWs). Each ZMW contains a single DNA molecule bound by a DNA polymerase. All ZMWs are flushed with deoxy nucleotides with a fluorophore specific to each nucleotide. As the sequencing proceeds, the detector detects the wavelength of the fluorescence and the nucleotides are read in real-time. This chapter describes the sample and library preparation for PacBio long-read sequencing for grapevine.


Asunto(s)
Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Vitis , Vitis/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , ADN de Plantas/genética , Genoma de Planta
4.
Plant Mol Biol ; 114(3): 38, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605193

RESUMEN

The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.


Asunto(s)
Frutas , Vitis , Frutas/genética , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Perfilación de la Expresión Génica , Pared Celular/metabolismo , Estrés Fisiológico
5.
Mol Biol Rep ; 51(1): 547, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642187

RESUMEN

BACKGROUND: Yeast biosynthesizes fusel alcohols in fermentation through amino acid catabolism via the Ehrlich pathway. ARO8 and ARO9 genes are involved in the first step of the Ehrlich pathway, while ADH2 and ADH5 genes are involved in the last step. In this study, we describe RT-qPCR methods to determine the gene expression level of genes (ARO8, ARO9, ADH2, ADH5) found in Saccharomyces cerevisiae (Sc) and Metschnikowia pulcherrima (Mp) strains growth pasteurized white grape juice. METHODS AND RESULTS: We used RNA extraction and cDNA synthesis protocols. The RT-qPCR efficiency of primer pairs was evaluated by generating a standard curve through serial dilution of yeast-derived cDNA. Method performance criteria were determined for each RT-qPCR assay. Then, we evaluated the gene expression levels of the four genes in all samples. RNA extraction and cDNA synthesis from yeast samples demonstrated the method's capability to generate high-yield, high-purity nucleic acids, supporting further RT-qPCR analysis. The highest normalized gene expression levels of ARO8 and ARO9 were observed in SC1, SC4, and SC5 samples. No significant difference in ADH2 gene expression among Mp strains was observed during the examination of ADH2 and ADH5 genes (p < 0.05). We observed no expression of the ADH5 gene in Mp strains except MP6 strain. The expression of ADH2 and ADH5 genes was higher in Sc strains compared to Mp strains. CONCLUSIONS: The results suggest that the proposed RT-qPCR methods can measure gene expression of ARO8, ARO9, ADH2, and ADH5 in Sc and Mp strains growing in pasteurized white grape juice.


Asunto(s)
Metschnikowia , Saccharomyces cerevisiae , Vitis , Saccharomyces cerevisiae/metabolismo , Vitis/genética , Vitis/metabolismo , ADN Complementario/metabolismo , Transaminasas/genética , Fermentación , ARN/metabolismo
6.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674058

RESUMEN

In this study, we obtained and cloned VvSnRK2.7 by screening transcriptomic data to investigate the function of the grape sucrose non-fermenting kinase 2 (SnRK2) gene under stress conditions. A yeast two-hybrid (Y2H) assay was used to further screen for interaction proteins of VvSnRK2.7. Ultimately, VvSnRK2.7 was heterologously expressed in Arabidopsis thaliana, and the relative conductivity, MDA content, antioxidant enzyme activity, and sugar content of the transgenic plants were determined under drought treatment. In addition, the expression levels of VvSnRK2.7 in Arabidopsis were analyzed. The results showed that the VvSnRK2.7-EGFP fusion protein was mainly located in the cell membrane and nucleus of tobacco leaves. In addition, the VvSnRK2.7 protein had an interactive relationship with the VvbZIP protein during the Y2H assay. The expression levels of VvSnRK2.7 and the antioxidant enzyme activities and sugar contents of the transgenic lines were higher than those of the wild type under drought treatment. Moreover, the relative conductivity and MDA content were lower than those of the wild type. The results indicate that VvSnRK2.7 may activate the enzyme activity of the antioxidant enzyme system, maintain normal cellular physiological metabolism, stabilize the berry sugar metabolism pathway under drought stress, and promote sugar accumulation to improve plant resistance.


Asunto(s)
Arabidopsis , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Vitis , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Vitis/genética , Vitis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Resistencia a la Sequía
7.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674041

RESUMEN

Cold stress adversely impacts grape growth, development, and yield. Therefore, improving the cold tolerance of grape is an urgent task of grape breeding. The Jasmonic acid (JA) pathway responsive gene JAZ plays a key role in plant response to cold stress. However, the role of JAZ in response to low temperatures in grape is unclear. In this study, VvJAZ13 was cloned from the 'Pinot Noir' (Vitis vinefera cv. 'Pinot Noir') grape, and the potential interacting protein of VvJAZ13 was screened by yeast two-hybrid (Y2H). The function of VvJAZ13 under low temperature stress was verified by genetic transformation. Subcellular localization showed that the gene was mainly expressed in cytoplasm and the nucleus. Y2H indicated that VvF-box, VvTIFY5A, VvTIFY9, Vvbch1, and VvAGD13 may be potential interacting proteins of VvJAZ13. The results of transient transformation of grape leaves showed that VvJAZ13 improved photosynthetic capacity and reduced cell damage by increasing maximum photosynthetic efficiency of photosystem II (Fv/Fm), reducing relative electrolyte leakage (REL) and malondialdehyde (MDA), and increasing proline content in overexpressed lines (OEs), which played an active role in cold resistance. Through the overexpression of VvJAZ13 in Arabidopsis thaliana and grape calli, the results showed that compared with wild type (WT), transgenic lines had higher antioxidant enzyme activity and proline content, lower REL, MDA, and hydrogen peroxide (H2O2) content, and an improved ability of scavenging reactive oxygen species. In addition, the expression levels of CBF1-2 and ICE1 genes related to cold response were up-regulated in transgenic lines. To sum up, VvJAZ13 is actively involved in the cold tolerance of Arabidopsis and grape, and has the potential to be a candidate gene for improving plant cold tolerance.


Asunto(s)
Arabidopsis , Respuesta al Choque por Frío , Proteínas de Plantas , Vitis , Arabidopsis/genética , Arabidopsis/metabolismo , Frío , Respuesta al Choque por Frío/genética , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Vitis/genética , Vitis/metabolismo
8.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612463

RESUMEN

Vitis vinifera L. possesses high economic value, but its growth and yield are seriously affected by salt stress. Though melatonin (MT) has been widely reported to enhance tolerance towards abiotic stresses in plants, the regulatory role melatonin plays in resisting salt tolerance in grapevines has scarcely been studied. Here, we observed the phenotypes under the treatment of different melatonin concentrations, and then transcriptome and metabolome analyses were performed. A total of 457 metabolites were detected in CK- and MT-treated cell cultures at 1 WAT (week after treatment) and 4 WATs. Exogenous melatonin treatment significantly increased the endogenous melatonin content while down-regulating the flavonoid content. To be specific, the melatonin content was obviously up-regulated, while the contents of more than a dozen flavonoids were down-regulated. Auxin response genes and melatonin synthesis-related genes were regulated by the exogenous melatonin treatment. WGCNA (weighted gene coexpression network analysis) identified key salt-responsive genes; they were directly or indirectly involved in melatonin synthesis and auxin response. The synergistic effect of salt and melatonin treatment was investigated by transcriptome analysis, providing additional evidence for the stress-alleviating properties of melatonin through auxin-related pathways. The present study explored the impact of exogenous melatonin on grapevines' ability to adapt to salt stress and provided novel insights into enhancing their tolerance to salt stress.


Asunto(s)
Melatonina , Vitis , Tolerancia a la Sal/genética , Melatonina/farmacología , Vitis/genética , Metaboloma , Perfilación de la Expresión Génica , Flavonoides , Ácidos Indolacéticos
9.
BMC Plant Biol ; 24(1): 283, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627633

RESUMEN

BACKGROUND: Bud sports occur spontaneously in plants when new growth exhibits a distinct phenotype from the rest of the parent plant. The Witch's Broom bud sport occurs occasionally in various grapevine (Vitis vinifera) varieties and displays a suite of developmental defects, including dwarf features and reduced fertility. While it is highly detrimental for grapevine growers, it also serves as a useful tool for studying grapevine development. We used the Witch's Broom bud sport in grapevine to understand the developmental trajectories of the bud sports, as well as the potential genetic basis. We analyzed the phenotypes of two independent cases of the Witch's Broom bud sport, in the Dakapo and Merlot varieties of grapevine, alongside wild type counterparts. To do so, we quantified various shoot traits, performed 3D X-ray Computed Tomography on dormant buds, and landmarked leaves from the samples. We also performed Illumina and Oxford Nanopore sequencing on the samples and called genetic variants using these sequencing datasets. RESULTS: The Dakapo and Merlot cases of Witch's Broom displayed severe developmental defects, with no fruit/clusters formed and dwarf vegetative features. However, the Dakapo and Merlot cases of Witch's Broom studied were also phenotypically different from one another, with distinct differences in bud and leaf development. We identified 968-974 unique genetic mutations in our two Witch's Broom cases that are potential causal variants of the bud sports. Examining gene function and validating these genetic candidates through PCR and Sanger-sequencing revealed one strong candidate mutation in Merlot Witch's Broom impacting the gene GSVIVG01008260001. CONCLUSIONS: The Witch's Broom bud sports in both varieties studied had dwarf phenotypes, but the two instances studied were also vastly different from one another and likely have distinct genetic bases. Future work on Witch's Broom bud sports in grapevine could provide more insight into development and the genetic pathways involved in grapevine.


Asunto(s)
Hojas de la Planta , Vitis , Vitis/genética , Regulación de la Expresión Génica de las Plantas
10.
Theor Appl Genet ; 137(4): 95, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582777

RESUMEN

Grapevine (Vitis vinifera L.) is an economically important fruit crop cultivated worldwide. In China, grapevine cultivation is very extensive, and a few Vitis grapes have excellent pathogen and stress resistance, but the molecular mechanisms underlying the grapevine response to stress remain unclear. In this study, a microRNA (miRNA; miR827a), which negatively regulates its target gene VqMYB14, a key regulatory role in the synthesis of stilbenes, was identified in Vitis quinquangularis (V. quinquangularis) using transcriptome sequencing. Using overexpression and silencing approaches, we found that miR827a regulates the synthesis of stilbenes by targeting VqMYB14. We used flagellin N-terminal 22-amino-acid peptide (flg22), the representative elicitor in plant basal immunity, as the elicitor to verify whether miR827a is involved in the basal immunity of V. quinquangularis. Furthermore, the promoter activity of miR827a was alleviated in transgenic grape protoplasts and Arabidopsis thaliana following treatment with flg22 and Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000), respectively. In addition, yeast one-hybrid and dual luciferase reporter assay revealed that the ethylene transcription factor VqERF057 acted as a key regulator in the inhibition of miR827a transcription. These results will contribute to the understanding of the biological functions of miR827a in grapevine and clarify the molecular mechanism of the interaction between miR827a and VqMYB14.


Asunto(s)
Arabidopsis , Estilbenos , Vitis , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inmunidad de la Planta/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Vitis/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética
11.
BMC Plant Biol ; 24(1): 327, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658826

RESUMEN

Oomycetes are filamentous organisms that resemble fungi in terms of morphology and life cycle, primarily due to convergent evolution. The success of pathogenic oomycetes lies in their ability to adapt and overcome host resistance, occasionally transitioning to new hosts. During plant infection, these organisms secrete effector proteins and other compounds during plant infection, as a molecular arsenal that contributes to their pathogenic success. Genomic sequencing, transcriptomic analysis, and proteomic studies have revealed highly diverse effector repertoires among different oomycete pathogens, highlighting their adaptability and evolution potential.The obligate biotrophic oomycete Plasmopara viticola affects grapevine plants (Vitis vinifera L.) causing the downy mildew disease, with significant economic impact. This disease is devastating in Europe, leading to substantial production losses. Even though Plasmopara viticola is a well-known pathogen, to date there are scarce reviews summarising pathogenicity, virulence, the genetics and molecular mechanisms of interaction with grapevine.This review aims to explore the current knowledge of the infection strategy, lifecycle, effector molecules, and pathogenicity of Plasmopara viticola. The recent sequencing of the Plasmopara viticola genome has provided new insights into understanding the infection strategies employed by this pathogen. Additionally, we will highlight the contributions of omics technologies in unravelling the ongoing evolution of this oomycete, including the first in-plant proteome analysis of the pathogen.


Asunto(s)
Oomicetos , Enfermedades de las Plantas , Vitis , Oomicetos/patogenicidad , Oomicetos/fisiología , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Vitis/genética , Virulencia , Evolución Biológica , Interacciones Huésped-Patógeno
12.
Plant Physiol Biochem ; 210: 108543, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554534

RESUMEN

Gibberellin A3 (GA3) is often used as a principal growth regulator to increase plant size. Here, we applied Tween-20 (2%)-formulated GA3 (T1:40 mg/L; T2:70 mg/L) by dipping the clusters at the initial expansion phase of 'Red Globe' grape (Vitis vinifera L.) in 2018 and 2019. Tween-20 (2%) was used as a control. The results showed that GA3 significantly increased fruit cell length, cell size, diameter, and volume. The hormone levels of auxin (IAA) and zeatin (ZT) were significantly increased at 2 h (0 d) -1 d after application (DAA0-1) and remained significantly higher at DAA1 until maturity. Conversely, ABA exhibited an opposite trend. The mRNA and non-coding sequencing results yielded 436 differentially expressed mRNA (DE_mRNAs), 79 DE_lncRNAs and 17 DE_miRNAs. These genes are linked to hormone pathways like cysteine and methionine metabolism (ko00270), glutathione metabolism (ko00480) and plant hormone signal transduction (ko04075). GA3 application reduced expression of insensitive dwarf 2 (GID2, VIT_07s0129g01000), small auxin-upregulated RNA (SAUR, VIT_08s0007g03120) and 1-aminocyclopropane-1-carboxylate synthase (ACS, VIT_18s0001g08520), but increased SAUR (VIT_04s0023g00560) expression. These four genes were predicted to be negatively regulated by vvi-miR156, vvi-miR172, vvi-miR396, and vvi-miR159, corresponding to specific lncRNAs. Therefore, miRNAs could affect grape size by regulating key genes GID2, ACS and SAUR. The R2R3 MYB family member VvRAX2 (VIT_08s0007g05030) was upregulated in response to GA3 application. Overexpression of VvRAX2 in tomato transgenic lines increased fruit size in contrast to the wild type. This study provides a basis and genetic resources for elucidating the novel role of ncRNAs in fruit development.


Asunto(s)
Frutas , Giberelinas , Reguladores del Crecimiento de las Plantas , Vitis , Vitis/genética , Vitis/metabolismo , Vitis/efectos de los fármacos , Vitis/crecimiento & desarrollo , Giberelinas/metabolismo , Giberelinas/farmacología , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Frutas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Planta ; 259(5): 99, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38522063

RESUMEN

MAIN CONCLUSION: Six grape centromere-specific markers for cytogenetics were mined by combining genetic and immunological assays, and the possible evolution mechanism of centromeric repeats was analyzed. Centromeric histone proteins are functionally conserved; however, centromeric repetitive DNA sequences may represent considerable diversity in related species. Therefore, studying the characteristics and structure of grape centromere repeat sequences contributes to a deeper understanding of the evolutionary process of grape plants, including their origin and mechanisms of polyploidization. Plant centromeric regions are mainly composed of repetitive sequences, including SatDNA and transposable elements (TE). In this research, the characterization of centromere sequences in the whole genome of grapevine (Vitis vinifera L.) has been conducted. Five centromeric tandem repeat sequences (Vv1, Vv2, Vv5, Vv6, and Vv8) and one long terminal repeat (LTR) sequence Vv24 were isolated. These sequences had different centromeric distributions, which indicates that grape centromeric sequences may undergo rapid evolution. The existence of extrachromosomal circular DNA (eccDNA) and gene expression in CenH3 subdomain region may provide various potential mechanisms for the generation of new centromeric regions.


Asunto(s)
Vitis , Vitis/genética , Centrómero/genética , Citoplasma , Elementos Transponibles de ADN/genética , Histonas
15.
BMC Plant Biol ; 24(1): 218, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532351

RESUMEN

BACKGROUND: In viticulture, iron (Fe) chlorosis is a common abiotic stress that impairs plant development and leads to yield and quality losses. Under low availability of the metal, the applied N form (nitrate and ammonium) can play a role in promoting or mitigating Fe deficiency stresses. However, the processes involved are not clear in grapevine. Therefore, the aim of this study was to investigate the response of two grapevine rootstocks to the interaction between N forms and Fe uptake. This process was evaluated in a hydroponic experiment using two ungrafted grapevine rootstocks Fercal (Vitis berlandieri x V. vinifera) tolerant to deficiency induced Fe chlorosis and Couderc 3309 (V. riparia x V. rupestris) susceptible to deficiency induced Fe chlorosis. RESULTS: The results could differentiate Fe deficiency effects, N-forms effects, and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309 C from the second week of treatment with NO3-/NH4+ (1:0)/-Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding to decreased chlorophyll concentrations lowered by 75% in 3309 C and 57% in Fercal. Ferric chelate reductase (FCR) activity was by trend enhanced under Fe deficiency in Fercal with both N combinations, whereas 3309 C showed an increase in FCR activity under Fe deficiency only with NO3-/NH4+ (1:1) treatment. With the transcriptome analysis, Gene Ontology (GO) revealed multiple biological processes and molecular functions that were significantly regulated in grapevine rootstocks under Fe-deficient conditions, with more genes regulated in Fercal responses, especially when both forms of N were supplied. Furthermore, the expression of genes involved in the auxin and abscisic acid metabolic pathways was markedly increased by the equal supply of both forms of N under Fe deficiency conditions. In addition, changes in the expression of genes related to Fe uptake, regulation, and transport reflected the different responses of the two grapevine rootstocks to different N forms. CONCLUSIONS: Results show a clear contribution of N forms to the response of the two grapevine rootstocks under Fe deficiency, highlighting the importance of providing both N forms (nitrate and ammonium) in an appropriate ratio in order to ease the rootstock responses to Fe deficiency.


Asunto(s)
Compuestos de Amonio , Anemia Hipocrómica , Deficiencias de Hierro , Vitis , Nitrógeno/metabolismo , Nitratos/metabolismo , Anemia Hipocrómica/metabolismo , Vitis/genética , Compuestos de Amonio/metabolismo , Raíces de Plantas/metabolismo
16.
PLoS Genet ; 20(3): e1011223, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38517929

RESUMEN

Cultural exchange of fermentation techniques has driven the spread of Saccharomyces cerevisiae across the globe, establishing natural populations in many countries. Despite this, Oceania is thought to lack native populations of S. cerevisiae, only being introduced after colonisation. Here we investigate the genomic landscape of 411 S. cerevisiae isolated from spontaneous grape fermentations in Australia across multiple locations, years, and grape cultivars. Spontaneous fermentations contained highly recombined mosaic strains that exhibited high levels of genome instability. Assigning genomic windows to putative ancestral origin revealed that few closely related starter lineages have come to dominate the genetic landscape, contributing most of the genetic variation. Fine-scale phylogenetic analysis of loci not observed in strains of commercial wine origin identified widespread admixture with European derived beer yeast along with three independent admixture events from potentially endemic Oceanic lineages that was associated with genome instability. Finally, we investigated Australian ecological niches for basal isolates, identifying phylogenetically distinct S. cerevisiae of non-European, non-domesticated origin associated with admixture loci. Our results illustrate the effect commercial use of microbes may have on local microorganism genetic diversity and demonstrates the presence of non-domesticated, potentially endemic lineages of S. cerevisiae in Australian niches that are actively admixing.


Asunto(s)
Vitis , Vino , Saccharomyces cerevisiae/genética , Vitis/genética , Filogenia , Australia , Vino/análisis , Genómica , Inestabilidad Genómica/genética , Recombinación Genética , Fermentación
17.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474075

RESUMEN

To identify suitable potassium fertilizers for grape (Vitis vinifera L.) production and study their mechanism of action, the effects of four potassium-containing fertilizers (complex fertilizer, potassium nitrate, potassium sulfate, and potassium dihydrogen phosphate) on sugar and organic acid metabolism in grape fruits were investigated. Potassium-containing fertilizers increased the activity of sugar and organic acid metabolism-related enzymes at all stages of grape fruit development. During the later stages of fruit development, potassium-containing fertilizers increased the total soluble solid content and the sugar content of the different sugar fractions and decreased the titratable acid content and organic acid content of the different organic acid fractions. At the ripening stage of grape fruit, compared with the control, complex fertilizer, potassium nitrate, potassium sulfate, and potassium dihydrogen phosphate increased the total soluble solid content by 1.5, 1.2, 3.5, and 3.4 percentage points, decreased the titratable acid content by 0.09, 0.06, 0.18, and 0.17 percentage points, respectively, and also increased the total potassium content in grape fruits to a certain degree. Transcriptome analysis of the differentially expressed genes (DEGs) in the berries showed that applying potassium-containing fertilizers enriched the genes in pathways involved in fruit quality, namely, carbon metabolism, carbon fixation in photosynthetic organisms, glycolysis and gluconeogenesis, and fructose and mannose metabolism. Potassium-containing fertilizers affected the expression levels of genes regulating sugar metabolism and potassium ion uptake and transport. Overall, potassium-containing fertilizers can promote sugar accumulation and reduce acid accumulation in grape fruits, and potassium sulfate and potassium dihydrogen phosphate had the best effects among the fertilizers tested.


Asunto(s)
Nitratos , Fosfatos , Compuestos de Potasio , Sulfatos , Vitis , Vitis/genética , Azúcares/metabolismo , Frutas/metabolismo , Fertilizantes , Potasio/metabolismo , Carbohidratos
18.
Tree Physiol ; 44(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38501881

RESUMEN

Grapevine leafroll disease is a viral disease that affects grapevines (Vitis vinifera L.) and has a severe economic impact on viticulture. In this study, the effect of grapevine leafroll-associated viruses (GLRaV) on berry quality was investigated in clones of cultivar cv. Crimson Seedless table grapes infected with GLRaV. RT-PCR confirmed the identity of the clones: clone 3236, infected only with GLRaV-3 (termed single); clone 3215, infected with GLRaV-3, GLRaV-4 strain 9 and grapevine virus A (termed mixed); and a viral free clone of the same genetic background of the infected clones (termed control). The berry quality indices of size, sugar, acidity and anthocyanin content were measured at harvest maturity. RT-qPCR was used to determine the viral load. The study was repeated over 2 year. A two-way, multivariate analysis of variance was applied with clone and year as independent variables and the measured berry quality parameters as a dependent variable. All dependent variables were significantly affected by viral infection (Wilks, λ, (2,33) = 0.033895, P-value <0.001), while only titratable acidity was affected by year. The average berry dry mass decreased (P-value <0.001). The water content of both infected clones was greater than that of the control (P-value <0.001). Both infected clones displayed reduced sugar content as a fraction of the berry dry mass (P-value <0.001). The anthocyanin and the phenol content of the infected clones were significantly reduced compared with the control clone (P < 0.001, P < 0.05, clone 3236 and clone 3215, respectively). Finally, the viral load was highly variable, and no quantitative relationship between viral load and berry composition was found.


Asunto(s)
Closteroviridae , Frutas , Enfermedades de las Plantas , Carga Viral , Vitis , Vitis/virología , Vitis/crecimiento & desarrollo , Vitis/genética , Frutas/virología , Frutas/crecimiento & desarrollo , Closteroviridae/fisiología , Closteroviridae/genética , Enfermedades de las Plantas/virología , Antocianinas/metabolismo , Antocianinas/análisis
20.
Genomics ; 116(2): 110810, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38402913

RESUMEN

This study generated whole genome DNA methylation maps to characterize DNA methylomes of grape (cv. 'Cabernet Franc') skins and examine their functional significance during grape skin coloration. We sampled grape skin tissues at three key stages (the early stage of grape berry swelling, the late stage of grape berry swelling and the veraison) during which the color of grape berries changed from green to red. DNA methylation levels of grape skins at the three stages were higher in transposable element regions than in the genic regions, and the CG and CHG DNA methylation levels of the genic region were higher than the CHH DNA methylation levels. We identified differentially methylated regions (DMRs) in S2_vs_S1 and S3_vs_S1. The results indicated that DMRs predominantly occurred within the CHH context during grape skin coloration. Many gene ontology (GO)-enriched DMR-related genes were involved in "nucleotide binding," "catalytic activity" and "ribonucleotide binding" terms; however, many KEGG-enriched DMR-related genes were involved in the "flavonoid biosynthesis" pathway. Our results could provide an important foundation for future research on the development mechanism of grape berries.


Asunto(s)
Vitis , Vitis/genética , Metilación de ADN , Frutas , Genes de Plantas , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...