Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 957
Filtrar
1.
J Orthop Surg Res ; 19(1): 294, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745231

RESUMEN

BACKGROUND: Osteonecrosis of the femoral head caused by glucocorticoids (GIONFH) is a significant issue resulting from prolonged or excessive clinical glucocorticoid use. Astaxanthin, an orange-red carotenoid present in marine organisms, has been the focus of this study to explore its impact and mechanism on osteoblast apoptosis induced by dexamethasone (Dex) and GIONFH. METHODS: In this experiment, bioinformatic prediction, molecular docking and dynamics simulation, cytotoxicity assay, osteogenic differentiation, qRT-PCR analysis, terminal uridine nickend labeling (TUNEL) assay, determination of intracellular ROS, mitochondrial function assay, immunofluorescence, GIONFH rat model construction, micro-computed tomography (micro-CT) scans were performed. RESULTS: Our research demonstrated that a low dose of astaxanthin was non-toxic to healthy osteoblasts and restored the osteogenic function of Dex-treated osteoblasts by reducing oxidative stress, mitochondrial dysfunction, and apoptosis. Furthermore, astaxanthin rescued the dysfunction in poor bone quality, bone metabolism and angiogenesis of GIONFH rats. The mechanism behind this involves astaxanthin counteracting Dex-induced osteogenic damage by activating the Nrf2 pathway. CONCLUSION: Astaxanthin shields osteoblasts from glucocorticoid-induced oxidative stress and mitochondrial dysfunction via Nrf2 pathway activation, making it a potential therapeutic agent for GIONFH treatment.


Asunto(s)
Necrosis de la Cabeza Femoral , Glucocorticoides , Mitocondrias , Factor 2 Relacionado con NF-E2 , Osteoblastos , Osteogénesis , Estrés Oxidativo , Xantófilas , Animales , Xantófilas/farmacología , Estrés Oxidativo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Glucocorticoides/efectos adversos , Glucocorticoides/toxicidad , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/metabolismo , Osteogénesis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Masculino , Dexametasona/farmacología , Dexametasona/efectos adversos , Ratas Sprague-Dawley , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad
2.
J Oleo Sci ; 73(5): 729-742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692895

RESUMEN

Astaxanthin is a keto-based carotenoid mainly obtained from marine organisms, like Haematococcus pluvialis (H. pluvialis). Previous studies indicated the protective effects of Astaxanthin and H. pluvialis on aging related oxidative injury in liver, while the potential mechanisms are largely unknown. In addition, H. pluvialis residue is a by-product after astaxanthin extraction, which is rarely studied and utilized. The present study aimed to compare the effects of astaxanthin, H. pluvialis and H. pluvialis residue on the oxidant injury of liver in D-galactose-induced aging mice and explore the potential mechanisms through gut-liver axis. The results showed that all the three supplements prevented D-galactose-induced tissue injury, oxidative stress and chronic inflammation in liver and improved liver function. Gut microbiota analysis indicated that astaxanthin notably increased fecal levels of Bacteroidetes, unclassified_f__ Lachnospiraceae, norank_f__Lachnospiraceae, norank_f__norank_o__Clostridia_UCG-014, Prevotellaceae_ UCG-001, unclassified_f__Prevotellaceae in D-galactose-fed mice (p < 0.05). Compared to aging mice, H. pluvialis group had higher fecal levels of norank_f__Lachnospiraceae and Lachnospiraceae_UCG-006 (p < 0.05). H. pluvialis residue group displayed higher relative levels of Bacteroidetes, Streptococcus, and Rikenellaceae_RC9_gut_group (p < 0.05). Moreover, the production of fecal microbial metabolites, like SCFAs and LPS was also differently restored by the three supplements. Overall, our results suggest astaxanthin, H. pluvialis and H. pluvialis residue could prevent aging related hepatic injury through gutliver axis and provide evidence for exploiting of H. pluvialis residue as a functional ingredient for the treatment of liver diseases. Future studies are needed to further clarify the effect and mechanism of dominant components of H. pluvialis residue on liver injury, which is expected to provide a reference for the high-value utilization of H. pluvialis resources.


Asunto(s)
Envejecimiento , Galactosa , Microbioma Gastrointestinal , Hígado , Estrés Oxidativo , Xantófilas , Animales , Masculino , Ratones , Envejecimiento/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Suplementos Dietéticos , Galactosa/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Xantófilas/farmacología , Xantófilas/aislamiento & purificación
3.
Neurosciences (Riyadh) ; 29(2): 103-112, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38740397

RESUMEN

OBJECTIVES: To investigate the fundamental mechanisms of the neuroprotective impact of Astaxanthin (AST) in a mouse model of Alzheimer's disease (AD) induced by scopolamine. METHODS: This research constituted an in vivo animal study encompassing 36 adult male mice, divided into 6 groups: Control, 100 mg/kg AST, 2 mg/kg scopolamine (AD group), 100 mg/kg AST+2 mg/kg scopolamine, 3 mg/kg galantamine+2 mg/kg scopolamine, and 100 mg/kg AST+3 mg/kg galantamine+2 mg/kg scopolamine. After 14 days, the mice's short-term memory, hippocampus tissue, oxidative and inflammatory markers were evaluated. RESULTS: The AST demonstrated a beneficial influence on short-term memory and a reduction in acetylcholinesterase activity in the brain. It exhibited neuroprotective and anti-amyloidogenic properties, significantly decreased pro-inflammatory markers and oxidative stress, and reversed the decline of the Akt-1 and phosphorylated Akt pathway, a crucial regulator of abnormal tau. Furthermore, AST enhanced the effect of galantamine in reducing inflammation and oxidative stress. CONCLUSION: The findings indicate that AST may offer therapeutic benefits against cognitive dysfunction in AD. This is attributed to its ability to reduce oxidative stress, control neuroinflammation, and enhance Akt-1 and pAkt levels, thereby underscoring its potential in AD treatment strategies.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Fármacos Neuroprotectores , Estrés Oxidativo , Escopolamina , Xantófilas , Animales , Xantófilas/farmacología , Xantófilas/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Masculino , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Acetilcolinesterasa/metabolismo , Galantamina/farmacología , Galantamina/uso terapéutico , Memoria a Corto Plazo/efectos de los fármacos
4.
Rev Int Androl ; 22(1): 29-37, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38735875

RESUMEN

A significant clinical condition known as testicular torsion leads to permanent ischemic damage to the testicular tissue and consequent loss of function in the testicles. In this study, it was aimed to evaluate the protective effects of Astaxanthin (ASTX) on testicular damage in rats with testicular torsion/detorsion in the light of biochemical and histopathological data. Spraque Dawley rats of 21 were randomly divided into three groups; sham, testicular torsion/detorsion (TTD) and astaxanthin + testicular torsion/detorsion (ASTX + TTD). TTD and ASTX + TTD groups underwent testicular torsion for 2 hours and then detorsion for 4 hours. Rats in the ASTX + TTD group were given 1 mg/kg/day astaxanthin by oral gavage for 7 days before torsion. Following the detorsion process, oxidative stress parameters and histopathological changes in testicular tissue were evaluated. Malondialdehyde (MDA) and total oxidant status (TOS) levels were significantly decreased in the ASTX group compared to the TTD group, while superoxide dismutase (SOD), glutathione (GSH) and total antioxidant status (TAS) levels were increased (p < 0.05). Moreover, histopathological changes were significantly reduced in the group given ASTX (p < 0.0001). It was determined that ASTX administration increased Beclin-1 immunoreactivity in ischemic testicular tissue, while decreasing caspase-3 immunoreactivity (p < 0.0001). Our study is the first to investigate the antiautophagic and antiapoptotic properties of astaxanthin after testicular torsion/detorsion based on the close relationship of Beclin-1 and caspase-3 in ischemic tissues. Our results clearly demonstrate the protective effects of ASTX against ischemic damage in testicular tissue. In ischemic testicular tissue, ASTX contributes to the survival of cells by inducing autophagy and inhibiting the apoptosis.


Asunto(s)
Antioxidantes , Autofagia , Estrés Oxidativo , Ratas Sprague-Dawley , Torsión del Cordón Espermático , Testículo , Xantófilas , Masculino , Animales , Xantófilas/farmacología , Xantófilas/administración & dosificación , Autofagia/efectos de los fármacos , Ratas , Testículo/efectos de los fármacos , Testículo/patología , Testículo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/administración & dosificación , Apoptosis/efectos de los fármacos , Malondialdehído/metabolismo , Distribución Aleatoria , Daño por Reperfusión/prevención & control , Superóxido Dismutasa/metabolismo , Glutatión/metabolismo
5.
Vet Med Sci ; 10(3): e1461, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38648257

RESUMEN

BACKGROUND: Astaxanthin is the most prevalent carotenoid in the marine environment and is widely used as an additive in formulated aquafeeds. OBJECTIVES: A 60-day feeding trial was conducted to consider the effect of dietary nanoliposome-coated astaxanthin (NA) on haematological parameters, serum antioxidant activities and immune responses of rainbow trout, Oncorhynchus mykiss. METHODS: A total of 450 healthy fish weighing 31.00 ± 2.09 g were randomly assigned in triplicate (30 fish per replicate) to 5 dietary treatments: 0 (control), 25.00, 50.00, 75.00, and 100.00 mg kg-1 NA. RESULTS: Fish fed the diet supplemented with 50.00 mg kg-1 NA exhibited the highest values of red blood cells, white blood cells, haemoglobin and haematocrit of 1.64 ± 0.01 × 106 mm-3, 5.54 ± 0.21 × 103 mm-3, 8.73 ± 0.24 g dL-1 and 46.67% ± 0.88%, respectively, which were significantly higher than those fed the basal diet (p < 0.05). The lowest and highest percentages of lymphocytes (67.67% ± 0.33%) and neutrophils (27.33% ± 1.20%) were also obtained in fish fed 50.00 mg kg-1 NA compared to those fed the basal diet (p < 0.05). Fish receiving diet supplemented with 50.00 mg kg-1 NA revealed the highest serum activity in superoxide dismutase, catalase, glutathione peroxidase, lysozyme and alternative complement and the lowest level of total cholesterol, cortisol, aspartate aminotransferase and alanine aminotransferase than fish receiving the basal diet (p < 0.05). Serum immunoglobulin (Ig) and ACH50 contents significantly increased with increasing dietary NA supplementation to the highest values of 43.17 ± 1.46 and 293.33 ± 2.03 U mL-1, respectively, in fish fed diet supplemented with 50 mg kg-1 NA (p < 0.05). CONCLUSIONS: Supplementation of NA in rainbow trout diet at 50 mg kg-1 exhibited a positive effect on haematological parameters, antioxidant capacity and immune responses. Administration of such dosage can enhance rainbow trout immune responses against unfavourable or stressful conditions, for example disease outbreaks, hypoxic condition, thermal stress and sudden osmotic fluctuations, which usually happen in an intensive culture system.


Asunto(s)
Alimentación Animal , Antioxidantes , Dieta , Suplementos Dietéticos , Oncorhynchus mykiss , Xantófilas , Animales , Xantófilas/administración & dosificación , Xantófilas/farmacología , Antioxidantes/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Distribución Aleatoria , Liposomas , Relación Dosis-Respuesta a Droga
6.
J Agric Food Chem ; 72(18): 10391-10405, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38669300

RESUMEN

Metabolic-associated fatty liver disease (MAFLD) is witnessing a global surge; however, it still lacks effective pharmacological interventions. Fucoxanthin, a natural bioactive metabolite derived from marine brown algae, exhibits promising pharmacological functions, particularly in ameliorating metabolic disorders. However, the mechanisms underlying its therapeutic efficacy in addressing MAFLD remain elusive. Our present findings indicated that fucoxanthin significantly alleviated palmitic acid (PA)-induced hepatic lipid deposition in vitro and obesity-induced hepatic steatosis in ob/ob mice. Moreover, at both the protein and transcriptional levels, fucoxanthin effectively increased the expression of PPARα and CPT1 (involved in fatty acid oxidation) and suppressed FASN and SREBP1c (associated with lipogenesis) in both PA-induced HepG2 cells and hepatic tissues in ob/ob mice. This modulation was accompanied by the activation of AMPK. The capacity of fucoxanthin to improve hepatic lipid deposition was significantly attenuated when utilizing the AMPK inhibitor or siRNA-mediated AMPK silencing. Mechanistically, fucoxanthin activates AMPK, subsequently regulating the KEAP1/Nrf2/ARE signaling pathway to exert antioxidative effects and stimulating the PGC1α/NRF1 axis to enhance mitochondrial biogenesis. These collective actions contribute to fucoxanthin's amelioration of hepatic steatosis induced by metabolic perturbations. These findings offer valuable insights into the prospective utilization of fucoxanthin as a therapeutic strategy for managing MAFLD.


Asunto(s)
Hígado , Ratones Endogámicos C57BL , Xantófilas , Xantófilas/farmacología , Animales , Humanos , Ratones , Masculino , Hígado/metabolismo , Hígado/efectos de los fármacos , Células Hep G2 , Metabolismo de los Lípidos/efectos de los fármacos , PPAR alfa/metabolismo , PPAR alfa/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Hígado Graso/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/genética , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/genética , Lipogénesis/efectos de los fármacos , Ratones Obesos
7.
Food Funct ; 15(9): 4805-4817, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38563411

RESUMEN

Fucoxanthin, a carotenoid exclusively derived from algae, exerts its bioactivities with the modulation of the gut microbiota in mice. However, mechanisms through which fucoxanthin regulates the gut microbiota and its derived metabolites/metabolism in humans remain unclear. In this study, we investigated the effects of fucoxanthin on the gut microbiota and metabolism of non-obese individuals using an in vitro simulated digestion-fermentation cascade model. The results showed that about half of the fucoxanthin was not absorbed in the intestine, thus reaching the colon. The gut microbiota from fecal samples underwent significant changes after 48 or 72 hours in vitro fermentation. Specifically, fucoxanthin significantly enhanced the relative abundance of Bacteroidota and Parabacteroides, leading to improved functions of the gut microbiota in its development, glycan biosynthesis and metabolism as well as in improving the digestive system, endocrine system and immune system. The recovery of fucoxanthin during fermentation showed a decreasing trend with the slight bio-conversion of fucoxanthinol. Notably, fucoxanthin supplementation significantly altered metabolites, especially bile acids and indoles in the simulated human gut ecosystem. Correlation analysis indicated the involvement of the gut microbiota in the manipulation of these metabolites by fucoxanthin. Moreover, all these altered metabolites revealed the improvement in the capacity of fucoxanthin in manipulating gut metabolism, especially lipid metabolism. Overall, fucoxanthin determinedly reshaped the gut microbiota and metabolism, implying its potential health benefits in non-obese individuals.


Asunto(s)
Heces , Fermentación , Microbioma Gastrointestinal , Xantófilas , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Xantófilas/metabolismo , Xantófilas/farmacología , Heces/microbiología , Masculino , Adulto , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética
8.
Environ Toxicol ; 39(6): 3356-3366, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38444163

RESUMEN

Melanoma is the most lethal skin malignancy. Fucoxanthin is a marine carotenoid with significant anticancer activities. Intriguingly, Fucoxanthin's impact on human melanoma remains elusive. Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising target in cancer therapy due to its persistent activation in various cancers, including melanoma. Herein, we revealed that Fucoxanthin is cytotoxic to human melanoma cell lines A2758 and A375 while showing limited cytotoxicity to normal human melanocytes. Apoptosis is a primary reason for Fucoxanthin's melanoma cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk drastically abrogated Fucoxanthin-elicited clonogenicity blockage. Besides, Fucoxanthin downregulated tyrosine 705-phosphorylated STAT3 (p-STAT3 (Y705)), either inherently present in melanoma cells or inducible by interleukin 6 (IL-6) stimulation. Notably, ectopic expression of STAT3-C, a dominant-active STAT3 mutant, abolished Fucoxanthin-elicited melanoma cell apoptosis and clonogenicity inhibition, supporting the pivotal role of STAT3 blockage in Fucoxanthin's melanoma cytotoxicity. Moreover, Fucoxanthin lowered BCL-xL levels by blocking STAT3 activation, while ectopic BCL-xL expression rescued melanoma cells from Fucoxanthin-induced killing. Lastly, Fucoxanthin was found to diminish the levels of JAK2 with dual phosphorylation at tyrosine residues 1007 and 1008 in melanoma cells, suggesting that Fucoxanthin impairs STAT3 signaling by blocking JAK2 activation. Collectively, we present the first evidence that Fucoxanthin is cytotoxic selectively against human melanoma cells while sparing normal melanocytes. Mechanistically, Fucoxanthin targets the JAK2/STAT3/BCL-xL antiapoptotic axis to provoke melanoma cell death. This discovery implicates the potential application of Fucoxanthin as a chemopreventive or therapeutic strategy for melanoma management.


Asunto(s)
Apoptosis , Janus Quinasa 2 , Melanoma , Factor de Transcripción STAT3 , Transducción de Señal , Xantófilas , Proteína bcl-X , Humanos , Xantófilas/farmacología , Factor de Transcripción STAT3/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Janus Quinasa 2/metabolismo , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proteína bcl-X/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/toxicidad
9.
Nutrients ; 16(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542737

RESUMEN

Oxidative stress is a key contributing factor in neurodegeneration, cognitive ageing, cognitive decline, and diminished cognitive longevity. Issues stemming from oxidative stress both in relation to cognition and other areas, such as inflammation, skin health, eye health, and general recovery, have been shown to benefit greatly from antioxidant use. Astaxanthin is a potent antioxidant, which has been outlined to be beneficial for cognitive function both in vitro and in vivo. Given the aforementioned promising effects, research into astaxanthin with a focus on cognitive function has recently been extended to human tissue and human populations. The present critical review explores the effects of astaxanthin on cognitive function and neurodegeneration within human populations and samples with the aim of deciphering the merit and credibility of the research findings and subsequently their potential as a basis for therapeutic use. Implications, limitations, and areas for future research development are also discussed. Key findings include the positive impacts of astaxanthin in relation to improving cognitive function, facilitating neuroprotection, and slowing neurodegeneration within given contexts.


Asunto(s)
Antioxidantes , Xantófilas , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Xantófilas/farmacología , Xantófilas/uso terapéutico , Estrés Oxidativo , Cognición
10.
Food Funct ; 15(8): 4207-4222, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38512055

RESUMEN

Numerous natural compounds are recognized for their anti-inflammatory properties attributed to antioxidant effects and the modulation of key inflammatory factors. Among them, astaxanthin (AST), a potent carotenoid antioxidant, remains relatively underexplored regarding its anti-inflammatory mechanisms and specific molecular targets. In this study, human monocytic leukemia cell-derived macrophages (THP-1) were selected as experimental cells, and lipopolysaccharides (LPS) served as inflammatory stimuli. Upon LPS treatment, the oxidative stress was significantly increased, accompanied by remarkable cellular damage. Moreover, LPSs escalated the expression of inflammation-related molecules. Our results demonstrate that AST intervention could effectively alleviate LPS-induced oxidative stress, facilitate cellular repair, and significantly attenuate inflammation. Further exploration of the anti-inflammatory mechanism revealed AST could substantially inhibit NF-κB translocation and activation, and mitigate inflammatory factor production by hindering NF-κB through the antioxidant mechanism. We further confirmed that AST exhibited protective effects against cell damage and reduced the injury from inflammatory cytokines by activating p53 and inhibiting STAT3. In addition, utilizing network pharmacology and in silico calculations based on molecular docking, molecular dynamics simulation, we identified interleukin-6 (IL-6) as a prominent core target of AST anti-inflammation, which was further validated by the RNA interference experiment. This IL-6 binding capacity actually enabled AST to curb the positive feedback loop of inflammatory factors, averting the onset of possible inflammatory storms. Therefore, this study offers a new possibility for the application and development of astaxanthin as a popular dietary supplement of anti-inflammatory or immunomodulatory function.


Asunto(s)
Antiinflamatorios , Inflamación , Interleucina-6 , Lipopolisacáridos , Macrófagos , FN-kappa B , Xantófilas , Xantófilas/farmacología , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Antiinflamatorios/farmacología , FN-kappa B/metabolismo , Inflamación/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Células THP-1 , Simulación del Acoplamiento Molecular , Antioxidantes/farmacología
11.
Int Immunopharmacol ; 132: 111928, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38537540

RESUMEN

OBJECTIVE: Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease characterized by inflammation and fibrinoid necrosis of medium and small vessels, and its pathogenesis is closely related to inflammation and oxidative stress. Astaxanthin (ATX) is a carotenoid with anti-inflammatory, antioxidant, and immunomodulatory effects. We hypothesized that ATX could play a role in AAV treatment. This study aimed to investigate whether ATX has a protective effect against AAV and to elucidate its regulatory mechanism. METHODS: In vitro experiments, neutrophils isolated from healthy people were treated with ATX or not and cultured with serum from myeloperoxidase (MPO) -ANCA-positive patients and healthy persons. The levels of IL-6 and TNF-α in neutrophil culture supernatant before and after stimulation were measured. Neutrophil extracellular traps (NETs) and intracellular reactive oxygen species (ROS) in neutrophils were detected after stimulation. In vivo study, experimental autoimmune vasculitis (EAV) rat models were established and then treated with ATX via intragastric administration for 6 consecutive weeks. Urinary erythrocytes, urinary proteins, and serum creatinine were detected and HE staining was performed to assess renal injury in rats. Lung hemorrhage was observed by gross dissection and microscopic Prussian blue staining. The level of serum MPO-ANCA was detected. Serum IL-6, TNF-α, superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) in rats were measured to explore the effects of ATX on oxidative stress and inflammation in EAV rats. The deposition of MPO in kidney and lung of rats was detected by immunohistochemistry. RESULTS: ATX significantly inhibited neutrophil secretion of inflammatory factors IL-6 and TNF-α. ATX reduced the elevated levels of ROS in neutrophils stimulated by serum from AAV patients and alleviated the release of NETs. ATX administration was observed to reduce the degree of hematuria, proteinuria, and glomerular crescent formation in EAV rats. The degree of pulmonary hemorrhage was significantly reduced. Besides, the serum levels of IL-6 and TNF-α were attenuated, and antioxidant SOD and GSH-px increased in serum. Pathological results showed that MPO deposition was decreased in lung and kidney tissues after ATX treatment. CONCLUSION: ATX could ameliorate the organ damages in EAV rats. It could serve as a hopeful therapy for AAV by its anti-inflammatory and anti-oxidative feature as a unique nature carotenoid.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Interleucina-6 , Neutrófilos , Peroxidasa , Factor de Necrosis Tumoral alfa , Xantófilas , Animales , Xantófilas/farmacología , Xantófilas/uso terapéutico , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/tratamiento farmacológico , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/patología , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/inmunología , Humanos , Masculino , Neutrófilos/inmunología , Neutrófilos/efectos de los fármacos , Ratas , Peroxidasa/metabolismo , Interleucina-6/metabolismo , Interleucina-6/sangre , Factor de Necrosis Tumoral alfa/metabolismo , Femenino , Especies Reactivas de Oxígeno/metabolismo , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos , Células Cultivadas , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Anticuerpos Anticitoplasma de Neutrófilos/inmunología , Ratas Sprague-Dawley , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Persona de Mediana Edad
12.
J Immunol ; 212(7): 1188-1195, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38391298

RESUMEN

STING-mediated DNA sensing pathway plays a crucial role in the innate antiviral immune responses. Clarifying its regulatory mechanism and searching STING agonists has potential clinical implications. Although multiple STING agonists have been developed to target cancer, there are few for the treatment of infectious diseases. Astaxanthin, a natural and powerful antioxidant, serves many biological functions and as a potential candidate drug for many diseases. However, how astaxanthin combats viruses and whether astaxanthin regulates the cyclic GMP-AMP synthase-STING pathway remains unclear. In this study, we showed that astaxanthin markedly inhibited HSV-1-induced lipid peroxidation and inflammatory responses and enhanced the induction of type I IFN in C57BL/6J mice and mouse primary peritoneal macrophages. Mechanistically, astaxanthin inhibited HSV-1 infection and oxidative stress-induced STING carbonylation and consequently promoted STING translocation to the Golgi apparatus and oligomerization, which activated STING-dependent host defenses. Thus, our study reveals that astaxanthin displays a strong antiviral activity by targeting STING, suggesting that astaxanthin might be a promising STING agonist and a therapeutic target for viral infectious diseases.


Asunto(s)
Virosis , Xantófilas , Animales , Ratones , Herpes Simple/tratamiento farmacológico , Inmunidad Innata , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Nucleotidiltransferasas/metabolismo , Xantófilas/farmacología , Xantófilas/uso terapéutico , Virosis/tratamiento farmacológico
13.
Sci Rep ; 14(1): 2731, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302772

RESUMEN

Lipase inhibition is one of the directions to control obesity. In vitro assays have confirmed the inhibitory effect of selected xanthophylls, including astaxanthin, fucoxanthinol, fucoxanthin, and neoxanthin. Similarly, an in-silico study also demonstrated the successful inhibition of pancreatic lipase by astaxanthin. Unfortunately, the efficacy of these protocols in the emulsion state typical of lipid digestion remains untested. To address this issue, the current study employed the pH-stat test, which mimics lipid digestion in the gastrointestinal tract, to evaluate native and prepared sea buckthorn and rapeseed oils with varying xanthophyll contents from 0 to 1400 mg/kg oil. Furthermore, a molecular docking of zeaxanthin and violaxanthin (commonly found in plant-based foods), astaxanthin (widely distributed in foods of marine origin) and orlistat (approved as a drug) was performed. The in-silico studies revealed comparable inhibitory potential of all tested xanthophylls (variation from - 8.0 to - 9.3 kcal/mol), surpassing that of orlistat (- 6.5 kcal/mol). Nonetheless, when tested in an emulsified state, the results of pH-stat digestion failed to establish the inhibitory effect of xanthophylls in the digested oils. In fact, lipolysis of native xanthophyll-rich sea buckthorn oil was approximately 22% higher than that of the xanthophyll-low preparation. The key insight derived from this study is that the amphiphilic properties of xanthophylls during the digestion of xanthophyll-rich lipids/meals facilitate emulsion formation, which leads to enhanced fat lipolysis.


Asunto(s)
Lipasa , Xantófilas , Hidrólisis , Orlistat , Emulsiones , Simulación del Acoplamiento Molecular , Xantófilas/farmacología , Luteína , Lípidos , Aceites , Digestión
14.
J Oleo Sci ; 73(1): 35-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38171729

RESUMEN

The use of Paracoccus carotinifaciens-derived natural astaxanthin as an alternative to synthetic astaxanthin has attracted considerable attention from the aquaculture industry. Furthermore, to enhance the bioavailability of astaxanthin, its "Z-isomerization" has been actively studied in recent years. This study investigated the effects of feeding a diet containing astaxanthin rich in the all-E- or Z-isomers derived from P. carotinifaciens on the pigmentation and astaxanthin concentration in rainbow trout (Oncorhynchus mykiss) flesh. Z-Isomer-rich astaxanthin was prepared from the P. carotinifaciens-derived all-E-isomer by thermal treatment in fish oil, and the prepared all-E-isomer-rich astaxanthin diet (E-AST-D; total Z-isomerratio = 9.1%) and Z-isomer-rich astaxanthin diet (Z-AST-D; total Z-isomer ratio of astaxanthin = 56.6%) were fed to rainbow trout for 8 weeks. The feeding of Z-AST-D resulted in greater pigmentation and astaxanthin accumulation efficiency in the flesh than those fed E-AST-D. Specifically, when E-AST-D was fed to rainbow trout, the SalmoFan score and astaxanthin concentration of the flesh were 22.1±1.4 and 1.36±0.71 µg/g wet weight, respectively, whereas when Z-AST-D was fed, their values were 26.0±2.5 and 5.33±1.82 µg/g wet weight, respectively. These results suggest that P. carotinifaciens-derived astaxanthin Z- isomers prepared by thermal isomerization are more bioavailable to rainbow trout than the all-E-isomer.


Asunto(s)
Oncorhynchus mykiss , Animales , Xantófilas/farmacología , Pigmentación , Dieta
15.
Food Chem ; 442: 138474, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38245982

RESUMEN

Fucoxanthin is a xanthophyll carotenoid that possesses potent antioxidant, anti-obesity, and anti-tumor properties. However, its limited solubility in water and susceptibility to degradation create challenges for its application. In this study, a microfluidic coaxial electrospinning technique was used to produce core-shell zein-gelatin nanofibers for encapsulating fucoxanthin, enhancing its bioavailability, and improving its stability. In comparison to uniaxially-loaded fucoxanthin nanofibers, the encapsulation efficiency of fucoxanthin reached 98.58 % at a core-shell flow rate ratio of 0.26:1, representing a 14.29 % improvement. The photostability of the nanofibers increased by 74.59 % after three days, UV stability increased by 38.82 % after 2 h, and temperature stability also significantly improved, demonstrating a protective effect under harsh environmental conditions (P < 0.05). Additionally, nanofibers effectively alleviated oleic acid-induced reactive oxygen species production and reduced fluorescence intensity by 54.76 %. MTT experiments indicated great biocompatibility of the nanofibers, effectively mitigating mitochondrial membrane potential polarization and lipid accumulation in HepG2 cells. Overall, the microfluidic coaxial electrospinning technique enables promising applications of fucoxanthin delivery in the food industry.


Asunto(s)
Nanofibras , Microfluídica , Xantófilas/farmacología , Lípidos
16.
Fish Physiol Biochem ; 50(1): 97-126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36607534

RESUMEN

Astaxanthin is the main natural C40 carotenoid used worldwide in the aquaculture industry. It normally occurs in red yeast Phaffia rhodozyma and green alga Haematococcus pluvialis and a variety of aquatic sea creatures, such as trout, salmon, and shrimp. Numerous biological functions reported its antioxidant and anti-inflammatory activities since astaxanthin possesses the highest oxygen radical absorbance capacity (ORAC) and is considered to be over 500 more times effective than vitamin E and other carotenoids such as lutein and lycopene. Thus, synthetic and natural sources of astaxanthin have a commanding influence on industry trends, causing a wave in the world nutraceutical market of the encapsulated product. In vitro and in vivo studies have associated astaxanthin's unique molecular features with various health benefits, including immunomodulatory, photoprotective, and antioxidant properties, providing its chemotherapeutic potential for improving stress tolerance, disease resistance, growth performance, survival, and improved egg quality in farmed fish and crustaceans without exhibiting any cytotoxic effects. Moreover, the most evident effect is the pigmentation merit, where astaxanthin is supplemented in formulated diets to ameliorate the variegation of aquatic species and eventually product quality. Hence, carotenoid astaxanthin could be used as a curative supplement for farmed fish, since it is regarded as an ecologically friendly functional feed additive in the aquaculture industry. In this review, the currently available scientific literature regarding the most significant benefits of astaxanthin is discussed, with a particular focus on potential mechanisms of action responsible for its biological activities.


Asunto(s)
Antioxidantes , Carotenoides , Animales , Antioxidantes/farmacología , Carotenoides/farmacología , Xantófilas/farmacología , Acuicultura
17.
Adv Sci (Weinh) ; 11(9): e2305363, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38093659

RESUMEN

Osteoarthritis (OA) is a chronic joint disease characterized by synovitis and joint cartilage destruction. The severity of OA is highly associated with the imbalance between M1 and M2 synovial macrophages. In this study, a novel strategy is designed to modulate macrophage polarization by reducing intracellular reactive oxygen species (ROS) levels and regulating mitochondrial function. A ROS-responsive polymer is synthesized to self-assemble with astaxanthin and autophagy activator rapamycin to form nanoparticles (NP@PolyRHAPM ). In vitro experiments show that NP@PolyRHAPM significantly reduced intracellular ROS levels. Furthermore, NP@PolyRHAPM restored mitochondrial membrane potential, increased glutathione (GSH) levels, and promoted intracellular autophagy, hence successfully repolarizing M1 macrophages into the M2 phenotype. This repolarization enhanced chondrocyte proliferation and vitality while inhibiting apoptosis. In vivo experiments utilizing an anterior cruciate ligament transection (ACLT)-induced OA mouse model revealed the anti-inflammatory and cartilage-protective effects of NP@PolyRHAPM , effectively mitigating OA progression. Consequently, the findings suggest that intra-articular delivery of ROS-responsive nanocarrier systems holds significant promise as a potential and effective therapeutic strategy for OA treatment.


Asunto(s)
Osteoartritis , Ratones , Animales , Especies Reactivas de Oxígeno/uso terapéutico , Osteoartritis/tratamiento farmacológico , Xantófilas/farmacología , Xantófilas/uso terapéutico , Macrófagos
18.
Mol Biotechnol ; 66(5): 1220-1228, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38103098

RESUMEN

Astaxanthin (ATX) is known for its antioxidant and anti-inflammation functions yet its role in cancers requires more research. This study is aimed to reveal the potential synergetic effect of ATX with ionizing radiation (IR) in OSCC. Cell survival was measured after human OSCC cells including CAL27 and SCC9, and normal human oral keratinocytes (NHOKs) were treated with different concentrations of ATX for 24 h. Colony formation assays were performed after OSCC cells were treated with IR, ATX (20 µ M), or combined and survival fraction was analyzed. Malondialdehyde (MDA), glutathione (GSH), and intercellular iron levels were measured. Western blot method was used to measure the ferroptosis-related proteins, GPX4, SLC7A11, and ACSL4. In xenograft mice model, we evaluated the tumor volumes, tumor growth, and examined the GPX4/ACSL4 proteins in tumor tissues using Immunohistochemistry (IHC). ATX inhibited viability of OSCC cells but not NHOK. In OSCC cells, ATX further enhanced the cell death induced by IR. In addition, ATX promoted the MDA content, Iron levels but inhibited the GSH regulated by IR in cells. ATX could synergize with IR, further inhibiting GPX4, SLC7A11 and promoting ACSL4 in OSCC cells. In vivo, ATX and IR treatment inhibited OSCC tumor growth and the group with combined treatment showed the most inhibitory effect. GPX4 was inhibited by IR and further inhibited in the combined group while ACSL4 was promoted by IR and enhanced more significantly in the combined group. ATX might synergize with IR treatment in OSCC partly via ferroptosis.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Radiación Ionizante , Xantófilas , Ensayos Antitumor por Modelo de Xenoinjerto , Xantófilas/farmacología , Humanos , Animales , Neoplasias de la Boca/radioterapia , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/tratamiento farmacológico , Línea Celular Tumoral , Ratones , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Coenzima A Ligasas/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Ferroptosis/efectos de los fármacos , Ferroptosis/efectos de la radiación , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Glutatión/metabolismo , Malondialdehído/metabolismo , Ratones Desnudos , Hierro/metabolismo , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Queratinocitos/efectos de los fármacos
19.
Cancer Genomics Proteomics ; 20(6suppl): 686-705, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38035706

RESUMEN

BACKGROUND/AIM: Fucoxanthin (Fx), a dietary marine xanthophyll, exerts potent anticancer effects in various colorectal cancer (CRC) animal models. However, therapeutic effects of Fx in human cancer tissues remain unclear. A patient-derived xenograft (PDX) mouse model transplanted with cancer tissues from patients is widely accepted as the best preclinical model for evaluating the anticancer potential of drug candidates. MATERIALS AND METHODS: Herein, we investigated the anticancer effects of Fx in PDX mice transplanted with cancer tissues derived from a patient with CRC (CRC-PDX) using LC-MS/MS- and western blot-based proteome analysis. RESULTS: The tumor in the patient with CRC was a primary adenocarcinoma (T3N0M0, stage II) showing mutations of certain genes that were tumor protein p53 (TP53), AT-rich interaction domain 1A (ARID1A), neuroblastoma RAS viral oncogene homolog (NRAS), and PMS1 homolog 2 (PMS2). Administration of Fx significantly suppressed the tumor growth (0.6-fold) and tended to induce differentiation in CRC-PDX mice. Fx up-regulated glycanated-decorin (Gc-DCN) expression, and down-regulated Kinetochore-associated protein DSN1 homolog (DSN1), phospho(p) focal adhesion kinase (pFAK)(Tyr397), pPaxillin(Tyr31), and c-MYC involved in growth, adhesion, and/or cell cycle, in the tumors of CRC-PDX mice than in control mice. Alterations in the five proteins were consistent with those in human CRC HT-29 and HCT116 cells treated with fucoxanthinol (FxOH, a major metabolite of Fx). CONCLUSION: Fx suppresses development of human-like CRC tissues, especially through growth, adhesion, and cell cycle signals.


Asunto(s)
Neoplasias Colorrectales , Humanos , Animales , Ratones , Cromatografía Liquida , Neoplasias Colorrectales/genética , Espectrometría de Masas en Tándem , Ciclo Celular , Xantófilas/farmacología , Xantófilas/uso terapéutico , Modelos Animales de Enfermedad , Proteínas Cromosómicas no Histona
20.
Cell Mol Biol Lett ; 28(1): 95, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007415

RESUMEN

BACKGROUND: Long-term exposure of humans to air pollution is associated with an increasing risk of cardiovascular diseases (CVDs). Astaxanthin (AST), a naturally occurring red carotenoid pigment, was proved to have multiple health benefits. However, whether or not AST also exerts a protective effect on fine particulate matter (PM2.5)-induced cardiomyocyte damage and its underlying mechanisms remain unclear. METHODS: In vitro experiments, the H9C2 cells were subjected to pretreatment with varying concentrations of AST, and then cardiomyocyte injury model induced by PM2.5 was established. The cell viability and the ferroptosis-related proteins expression were measured in different groups. In vivo experiments, the rats were pretreated with different concentrations of AST for 21 days. Subsequently, a rat model of myocardial PM2.5 injury was established by intratracheal instillation every other day for 1 week. The effects of AST on myocardial tissue injury caused by PM2.5 indicating by histological, serum, and protein analyses were examined. RESULTS: AST significantly ameliorated PM2.5-induced myocardial tissue injury, inflammatory cell infiltration, the release of inflammatory factors, and cardiomyocyte H9C2 cell damage. Mechanistically, AST pretreatment increased the expression of SLC7A11, GPX4 and down-regulated the expression of TfR1, FTL and FTH1 in vitro and in vivo. CONCLUSIONS: Our study suggest that ferroptosis plays a significant role in the pathogenesis of cardiomyocyte injury induced by PM2.5. AST may serve as a potential therapeutic agent for mitigating cardiomyocyte injury caused by PM2.5 through the inhibition of ferroptosis.


Asunto(s)
Ferroptosis , Miocitos Cardíacos , Humanos , Animales , Ratas , Xantófilas/farmacología , Xantófilas/uso terapéutico , Material Particulado/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...