Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.271
Filtrar
1.
Sci Rep ; 14(1): 9517, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664518

RESUMEN

The African clawed frog, Xenopus laevis, has been used as a laboratory animal for decades in many research areas. However, there is a lack of knowledge about the nutritional physiology of this amphibian species and the feeding regimen is not standardized. The aim of the present study was to get more insights into the nutrient metabolism and feeding behavior of the frogs. In Trial 1, adult female X. laevis were fed either a Xenopus diet or a fish feed. After 4 weeks, they were euthanized, weighed, measured for morphometrics and dissected for organ weights and whole-body nutrient analysis. There were no significant differences between the diet groups regarding the allometric data and nutrient contents. The ovary was the major determinant of body weight. Body fat content increased with body weight as indicator of energy reserves. In Trial 2, 40 adult female frogs were monitored with a specifically developed digital tracking system to generate heat-maps of their activity before and up to 25 min after a meal. Three diets (floating, sinking, floating & sinking) were used. The main feed intake activity was fanning the feed into the mouth, peaking until 20 min after the meal. The different swimming characteristics of the diets thereby influenced the activity of the animals. Our dataset helps to adjust the feeding needs to the physical composition and also to meet the natural behavioral patterns of feed intake as a prerequisite of animal wellbeing and animal welfare in a laboratory setting.


Asunto(s)
Composición Corporal , Conducta Alimentaria , Xenopus laevis , Animales , Xenopus laevis/fisiología , Femenino , Conducta Alimentaria/fisiología , Alimentación Animal/análisis , Dieta , Peso Corporal
2.
Glia ; 72(4): 759-776, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38225726

RESUMEN

Regenerative abilities are not evenly distributed across the animal kingdom. The underlying modalities are also highly variable. Retinal repair can involve the mobilization of different cellular sources, including ciliary marginal zone (CMZ) stem cells, the retinal pigmented epithelium (RPE), or Müller glia. To investigate whether the magnitude of retinal damage influences the regeneration modality of the Xenopus retina, we developed a model based on cobalt chloride (CoCl2 ) intraocular injection, allowing for a dose-dependent control of cell death extent. Analyses in Xenopus laevis revealed that limited CoCl2 -mediated neurotoxicity only triggers cone loss and results in a few Müller cells reentering the cell cycle. Severe CoCl2 -induced retinal degeneration not only potentializes Müller cell proliferation but also enhances CMZ activity and unexpectedly triggers RPE reprogramming. Surprisingly, reprogrammed RPE self-organizes into an ectopic mini-retina-like structure laid on top of the original retina. It is thus likely that the injury paradigm determines the awakening of different stem-like cell populations. We further show that these cellular sources exhibit distinct neurogenic capacities without any bias towards lost cells. This is particularly striking for Müller glia, which regenerates several types of neurons, but not cones, the most affected cell type. Finally, we found that X. tropicalis also has the ability to recruit Müller cells and reprogram its RPE following CoCl2 -induced damage, whereas only CMZ involvement was reported in previously examined degenerative models. Altogether, these findings highlight the critical role of the injury paradigm and reveal that three cellular sources can be reactivated in the very same degenerative model.


Asunto(s)
Cobalto , Degeneración Retiniana , Animales , Xenopus laevis/fisiología , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/metabolismo , Retina , Regeneración/fisiología , Proliferación Celular , Neuroglía/metabolismo
3.
Methods Mol Biol ; 2745: 91-102, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38060181

RESUMEN

Fluorescent lifetime imaging (FLIM) is a powerful tool for visualizing physiological parameters in vivo. We present here a 3-dye strategy for mapping bioelectric patterns in living Xenopus laevis embryos leveraging the quantitative power of fluorescent lifetime imaging. We discuss a general strategy for disentangling physiological artifacts from true bioelectric signals, a method for dye delivery via transcardial injection, and how to visualize and interpret the fluorescent lifetime of the dyes in vivo.


Asunto(s)
Colorantes , Fenómenos Electrofisiológicos , Animales , Potenciales de la Membrana/fisiología , Xenopus laevis/fisiología , Colorantes Fluorescentes , Imagen Óptica/métodos
4.
Dev Growth Differ ; 65(6): 300-310, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37477433

RESUMEN

Xenopus tadpoles serve as an exceptional model organism for studying post-embryonic development in vertebrates. During post-embryonic development, large-scale changes in tissue morphology, including organ regeneration and metamorphosis, occur at the organ level. However, understanding these processes in a three-dimensional manner remains challenging. In this study, the use of X-ray micro-computed tomography (microCT) for the three-dimensional observation of the soft tissues of Xenopus tadpoles was explored. The findings revealed that major organs, such as the brain, heart, and kidneys, could be visualized with high contrast by phosphotungstic acid staining following fixation with Bouin's solution. Then, the changes in brain shape during telencephalon regeneration were analyzed as the first example of utilizing microCT to study organ regeneration in Xenopus tadpoles, and it was found that the size of the amputated telencephalon recovered to >80% of its original length within approximately 1 week. It was also observed that the ventricles tended to shrink after amputation and maintained this state for at least 3 days. This shrinkage was transient, as the ventricles expanded to exceed their original size within the following week. Temporary shrinkage and expansion of the ventricles, which were also observed in transgenic or fluorescent dye-injected tadpoles with telencephalon amputation, may be significant in tissue homeostasis in response to massive brain injury and subsequent repair and regeneration. This established method will improve experimental analyses in developmental biology and medical science using Xenopus tadpoles.


Asunto(s)
Encéfalo , Animales , Xenopus laevis/fisiología , Microtomografía por Rayos X , Larva , Animales Modificados Genéticamente , Encéfalo/diagnóstico por imagen
5.
Ecotoxicol Environ Saf ; 260: 115080, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37262967

RESUMEN

BACKGROUND: Glyphosate (GLY) is the most widely used herbicide in the world. Due to its mode of action as an inhibitor of the 5-enolpyruvylshikimate-3-phosphate synthase, an important step in the shikimate pathway, specifically in plants, GLY is considered to be of low toxicity to non-target organisms. However, various studies have shown the negative effects of GLY on the mortality and development of different non-target organisms, including insects, rodents, fish and amphibians. To better understand the various effects of GLY in more detail, we studied the effects of GLY without co-formulants during the embryogenesis of the aquatic model organism Xenopus laevis. RESULTS: A treatment with GLY affected various morphological endpoints in X. laevis tadpoles (body length, head width and area, eye area). Additionally, GLY interfered with the mobility as well as the neural and cardiac development of the embryos at stage 44/45. We were able to detect detailed structural changes in the cranial nerves and the heart and gained insights into the negative effects of GLY on cardiomyocyte differentiation. CONCLUSION: The application of GLY without co-formulants resulted in negative effects on several endpoints in the early embryonic development of X. laevis at concentrations that are environmentally relevant and concentrations that reflect the worst-case scenarios. This indicates that GLY could have a strong negative impact on the survival and lives of amphibians in natural waters. As a result, future GLY approvals should consider its impact on the environment.


Asunto(s)
Desarrollo Embrionario , Animales , Xenopus laevis/fisiología , Sudáfrica , Glifosato
6.
Math Biosci ; 362: 109021, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37201649

RESUMEN

A biologically based computational model was developed to describe the hypothalamic-pituitary-thyroid (HPT) axis in developing Xenopus laevis larvae. The goal of this effort was to develop a tool that can be used to better understand mechanisms of thyroid hormone-mediated metamorphosis in X. laevis and predict organismal outcomes when those mechanisms are perturbed by chemical toxicants. In this report, we describe efforts to simulate the normal biology of control organisms. The structure of the model borrows from established models of HPT axis function in mammals. Additional features specific to X. laevis account for the effects of organism growth, growth of the thyroid gland, and developmental changes in regulation of thyroid stimulating hormone (TSH) by circulating thyroid hormones (THs). Calibration was achieved by simulating observed changes in stored and circulating levels of THs during a critical developmental window (Nieuwkoop and Faber stages 54-57) that encompasses widely used in vivo chemical testing protocols. The resulting model predicts that multiple homeostatic processes, operating in concert, can act to preserve circulating levels of THs despite profound impairments in TH synthesis. Represented in the model are several biochemical processes for which there are high-throughput in vitro chemical screening assays. By linking the HPT axis model to a toxicokinetic model of chemical uptake and distribution, it may be possible to use this in vitro effects information to predict chemical effects in X. laevis larvae resulting from defined chemical exposures.


Asunto(s)
Glándula Tiroides , Hormonas Tiroideas , Animales , Glándula Tiroides/fisiología , Xenopus laevis/fisiología , Larva , Hormonas Tiroideas/farmacología , Simulación por Computador , Mamíferos
7.
Elife ; 122023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184077

RESUMEN

Across phyla, males often produce species-specific vocalizations to attract females. Although understanding the neural mechanisms underlying behavior has been challenging in vertebrates, we previously identified two anatomically distinct central pattern generators (CPGs) that drive the fast and slow clicks of male Xenopus laevis, using an ex vivo preparation that produces fictive vocalizations. Here, we extended this approach to four additional species, X. amieti, X. cliivi, X. petersii, and X. tropicalis, by developing ex vivo brain preparation from which fictive vocalizations are elicited in response to a chemical or electrical stimulus. We found that even though the courtship calls are species-specific, the CPGs used to generate clicks are conserved across species. The fast CPGs, which critically rely on reciprocal connections between the parabrachial nucleus and the nucleus ambiguus, are conserved among fast-click species, and slow CPGs are shared among slow-click species. In addition, our results suggest that testosterone plays a role in organizing fast CPGs in fast-click species, but not in slow-click species. Moreover, fast CPGs are not inherited by all species but monopolized by fast-click species. The results suggest that species-specific calls of the genus Xenopus have evolved by utilizing conserved slow and/or fast CPGs inherited by each species.


Asunto(s)
Generadores de Patrones Centrales , Animales , Femenino , Masculino , Xenopus laevis/fisiología , Generadores de Patrones Centrales/fisiología , Vocalización Animal/fisiología , Bulbo Raquídeo , Encéfalo/fisiología
8.
J Ocul Pharmacol Ther ; 39(8): 499-508, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36867156

RESUMEN

Purpose: The induction of retinal progenitor cell (RPC) proliferation is a strategy that holds promise for alleviating retinal degeneration. However, the mechanisms that can stimulate RPC proliferation during repair remain unclear. Xenopus tailbud embryos successfully regrow functional eyes within 5 days after ablation, and this process requires increased RPC proliferation. This model facilitates identification of mechanisms that can drive in vivo reparative RPC proliferation. This study assesses the role of the essential H+ pump, V-ATPase, in promoting stem cell proliferation. Methods: Pharmacological and molecular loss of function studies were performed to determine the requirement for V-ATPase during embryonic eye regrowth. The resultant eye phenotypes were examined using histology and antibody markers. Misexpression of a yeast H+ pump was used to test whether the requirement for V-ATPase in regrowth is dependent on its H+ pump function. Results: V-ATPase inhibition blocked eye regrowth. Regrowth-incompetent eyes resulting from V-ATPase inhibition contained the normal complement of tissues but were much smaller. V-ATPase inhibition caused a significant reduction in reparative RPC proliferation but did not alter differentiation and patterning. Modulation of V-ATPase activity did not affect apoptosis, a process known to be required for eye regrowth. Finally, increasing H+ pump activity was sufficient to induce regrowth. Conclusions: V-ATPase is required for eye regrowth. These results reveal a key role for V-ATPase in activating regenerative RPC proliferation and expansion during successful eye regrowth.


Asunto(s)
Adenosina Trifosfatasas , Retina , Animales , Xenopus laevis/fisiología , Diferenciación Celular , Proliferación Celular , Bombas de Protones
9.
Dev Growth Differ ; 65(2): 94-99, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36637347

RESUMEN

The oxygen environment in African clawed frogs (Xenopus laevis) continuously changes during their development, which involves a rapid increase in the body size, metamorphosis, and transition to adulthood. Nevertheless, there are limited reports on experimental models that are available for studying fluctuations in the oxygen environment in X. laevis. Thus, this study aimed to develop an experimental model on intermittent hypoxia in X. laevis and evaluate hypoxia and oxidative stress in the same. X. laevis were submerged in water with a dissolved oxygen concentration of 2 mg/L for 30 min; they were then removed from the water and allowed to freely absorb oxygen for 5 min. Immunostaining of pimonidazole-containing frozen tissue sections of the lung and liver using anti-pimonidazole antibodies as the hypoxia probes revealed that more than 95% of the submerged X. laevis cells were pimonidazole positive, providing direct evidence of tissue hypoxia. When the amount of oxidative stress in the lungs and liver was evaluated in terms of the amount of lipid peroxides, the diving group showed a 2.08-fold and 3.20-fold increase over the normal group, respectively. Following hypoxia exposure, the dry-to-wet weight ratios of the lung tissues was 1.27 times higher (p < .05), while the liver tissues was 1.06 times higher (although not significant). Thus, the degree of damage depended on the tissues affected. In the future, we believe that this model will be a promising option for analyzing the physiological responses of X. laevis to hypoxia and oxidative stress.


Asunto(s)
Hipoxia , Pulmón , Animales , Xenopus laevis/fisiología , Oxígeno , Agua
10.
J Neurosci ; 43(8): 1387-1404, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36693757

RESUMEN

Developing spinal circuits generate patterned motor outputs while many neurons with high membrane resistances are still maturing. In the spinal cord of hatchling frog tadpoles of unknown sex, we found that the firing reliability in swimming of inhibitory interneurons with commissural and ipsilateral ascending axons was negatively correlated with their cellular membrane resistance. Further analyses showed that neurons with higher resistances had outward rectifying properties, low firing thresholds, and little delay in firing evoked by current injections. Input synaptic currents these neurons received during swimming, either compound, unitary current amplitudes, or unitary synaptic current numbers, were scaled with their membrane resistances, but their own synaptic outputs were correlated with membrane resistances of their postsynaptic partners. Analyses of neuronal dendritic and axonal lengths and their activities in swimming and cellular input resistances did not reveal a clear correlation pattern. Incorporating these electrical and synaptic properties into a computer swimming model produced robust swimming rhythms, whereas randomizing input synaptic strengths led to the breakdown of swimming rhythms, coupled with less synchronized spiking in the inhibitory interneurons. We conclude that the recruitment of these developing interneurons in swimming can be predicted by cellular input resistances, but the order is opposite to the motor-strength-based recruitment scheme depicted by Henneman's size principle. This form of recruitment/integration order in development before the emergence of refined motor control is progressive potentially with neuronal acquisition of mature electrical and synaptic properties, among which the scaling of input synaptic strengths with cellular input resistance plays a critical role.SIGNIFICANCE STATEMENT The mechanisms on how interneurons are recruited to participate in circuit function in developing neuronal systems are rarely investigated. In 2-d-old frog tadpole spinal cord, we found the recruitment of inhibitory interneurons in swimming is inversely correlated with cellular input resistances, opposite to the motor-strength-based recruitment order depicted by Henneman's size principle. Further analyses showed the amplitude of synaptic inputs that neurons received during swimming was inversely correlated with cellular input resistances. Randomizing/reversing the relation between input synaptic strengths and membrane resistances in modeling broke down swimming rhythms. Therefore, the recruitment or integration of these interneurons is conditional on the acquisition of several electrical and synaptic properties including the scaling of input synaptic strengths with cellular input resistances.


Asunto(s)
Interneuronas , Natación , Animales , Natación/fisiología , Xenopus laevis/fisiología , Larva/fisiología , Reproducibilidad de los Resultados , Interneuronas/fisiología , Médula Espinal/fisiología
11.
Behav Brain Res ; 442: 114317, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709047

RESUMEN

Animals will halt foraging efforts and engage defensive behaviors in response to predator cues. Some researchers have proposed that the switch from appetitive to avoidance behavior resembles anxiety, but most work on this has been performed in a limited number of animal models, primarily zebrafish and rodents. We used adult South African clawed frogs (Xenopus laevis) to determine if the canonical anxiolytic fluoxetine alters predator-induced changes in appetitive and avoidance behavior in a laboratory-based trade-off task that mimics foraging/predator avoidance tradeoffs in the wild. We hypothesized that sub-chronic fluoxetine treatment (20 d) would not affect baseline behavior but would reverse predator-induced changes in food intake, appetitive and avoidance behavior, and the abundance of anxiety related gene transcripts in the optic tectum, a brain area central to ecological decision making in frogs. We found that fluoxetine significantly reduced baseline locomotion compared to vehicle-treated animals. Fluoxetine had no effect on appetitive and avoidance behaviors that were sensitive to predator cues in this assay and did not alter any of the anxiety-related transcripts in the tectum. We conclude that while peripheral sub-chronic administration of fluoxetine significantly reduces locomotion, it does not modify predator-induced changes in approach and avoidance behaviors in this assay. Our findings are not consistent with visual predator cues causing state anxiety in adult frogs.


Asunto(s)
Reacción de Prevención , Fluoxetina , Animales , Fluoxetina/farmacología , Xenopus laevis/fisiología , Pez Cebra , Sudáfrica
12.
Dev Comp Immunol ; 140: 104617, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36529309

RESUMEN

Immunity is susceptible to reprogramming by environmental chemical and endocrine signals. Notably, numerous thyroid disrupting chemicals (TDCs) have the potential to perturb immune endpoints, but data are lacking on the mechanisms by which TDCs can influence the development of the immune system. T cell immunity is particularly vulnerable to modulation by TDCs during thymic education, differentiation, and selection. The following review discusses the ways in which thyroid hormones may influence T cell development, as well as emerging TDCs with potential to impact both thyroid hormone physiology and immune outcomes. To overcome the challenges of studying TDC impacts on immune toxicological endpoints, a comparative approach using the amphibian Xenopus laevis is recommended. X. laevis are ideally suited to studying TDC impacts on immunity due to the importance of thyroid hormones for metamorphosis, and the wealth of immunological models to measure immune endpoints in both tadpoles and adult frogs.


Asunto(s)
Disruptores Endocrinos , Animales , Hormonas Tiroideas , Xenopus laevis/fisiología , Diferenciación Celular , Metamorfosis Biológica , Larva
13.
J Neurol ; 270(1): 57-70, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35947153

RESUMEN

Visual image motion-driven ocular motor behaviors such as the optokinetic reflex (OKR) provide sensory feedback for optimizing gaze stability during head/body motion. The performance of this visuo-motor reflex is subject to plastic alterations depending on requirements imposed by specific eco-physiological or developmental circumstances. While visuo-motor plasticity can be experimentally induced by various combinations of motion-related stimuli, the extent to which such evoked behavioral alterations contribute to the behavioral demands of an environment remains often obscure. Here, we used isolated preparations of Xenopus laevis tadpoles to assess the extent and ontogenetic dependency of visuo-motor plasticity during prolonged visual image motion. While a reliable attenuation of large OKR amplitudes can be induced already in young larvae, a robust response magnitude-dependent bidirectional plasticity is present only at older developmental stages. The possibility of older larvae to faithfully enhance small OKR amplitudes coincides with the developmental maturation of inferior olivary-Purkinje cell signal integration. This conclusion was supported by the loss of behavioral plasticity following transection of the climbing fiber pathway and by the immunohistochemical demonstration of a considerable volumetric extension of the Purkinje cell dendritic area between the two tested stages. The bidirectional behavioral alterations with different developmental onsets might functionally serve to standardize the motor output, comparable to the known differential adaptability of vestibulo-ocular reflexes in these animals. This homeostatic plasticity potentially equilibrates the working range of ocular motor behaviors during altered visuo-vestibular conditions or prolonged head/body motion to fine-tune resultant eye movements.


Asunto(s)
Movimientos Oculares , Reflejo Vestibuloocular , Animales , Xenopus laevis/fisiología , Larva , Reflejo Vestibuloocular/fisiología , Visión Ocular , Estimulación Luminosa
14.
Front Neural Circuits ; 16: 1040070, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569798

RESUMEN

Vertebrate locomotion presents a major challenge for maintaining visual acuity due to head movements resulting from the intimate biomechanical coupling with the propulsive musculoskeletal system. Retinal image stabilization has been traditionally ascribed to the transformation of motion-related sensory feedback into counteracting ocular motor commands. However, extensive exploration of spontaneously active semi-intact and isolated brain/spinal cord preparations of the amphibian Xenopus laevis, have revealed that efference copies (ECs) of the spinal motor program that generates axial- or limb-based propulsion directly drive compensatory eye movements. During fictive locomotion in larvae, ascending ECs from rostral spinal central pattern generating (CPG) circuitry are relayed through a defined ascending pathway to the mid- and hindbrain ocular motor nuclei to produce conjugate eye rotations during tail-based undulatory swimming in the intact animal. In post-metamorphic adult frogs, this spinal rhythmic command switches to a bilaterally-synchronous burst pattern that is appropriate for generating convergent eye movements required for maintaining image stability during limb kick-based rectilinear forward propulsion. The transition between these two fundamentally different coupling patterns is underpinned by the emergence of altered trajectories in spino-ocular motor coupling pathways that occur gradually during metamorphosis, providing a goal-specific, morpho-functional plasticity that ensures retinal image stability irrespective of locomotor mode. Although the functional impact of predictive ECs produced by the locomotory CPG matches the spatio-temporal specificity of reactive sensory-motor responses, rather than contributing additively to image stabilization, horizontal vestibulo-ocular reflexes (VORs) are selectively suppressed during intense locomotor CPG activity. This is achieved at least in part by an EC-mediated attenuation of mechano-electrical encoding at the vestibular sensory periphery. Thus, locomotor ECs and their potential suppressive impact on vestibular sensory-motor processing, both of which have now been reported in other vertebrates including humans, appear to play an important role in the maintenance of stable vision during active body displacements.


Asunto(s)
Movimientos Oculares , Reflejo Vestibuloocular , Animales , Humanos , Adulto , Reflejo Vestibuloocular/fisiología , Locomoción/fisiología , Natación/fisiología , Xenopus laevis/fisiología , Médula Espinal/fisiología
15.
PLoS One ; 17(12): e0279331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36542627

RESUMEN

Immersion in tricaine methanesulfonate (i.e. TMS) has been used for euthanasia of Xenopus laevis (African Clawed frogs). However, the time for preparation and potential human health hazards may pose as a barrier for large group culls. Here, we aimed to investigate whether immersion in bupivacaine is an effective means to euthanize this species. In experiment one, frogs (n = 10/group) were randomly assigned to 1-h immersion in 1 of 3 treatment groups: 1) TMS-5 (MS-222, 5g/L); 2) TMS-10 (MS-222, 10 g/L); or 3) Bupi-1.5 (0.5% Bupivacaine, 1.5 g/L). Frogs were then removed from solutions, rinsed with system water, and placed into a recovery cage. Heart rate was evaluated audibly via doppler ultrasound flow over 1 min at immediate removal (T1h), at 2 (T2h), and 3 (T3h) h in the recovery cage. In experiment two, frogs (n = 7/group) underwent 5-h & 19-h immersion in either TMS-5 or Bupi-1.5, with heart rate assessment at 5 and 19 hrs. Righting reflex and withdrawal reflex of the hindlimb were tested during the experiments. Experiment one-after the 1-h immersion, Bupi-1.5 treated animals had decreased heart rates compared to TMS-5 and TMS-10 treated animals by T2h. Neither TMS-5, TMS-10, nor Bupi-1.5 ceased heart rate after the 1-h immersion. Experiment two-after the 5-h immersion, Bupi-1.5 and TMS-5 treated animals were comparable in heart rates. 43% of TMS-5 animals and 14% of the Bupi-1.5 animals had completely ceased heart rates at T5h. At 19 h all remaining animals exhibited rigor mortis and had ceased heart rate. We recommend 19-h of immersion using either TMS-5 or Bupi-1.5 for cessation of heart rate in African Clawed frogs. These data are strong support for the use of secondary physical methods for euthanasia in African Clawed frogs when euthanasia by immersion is performed.


Asunto(s)
Anestésicos Locales , Bupivacaína , Animales , Humanos , Bupivacaína/farmacología , Xenopus laevis/fisiología , Pueblo Africano
16.
Dev Growth Differ ; 64(6): 266-278, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35642106

RESUMEN

Xenopus laevis tadpoles possess regenerative capacity in their hindlimb buds at early developmental stages (stages ~52-54); they can regenerate complete hindlimbs with digits after limb bud amputation. However, they gradually lose their regenerative capacity as metamorphosis proceeds. Tadpoles in late developmental stages regenerate fewer digits (stage ~56), or only form cartilaginous spike without digits or joints (stage ~58 or later) after amputation. Previous studies have shown that administration of fibroblast growth factor 10 (FGF10) in late-stage (stage 56) tadpole hindlimb buds after amputation can improve their regenerative capacity, which means that the cells responding to FGF10 signaling play an important role in limb bud regeneration. In this study, we performed single-cell RNA sequencing (scRNA-seq) of hindlimb buds that were amputated and administered FGF10 by implanting FGF10-soaked beads at a late stage (stage 56), and explored cell clusters exhibiting a differential gene expression pattern compared with that in controls treated with phosphate-buffered saline. The scRNA-seq data showed expansion of fgf8-expressing cells in the cluster of the apical epidermal cap of FGF10-treated hindlimb buds, which was reported previously, indicating that the administration of FGF10 was successful. On analysis, in addition to the epidermal cluster, a subset of myeloid cells and a newly identified cluster of steap4-expressing cells showed remarkable differences in their gene expression profiles between the FGF10- or phosphate-buffered saline-treatment conditions, suggesting a possible role of these clusters in improving the regenerative capacity of hindlimbs via FGF10 administration.


Asunto(s)
Fosfatos , Transcriptoma , Animales , Factor 10 de Crecimiento de Fibroblastos , Miembro Posterior/fisiología , Larva , Xenopus laevis/fisiología
17.
Nat Commun ; 13(1): 2957, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35618719

RESUMEN

Locomotion in vertebrates is accompanied by retinal image-stabilizing eye movements that derive from sensory-motor transformations and predictive locomotor efference copies. During development, concurrent maturation of locomotor and ocular motor proficiency depends on the structural and neuronal capacity of the motion detection systems, the propulsive elements and the computational capability for signal integration. In developing Xenopus larvae, we demonstrate an interactive plasticity of predictive locomotor efference copies and multi-sensory motion signals to constantly elicit dynamically adequate eye movements during swimming. During ontogeny, the neuronal integration of vestibulo- and spino-ocular reflex components progressively alters as locomotion parameters change. In young larvae, spino-ocular motor coupling attenuates concurrent angular vestibulo-ocular reflexes, while older larvae express eye movements that derive from a combination of the two components. This integrative switch depends on the locomotor pattern generator frequency, represents a stage-independent gating mechanism, and appears during ontogeny when the swim frequency naturally declines with larval age.


Asunto(s)
Locomoción , Reflejo Vestibuloocular , Animales , Movimientos Oculares , Larva , Locomoción/fisiología , Reflejo Vestibuloocular/fisiología , Xenopus laevis/fisiología
18.
J Exp Biol ; 225(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35481476

RESUMEN

Frog larvae (tadpoles) undergo many physiological, morphological and behavioral transformations throughout development before metamorphosing into their adult form. The surface tension of water prevents small tadpoles from breaching the surface to breathe air (including those of Xenopus laevis), forcing them to acquire air using a form of breathing called bubble sucking. With growth, tadpoles typically make a behavioral/biomechanical transition from bubble sucking to breaching. Xenopus laevis tadpoles have also been shown to transition physiologically from conforming passively to ambient oxygen levels to actively regulating their blood oxygen. However, it is unknown whether these mechanical and physiological breathing transitions are temporally or functionally linked, or how both transitions relate to lung maturation and gas exchange competency. If these transitions are linked, it could mean that one biomechanical breathing mode (breaching) is more physiologically proficient at acquiring gaseous oxygen than the other. Here, we describe the mechanics and development of air breathing and the ontogeny of lung morphology in X. laevis throughout the larval stage and examine our findings considering previous physiological work. We found that the transitions from bubble sucking to breaching and from oxygen conforming to oxygen regulation co-occur in X. laevis tadpoles at the same larval stage (Nieuwkoop-Faber stages 53-56 and 54-57, respectively), but that the lungs do not increase significantly in vascularization until metamorphosis, suggesting that lung maturation, alone, is not sufficient to account for increased pulmonary capacity earlier in development. Although breach breathing may confer a respiratory advantage, we remain unaware of a mechanistic explanation to account for this possibility. At present, the transition from bubble sucking to breaching appears simply to be a consequence of growth. Finally, we consider our results in the context of comparative air-breathing mechanics across vertebrates.


Asunto(s)
Pipidae , Animales , Larva/fisiología , Metamorfosis Biológica , Oxígeno , Respiración , Xenopus laevis/fisiología
19.
Curr Biol ; 32(5): 1038-1048.e2, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35104440

RESUMEN

Dynamic neuronal Na+/K+ pumps normally only respond to intense action potential firing owing to their low affinity for intracellular Na+. Recruitment of these Na+ pumps produces a post-activity ultraslow afterhyperpolarization (usAHP) up to ∼10 mV in amplitude and ∼60 s in duration, which influences neuronal properties and future network output. In spinal motor networks, the usAHP underlies short-term motor memory (STMM), reducing the intensity and duration of locomotor network output in a manner dependent on the interval between locomotor bouts. In contrast to tonically active Na+ pumps that help set and maintain the resting membrane potential, dynamic Na+ pumps are selectively antagonized by low concentrations of ouabain, which, we show, blocks both the usAHP and STMM. We examined whether dynamic Na+ pumps and STMM can be influenced by neuromodulators, focusing on 5-HT and nitric oxide. Bath-applied 5-HT alone had no significant effect on the usAHP or STMM. However, this is due to the simultaneous activation of two distinct 5-HT receptor subtypes (5-HT7 and 5-HT2a) that have opposing facilitatory and suppressive influences, respectively, on these two features of the locomotor system. Nitric oxide modulation exerts a potent inhibitory effect that can completely block the usAHP and erase STMM. Using selective blockers of 5-HT7 and 5-HT2a receptors and a nitric oxide scavenger, PTIO, we further provide evidence that the two modulators constitute an endogenous control system that determines how the spinal network self-regulates the intensity of locomotor output in light of recent past experience.


Asunto(s)
Óxido Nítrico , ATPasa Intercambiadora de Sodio-Potasio , Animales , Locomoción/fisiología , Serotonina , ATPasa Intercambiadora de Sodio-Potasio/farmacología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Médula Espinal/fisiología , Xenopus laevis/fisiología
20.
Cell Calcium ; 102: 102540, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35074688

RESUMEN

The transition of stem cells from quiescence to proliferation enables tissues to self-repair. The signaling mechanisms driving these stem-cell-status decisions are still unclear. Ca2+ and the extracellular signal-regulated kinase (Erk1/2) are two signaling pathways that have the potential to coordinate multiple signals to promote a specific cellular response. They both play important roles during nervous system development but their roles during spinal cord and muscle regeneration are not fully deciphered. Here we show in Xenopus laevis larvae that both Ca2+ and Erk1/2 signaling pathways are activated after tail amputation. In response to injury, we find that Erk1/2 signaling is activated in neural and muscle stem cells and is necessary for spinal cord and skeletal muscle regeneration. Finally, we show in vivo that Erk1/2 activity is necessary for an injury-induced increase in intracellular store-dependent Ca2+ dynamics in skeletal muscle-associated tissues but that in spinal cord, injury increases Ca2+ influx-dependent Ca2+ activity independent of Erk1/2 signaling. This study suggests that precise temporal and tissue-specific activation of Ca2+ and Erk1/2 pathways is essential for regulating spinal cord and muscle regeneration.


Asunto(s)
Transducción de Señal , Traumatismos de la Médula Espinal , Animales , Músculo Esquelético , Transducción de Señal/fisiología , Xenopus laevis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...