Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.031
Filtrar
1.
Front Immunol ; 15: 1277526, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605961

RESUMEN

This study evaluated a depot-formulated cytokine-based adjuvant to improve the efficacy of the recombinant F1V (rF1V) plague vaccine and examined the protective response following aerosol challenge in a murine model. The results of this study showed that co-formulation of the Alhydrogel-adsorbed rF1V plague fusion vaccine with the depot-formulated cytokines recombinant human interleukin 2 (rhuIL-2) and/or recombinant murine granulocyte macrophage colony-stimulating factor (rmGM-CSF) significantly enhances immunogenicity and significant protection at lower antigen doses against a lethal aerosol challenge. These results provide additional support for the co-application of the depot-formulated IL-2 and/or GM-CSF cytokines to enhance vaccine efficacy.


Asunto(s)
Vacuna contra la Peste , Yersinia pestis , Humanos , Animales , Ratones , Citocinas , Antígenos Bacterianos , Vacunas Sintéticas , Aerosoles
2.
J Phys Chem B ; 128(16): 3929-3936, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38619541

RESUMEN

Yersinia pestis, the causative agent of plague, is capable of evading the human immune system response by recruiting the plasma circulating vitronectin proteins, which act as a shield and avoid its lysis. Vitronectin recruitment is mediated by its interaction with the bacterial transmembrane protein Ail, protruding from the Y. pestis outer membrane. By using all-atom long-scale molecular dynamic simulations of Ail embedded in a realistic model of the bacterial membrane, we have shown that vitronectin forms a stable complex, mediated by interactions between the disordered moieties of the two proteins. The main amino acids driving the complexation have also been evidenced, thus favoring the possible rational design of specific peptides which, by inhibiting vitronectin recruitment, could act as original antibacterial agents.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Simulación de Dinámica Molecular , Vitronectina , Vitronectina/química , Vitronectina/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Humanos , Yersinia pestis/química , Yersinia pestis/metabolismo , Factores de Virulencia/química , Factores de Virulencia/metabolismo , Dominios Proteicos , Unión Proteica
3.
Antonie Van Leeuwenhoek ; 117(1): 61, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520511

RESUMEN

Yersinia pestis, the causative agent of plague, is a highly virulent bacterium that poses a significant threat to human health. Preserving this bacterium in a viable state is crucial for research and diagnostic purposes. This paper presents and evaluates a simple lyophilization protocol for the long-term storage of Y. pestis strains from Fiocruz-CYP, aiming to explore its impact on viability and long-term stability, while replacing the currently used methodologies. The lyophilization tests were conducted using the non-virulent Y. pestis strain EV76, subjected to the lyophilization process under vacuum conditions. Viability assessment was performed to evaluate the effects of lyophilization and storage conditions on Y. pestis under multiple temperature conditions (- 80 °C, - 20 °C, 4-8 °C and room temperature). The lyophilization protocol employed in this study consistently demonstrated its efficacy in maintaining high viability rates for Y. pestis samples in a up to one year follow-up. The storage temperature that consistently exhibited the highest recovery rates was - 80 °C, followed by - 20 °C and 4-8 °C. Microscopic analysis of the post-lyophilized cultures revealed preserved morphological features, consistent with viable bacteria. The high viability rates observed in the preserved samples indicate the successful preservation of Y. pestis using this protocol. Overall, the presented lyophilization protocol provides a valuable tool for the long-term storage of Y. pestis, offering stability, viability, and functionality. By refining the currently used methods of lyophilization, this protocol can improve long-term preservation for Y. pestis strains collections, facilitating research efforts, diagnostic procedures, and the development of preventive and therapeutic strategies against plague.


Asunto(s)
Peste , Yersinia pestis , Humanos , Peste/microbiología , Brasil , Liofilización , Temperatura
4.
PLoS Pathog ; 20(3): e1012129, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38547321

RESUMEN

We recently identified two virulence-associated small open reading frames (sORF) of Yersinia pestis, named yp1 and yp2, and null mutants of each individual genes were highly attenuated in virulence. Plague vaccine strain EV76 is known for strong reactogenicity, making it not suitable for use in humans. To improve the immune safety of EV76, three mutant strains of EV76, Δyp1, Δyp2, and Δyp1&yp2 were constructed and their virulence attenuation, immunogenicity, and protective efficacy in mice were evaluated. All mutant strains were attenuated by the subcutaneous (s.c.) route and exhibited more rapid clearance in tissues than the parental strain EV76. Under iron overload conditions, only the mice infected with EV76Δyp1 survived, accompanied by less draining lymph nodes damage than those infected by EV76. Analysis of cytokines secreted by splenocytes of immunized mice found that EV76Δyp2 induced higher secretion of multiple cytokines including TNF-α, IL-2, and IL-12p70 than EV76. On day 42, EV76Δyp2 or EV76Δyp1&yp2 immunized mice exhibited similar protective efficacy as EV76 when exposed to Y. pestis 201, both via s.c. or intranasal (i.n.) routes of administration. Moreover, when exposed to 200-400 LD50 Y. pestis strain 201Δcaf1 (non-encapsulated Y. pestis), EV76Δyp2 or EV76Δyp1&yp2 are able to afford about 50% protection to i.n. challenges, significantly better than the protection afforded by EV76. On 120 day, mice immunized with EV76Δyp2 or EV76Δyp1&yp2 cleared the i.n. challenge of Y. pestis 201-lux as quickly as those immunized with EV76, demonstrating 90-100% protection. Our results demonstrated that deletion of the yp2 gene is an effective strategy to attenuate virulence of Y. pestis EV76 while improving immunogenicity. Furthermore, EV76Δyp2 is a promising candidate for conferring protection against the pneumonic and bubonic forms of plague.


Asunto(s)
Vacuna contra la Peste , Vacunas , Yersinia pestis , Humanos , Animales , Ratones , Yersinia pestis/genética , Sistemas de Lectura Abierta , Vacuna contra la Peste/genética , Citocinas/genética
5.
PLoS Negl Trop Dis ; 18(3): e0012036, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38452122

RESUMEN

Plague is a flea-borne fatal disease caused by the bacterium Yersinia pestis, which persists in rural Madagascar. Although fleas parasitizing rats are considered the primary vectors of Y. pestis, the human flea, Pulex irritans, is abundant in human habitations in Madagascar, and has been found naturally infected by the plague bacterium during outbreaks. While P. irritans may therefore play a role in plague transmission if present in plague endemic areas, the factors associated with infestation and human exposure within such regions are little explored. To determine the socio-ecological risk factors associated with P. irritans infestation in rural households in plague-endemic areas of Madagascar, we used a mixed-methods approach, integrating results from P. irritans sampling, a household survey instrument, and an observational checklist. Using previously published vectorial capacity data, the minimal P. irritans index required for interhuman bubonic plague transmission was modeled to determine whether household infestations were enough to pose a plague transmission risk. Socio-ecological risk factors associated with a high P. irritans index were then identified for enrolled households using generalized linear models. Household flea abundance was also modeled using the same set of predictors. A high P. irritans index occurred in approximately one third of households and was primarily associated with having a traditional dirt floor covered with a plant fiber mat. Interventions targeting home improvement and livestock housing management may alleviate flea abundance and plague risk in rural villages experiencing high P. irritans infestation. As plague-control resources are limited in developing countries such as Madagascar, identifying the household parameters and human behaviors favoring flea abundance, such as those identified in this study, are key to developing preventive measures that can be implemented at the community level.


Asunto(s)
Infestaciones por Pulgas , Peste , Siphonaptera , Yersinia pestis , Humanos , Animales , Ratas , Peste/microbiología , Madagascar/epidemiología , Siphonaptera/microbiología , Infestaciones por Pulgas/epidemiología , Factores de Riesgo
6.
Bull Exp Biol Med ; 176(4): 472-476, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38492103

RESUMEN

Vaccine strains Yersinia pestis EV NIIEG at a dose of 103 CFU and Francisella tularensis 15 NIIEG at a dose of 102 CFU induced changes in the concentration of cyclic nucleotides in the thymus and spleen of white mice. Antigen-induced changes in the cAMP/cGMP ratio in immunocompetent organs had a phase or oscillatory character, which seems to be related to the regulation of postvaccination immunoreactivity in the body. Synthetic organoselenium compound 974zh stimulated an increase in the amplitude of cAMP/cGMP oscillations, indicating its stimulating effect on the immunogenic properties of vaccine strains at doses an order of magnitude below the standard doses.


Asunto(s)
Peste , Tularemia , Yersinia pestis , Animales , Ratones , Peste/prevención & control , Vacuna contra la Peste , Bazo , Tularemia/prevención & control , Vacunación
7.
BMC Genomics ; 25(1): 262, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459433

RESUMEN

Plague, as an ancient zoonotic disease caused by Yersinia pestis, has brought great disasters. The natural plague focus of Marmota himalayana in the Qinghai-Tibet Plateau is the largest, which has been constantly active and the leading source of human plague in China for decades. Understanding the population genetics of M. himalayana and relating that information to the biogeographic distribution of Yersinia pestis and plague outbreaks are greatly beneficial for the knowledge of plague spillover and arecrucial for pandemic prevention. In the present research, we assessed the population genetics of M. himalayana. We carried out a comparative study of plague outbreaks and the population genetics of M. himalayana on the Qinghai-Tibet Plateau. We found that M. himalayana populations are divided into two main clusters located in the south and north of the Qinghai-Tibet Plateau. Fourteen DFR genomovars of Y. pestis were found and exhibited a significant region-specific distribution. Additionally, the increased genetic diversity of plague hosts is positively associated with human plague outbreaks. This insight gained can improve our understanding of biodiversity for pathogen spillover and provide municipally directed targets for One Health surveillance development, which will be an informative next step toward increased monitoring of M. himalayana dynamics.


Asunto(s)
Marmota , Yersinia pestis , Animales , Humanos , Tibet/epidemiología , China/epidemiología , Brotes de Enfermedades , Yersinia pestis/genética , Variación Genética
8.
Int Immunopharmacol ; 132: 111952, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38555818

RESUMEN

Yersinia pestis, the causative agent of plague, is a gram-negative bacterium that can be fatal if not treated properly. Three types of plague are currently known: bubonic, septicemic, and pneumonic plague, among which the fatality rate of septicemic and pneumonic plague is very high. Bubonic plague can be treated, but only if antibiotics are used at the initial stage of the infection. But unfortunately, Y. pestis has also shown resistance to certain antibiotics such as kanamycin, minocycline, tetracycline, streptomycin, sulfonamides, spectinomycin, and chloramphenicol. Despite tremendous progress in vaccine development against Y. pestis, there is no proper FDA-approved vaccine available to protect people from its infections. Therefore, effective broad-spectrum vaccine development against Y. pestis is indispensable. In this study, vaccinomics-assisted immunoinformatics techniques were used to find possible vaccine candidates by utilizing the core proteome prepared from 58 complete genomes of Y. pestis. Human non-homologous, pathogen-essential, virulent, and extracellular and membrane proteins are potential vaccine targets. Two antigenic proteins were prioritized for the prediction of lead epitopes by utilizing reverse vaccinology approaches. Four vaccine designs were formulated using the selected B- and T-cell epitopes coupled with appropriate linkers and adjuvant sequences capable of inducing potent immune responses. The HLA allele population coverage of the T-cell epitopes selected for vaccine construction was also analyzed. The V2 constructs were top-ranked and selected for further analysis on the basis of immunological, physicochemical, and immune-receptor docking interactions and scores. Docking and molecular dynamic simulations confirmed the stability of construct V2 interactions with the host immune receptors. Immune simulation analysis anticipated the strong immune profile of the prioritized construct. In silico restriction cloning ensured the feasible cloning ability of the V2 construct in the expression system of E. coli strain K12. It is anticipated that the designed vaccine construct may be safe, effective, and able to elicit strong immune responses against Y. pestis infections and may, therefore, merit investigation using in vitro and in vivo assays.


Asunto(s)
Peste , Yersinia pestis , Yersinia pestis/inmunología , Yersinia pestis/genética , Humanos , Peste/prevención & control , Peste/inmunología , Vacuna contra la Peste/inmunología , Vacuna contra la Peste/genética , Genoma Bacteriano , Desarrollo de Vacunas , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/genética , Vacunas Sintéticas/inmunología , Animales
9.
Virulence ; 15(1): 2316439, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38389313

RESUMEN

The genus Yersinia includes human, animal, insect, and plant pathogens as well as many symbionts and harmless bacteria. Within this genus are Yersinia enterocolitica and the Yersinia pseudotuberculosis complex, with four human pathogenic species that are highly related at the genomic level including the causative agent of plague, Yersinia pestis. Extensive laboratory, field work, and clinical research have been conducted to understand the underlying pathogenesis and zoonotic transmission of these pathogens. There are presently more than 500 whole genome sequences from which an evolutionary footprint can be developed that details shared and unique virulence properties. Whereas the virulence of Y. pestis now seems in apparent homoeostasis within its flea transmission cycle, substantial evolutionary changes that affect transmission and disease severity continue to ndergo apparent selective pressure within the other Yersiniae that cause intestinal diseases. In this review, we will summarize the present understanding of the virulence and pathogenesis of Yersinia, highlighting shared mechanisms of virulence and the differences that determine the infection niche and disease severity.


Asunto(s)
Peste , Yersiniosis , Yersinia pestis , Animales , Humanos , Yersinia/genética , Virulencia/genética , Yersinia pestis/genética , Peste/microbiología , Yersiniosis/microbiología
10.
Sci Rep ; 14(1): 2716, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302590

RESUMEN

Antimicrobial resistance (AR) is one of the greatest threats to global health and is associated with higher treatment costs, longer hospital stays, and increased mortality. Current gold standard antimicrobial susceptibility tests (AST) rely on organism growth rates that result in prolonged time-to-answer for slow growing organisms. Changes in the cellular transcriptome can be rapid in the presence of stressors such as antibiotic pressure, providing the opportunity to develop AST towards transcriptomic signatures. Here, we show that relative quantification of the recA gene is an indicator of pathogen susceptibly when select species are challenged with relevant concentrations of ciprofloxacin. We demonstrate that ciprofloxacin susceptible strains of Y. pestis and B. anthracis have significant increases in relative recA gene expression after 15 min of exposure while resistant strains show no significant differences. Building upon this data, we designed and optimized seven duplex RT-qPCR assays targeting the recA and 16S rRNA gene, response and housekeeping genes, respectively, for multiple biothreat and ESKAPE pathogens. Final evaluation of all seven duplex assays tested against 124 ciprofloxacin susceptible and resistant strains, including Tier 1 pathogens, demonstrated an overall categorical agreement compared to microbroth dilution of 97% using a defined cutoff. Testing pathogen strains commonly associated with urinary tract infections in contrived mock sample sets demonstrated an overall categorical agreement of 96%. These data indicate relative quantification of a single highly conserved gene accurately determines susceptibility for multiple bacterial species in response to ciprofloxacin.


Asunto(s)
Bacillus anthracis , Infecciones Urinarias , Yersinia pestis , Humanos , Ciprofloxacina/farmacología , ARN Ribosómico 16S , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Urinarias/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
11.
PLoS Pathog ; 20(1): e1011280, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38271464

RESUMEN

Subverting the host immune response to inhibit inflammation is a key virulence strategy of Yersinia pestis. The inflammatory cascade is tightly controlled via the sequential action of lipid and protein mediators of inflammation. Because delayed inflammation is essential for Y. pestis to cause lethal infection, defining the Y. pestis mechanisms to manipulate the inflammatory cascade is necessary to understand this pathogen's virulence. While previous studies have established that Y. pestis actively inhibits the expression of host proteins that mediate inflammation, there is currently a gap in our understanding of the inflammatory lipid mediator response during plague. Here we used the murine model to define the kinetics of the synthesis of leukotriene B4 (LTB4), a pro-inflammatory lipid chemoattractant and immune cell activator, within the lungs during pneumonic plague. Furthermore, we demonstrated that exogenous administration of LTB4 prior to infection limited bacterial proliferation, suggesting that the absence of LTB4 synthesis during plague contributes to Y. pestis immune evasion. Using primary leukocytes from mice and humans further revealed that Y. pestis actively inhibits the synthesis of LTB4. Finally, using Y. pestis mutants in the Ysc type 3 secretion system (T3SS) and Yersinia outer protein (Yop) effectors, we demonstrate that leukocytes recognize the T3SS to initiate the rapid synthesis of LTB4. However, several Yop effectors secreted through the T3SS effectively inhibit this host response. Together, these data demonstrate that Y. pestis actively inhibits the synthesis of the inflammatory lipid LTB4 contributing to the delay in the inflammatory cascade required for rapid recruitment of leukocytes to sites of infection.


Asunto(s)
Peste , Yersinia pestis , Humanos , Animales , Ratones , Yersinia pestis/metabolismo , Peste/microbiología , Sistemas de Secreción Tipo III/metabolismo , Leucotrieno B4/metabolismo , Leucocitos/metabolismo , Inflamación , Proteínas Bacterianas/metabolismo
12.
Am J Trop Med Hyg ; 110(2): 311-319, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38167314

RESUMEN

Since ancient times, seaports have been the hot spots for plague introduction into free countries. Infected ship rats reached new areas, and epizootics occurred prior to human infection via flea bites. Beginning in the 1920s/1930s, rodent and flea surveillance was carried out as part of plague hazard management in seaports of the world. Nowadays, such activity is not done regularly. In the southwestern Indian Ocean (SWIO) region, plague surveillance is of great importance given plague endemicity in Madagascar and thus the incurred risk for neighboring islands. This study reports animal-based surveillance aimed at identifying fleas and their small mammal hosts in SWIO seaports as well as Yersinia pestis detection. Small mammal trappings were performed in five main seaports of Madagascar (Toamasina and Mahajanga), Mauritius (Port Louis), and the Union of Comoros (Moroni and Mutsamudu). Mammals were euthanized and their fleas collected and morphologically identified before Y. pestis detection. In total, 145 mammals were trapped: the brown rat Rattus norvegicus (76.5%), the black rat Rattus rattus (8.3%), and the Asian house shrew Suncus murinus (15.2%). Fur brushing allowed collection of 1,596 fleas exclusively identified as Xenopsylla cheopis. All tested fleas were negative for Y. pestis DNA. This study shows that both well-known plague mammal hosts and flea vectors occur in SWIO seaports. It also highlights the necessity of carrying out regular animal-based surveillance for plague hazard management in this region.


Asunto(s)
Infestaciones por Pulgas , Peste , Siphonaptera , Yersinia pestis , Humanos , Ratas , Animales , Peste/epidemiología , Peste/veterinaria , Océano Índico , Insectos Vectores/genética , Infestaciones por Pulgas/epidemiología , Infestaciones por Pulgas/veterinaria , Roedores
13.
Emerg Infect Dis ; 30(2): 289-298, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38270131

RESUMEN

Pneumonic plague (PP) is characterized by high infection rate, person-to-person transmission, and rapid progression to severe disease. In 2017, a PP epidemic occurred in 2 Madagascar urban areas, Antananarivo and Toamasina. We used epidemiologic data and Yersinia pestis genomic characterization to determine the sources of this epidemic. Human plague emerged independently from environmental reservoirs in rural endemic foci >20 times during August-November 2017. Confirmed cases from 5 emergences, including 4 PP cases, were documented in urban areas. Epidemiologic and genetic analyses of cases associated with the first emergence event to reach urban areas confirmed that transmission started in August; spread to Antananarivo, Toamasina, and other locations; and persisted in Antananarivo until at least mid-November. Two other Y. pestis lineages may have caused persistent PP transmission chains in Antananarivo. Multiple Y. pestis lineages were independently introduced to urban areas from several rural foci via travel of infected persons during the epidemic.


Asunto(s)
Epidemias , Peste , Yersinia pestis , Humanos , Peste/epidemiología , Yersinia pestis/genética , Madagascar/epidemiología , Genómica
14.
J Wildl Dis ; 60(1): 14-25, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37889940

RESUMEN

Wildlife diseases have implications for ecology, conservation, human health, and health of domestic animals. They may impact wildlife health and population dynamics. Exposure rates of coyotes (Canis latrans) to pathogens such as Yersinia pestis, the cause of plague, may reflect prevalence rates in both rodent prey and human populations. We captured coyotes in north-central New Mexico during 2005-2008 and collected blood samples for serologic surveys. We tested for antibodies against canine distemper virus (CDV, Canine morbillivirus), canine parvovirus (CPV, Carnivore protoparvovirus), plague, tularemia (Francisella tularensis), and for canine heartworm (Dirofilaria immitis) antigen. Serum biochemistry variables that fell outside reference ranges were probably related to capture stress. We detected antibodies to parvovirus in 32/32 samples (100%), and to Y. pestis in 26/31 (84%). More than half 19/32 (59%) had antibodies against CDV, and 5/31 (39%) had antibodies against F. tularensis. We did not detect any heartworm antigens (n = 9). Pathogen prevalence was similar between sexes and among the three coyote packs in the study area. Parvovirus exposure appeared to happen early in life, and prevalence of antibodies against CDV increased with increasing age class. Exposure to Y. pestis and F. tularensis occurred across all age classes. The high coyote seroprevalence rates observed for CPV, Y. pestis, and CDV may indicate high prevalence in sympatric vertebrate populations, with implications for regional wildlife conservation as well as risk to humans via zoonotic transmission.


Asunto(s)
Coyotes , Virus del Moquillo Canino , Moquillo , Enfermedades de los Perros , Infecciones por Parvoviridae , Parvovirus Canino , Peste , Tularemia , Yersinia pestis , Animales , Perros , Humanos , Peste/epidemiología , Peste/veterinaria , Tularemia/epidemiología , Tularemia/veterinaria , Moquillo/epidemiología , Estudios Seroepidemiológicos , New Mexico , Anticuerpos Antivirales , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/veterinaria , Animales Salvajes
15.
J Med Entomol ; 61(1): 201-211, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38038662

RESUMEN

Plague is a zoonotic vector-borne disease caused by the bacterium Yersinia pestis. In Madagascar, it persists in identified foci, where it is a threat to public health generally from September to April. A more complete understanding of how the disease persists could guide control strategies. Fleas are the main vector for transmission between small mammal hosts and humans, and fleas likely play a role in the maintenance of plague. This study characterized the dynamics of flea populations in plague foci alongside the occurrence of human cases. From 2018 to 2020, small mammals were trapped at sites in the central Highlands of Madagascar. A total of 2,762 small mammals were captured and 5,295 fleas were collected. The analysis examines 2 plague vector species in Madagascar (Synopsyllus fonquerniei and Xenopsylla cheopis). Generalized linear models were used to relate flea abundance to abiotic factors, with adjustments for trap location and flea species. We observed significant effects of abiotic factors on the abundance, intensity, and infestation rate by the outdoor-associated flea species, S. fonquerniei, but weak seasonality for the indoor-associated flea species, X. cheopis. A difference in the timing of peak abundance was observed between the 2 flea species during and outside the plague season. While the present study did not identify a clear link between flea population dynamics and plague maintenance, as only one collected X. cheopis was infected, the results presented herein can be used by local health authorities to improve monitoring and control strategies of plague vector fleas in Madagascar.


Asunto(s)
Infestaciones por Pulgas , Peste , Siphonaptera , Yersinia pestis , Animales , Humanos , Peste/microbiología , Siphonaptera/microbiología , Insectos Vectores/microbiología , Infestaciones por Pulgas/epidemiología , Infestaciones por Pulgas/veterinaria , Mamíferos , Dinámica Poblacional
16.
Small ; 20(15): e2307066, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009518

RESUMEN

A new Yersinia pseudotuberculosis mutant strain, YptbS46, carrying the lpxE insertion and pmrF-J deletion is constructed and shown to exclusively produce monophosphoryl lipid A (MPLA) having adjuvant properties. Outer membrane vesicles (OMVs) isolated from YptbS46 harboring an lcrV expression plasmid, pSMV13, are designated OMV46-LcrV, which contained MPLA and high amounts of LcrV (Low Calcium response V) and displayed low activation of Toll-like receptor 4 (TLR4). Intramuscular prime-boost immunization with 30 µg of of OMV46-LcrV exhibited substantially reduced reactogenicity than the parent OMV44-LcrV and conferred complete protection to mice against a high-dose of respiratory Y. pestis challenge. OMV46-LcrV immunization induced robust adaptive responses in both lung mucosal and systemic compartments and orchestrated innate immunity in the lung, which are correlated with rapid bacterial clearance and unremarkable lung damage during Y. pestis challenge. Additionally, OMV46-LcrV immunization conferred long-term protection. Moreover, immunization with reduced doses of OMV46-LcrV exhibited further lower reactogenicity and still provided great protection against pneumonic plague. The studies strongly demonstrate the feasibility of OMV46-LcrV as a new type of plague vaccine candidate.


Asunto(s)
Lípido A/análogos & derivados , Vacuna contra la Peste , Peste , Yersinia pestis , Ratones , Animales , Yersinia , Peste/prevención & control , Antígenos Bacterianos
17.
Lancet Microbe ; 5(2): e194-e202, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38101440

RESUMEN

Laboratory-acquired infections (LAIs) and accidental pathogen escape from laboratory settings (APELS) are major concerns for the community. A risk-based approach for pathogen research management within a standard biosafety management framework is recommended but is challenging due to reasons such as inconsistency in risk tolerance and perception. Here, we performed a scoping review using publicly available, peer-reviewed journal and media reports of LAIs and instances of APELS between 2000 and 2021. We identified LAIs in 309 individuals in 94 reports for 51 pathogens. Eight fatalities (2·6% of all LAIs) were caused by infection with Neisseria meningitidis (n=3, 37·5%), Yersinia pestis (n=2, 25%), Salmonella enterica serotype Typhimurium (S Typhimurium; n=1, 12·5%), or Ebola virus (n=1, 12·5%) or were due to bovine spongiform encephalopathy (n=1, 12·5%). The top five LAI pathogens were S Typhimurium (n=154, 49·8%), Salmonella enteritidis (n=21, 6·8%), vaccinia virus (n=13, 4·2%), Brucella spp (n=12, 3·9%), and Brucella melitensis (n=11, 3·6%). 16 APELS were reported, including those for Bacillus anthracis, SARS-CoV, and poliovirus (n=3 each, 18·8%); Brucella spp and foot and mouth disease virus (n=2 each, 12·5%); and variola virus, Burkholderia pseudomallei, and influenza virus H5N1 (n=1 each, 6·3%). Continual improvement in LAI and APELS management via their root cause analysis and thorough investigation of such incidents is essential to prevent future occurrences. The results are biased due to the reliance on publicly available information, which emphasises the need for formalised global LAIs and APELS reporting to better understand the frequency of and circumstances surrounding these incidents.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Infección de Laboratorio , Yersinia pestis , Animales , Bovinos , Humanos , Salmonella enteritidis , Salmonella typhimurium
18.
Front Cell Infect Microbiol ; 13: 1288371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089818

RESUMEN

Yersinia pestis, the causative agent of plague, is a genetically monomorphic bacterial pathogen that evolved from Yersinia pseudotuberculosis approximately 7,400 years ago. We observed unusually frequent mutations in Y. pestis YPO0623, mostly resulting in protein translation termination, which implies a strong natural selection. These mutations were found in all phylogenetic lineages of Y. pestis, and there was no apparent pattern in the spatial distribution of the mutant strains. Based on these findings, we aimed to investigate the biological function of YPO0623 and the reasons for its frequent mutation in Y. pestis. Our in vitro and in vivo assays revealed that the deletion of YPO0623 enhanced the growth of Y. pestis in nutrient-rich environments and led to increased tolerance to heat and cold shocks. With RNA-seq analysis, we also discovered that the deletion of YPO0623 resulted in the upregulation of genes associated with the type VI secretion system (T6SS) at 26°C, which probably plays a crucial role in the response of Y. pestis to environment fluctuations. Furthermore, bioinformatic analysis showed that YPO0623 has high homology with a PLP-dependent aspartate aminotransferase in Salmonella enterica, and the enzyme activity assays confirmed its aspartate aminotransferase activity. However, the enzyme activity of YPO0623 was significantly lower than that in other bacteria. These observations provide some insights into the underlying reasons for the high-frequency nonsense mutations in YPO0623, and further investigations are needed to determine the exact mechanism.


Asunto(s)
Aspartato Aminotransferasas , Peste , Yersinia pestis , Codón sin Sentido/metabolismo , Filogenia , Peste/microbiología , Yersinia pestis/genética , Yersinia pestis/metabolismo , Yersinia pseudotuberculosis/genética
19.
PLoS Negl Trop Dis ; 17(11): e0011722, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37948337

RESUMEN

BACKGROUND: The causative agent of plague, Yersinia pestis, is maintained in nature via a flea-rodent cycle. Western Iran is an old focus for plague, and recent data indicate that rodents and dogs in this region have serological evidence of Y. pestis infection. The purpose of this study was to conduct a large-scale investigation of Y. pestis infection in shepherd dogs, rodents, and their fleas in old foci for plague in Western Iran. MATERIALS AND METHODS: This study was conducted in Hamadan province from 2014 to 2020. Rodents and fleas were collected from various locations throughout this region. Y. pestis was investigated in rodent spleen samples and fleas using culture, serology, and real-time PCR methods. Additionally, sera samples were collected from carnivores and hares in this region, and the IgG antibody against the Y. pestis F1 antigen was assessed using an ELISA. RESULTS: In this study, 927 rodents were captured, with Meriones spp. (91.8%) and Microtus qazvinensis (2.6%) being the most prevalent. A total of 6051 fleas were collected from rodents and carnivores, most of which were isolated from Meriones persicus. None of the rodents or fleas examined tested positive for Y. pestis using real-time PCR and culture methods. Meanwhile, IgG antibodies were detected in 0.32% of rodents. All serologically positive rodents belonged to M. persicus. Furthermore, none of the sera from the 138 carnivores (129 sheepdogs, five Vulpes vulpes, four Canis aureus), and nine hares tested positive in the ELISA test. CONCLUSION: This primary survey of rodent reservoirs shows serological evidence of Y. pestis infection. Western Iran is an endemic plague focus, and as such, it requires ongoing surveillance.


Asunto(s)
Infestaciones por Pulgas , Liebres , Peste , Siphonaptera , Yersinia pestis , Animales , Perros , Peste/epidemiología , Peste/veterinaria , Irán/epidemiología , Gerbillinae , Infestaciones por Pulgas/epidemiología , Infestaciones por Pulgas/veterinaria
20.
Biomater Sci ; 11(22): 7229-7246, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37791425

RESUMEN

Fimbriae are long filamentous polymeric protein structures located upon the surface of bacteria. Often implicated in pathogenicity, the biosynthesis and function of fimbriae has been a productive topic of study for many decades. Evolutionary pressures have ensured that fimbriae possess unique structural and mechanical properties which are advantageous to bacteria. These properties are also difficult to engineer with well-known synthetic and natural fibres, and this has raised an intriguing question: can we exploit the unique properties of bacterial fimbriae in useful ways? Initial work has set out to explore this question by using Capsular antigen fragment 1 (Caf1), a fimbriae expressed naturally by Yersina pestis. These fibres have evolved to 'shield' the bacterium from the immune system of an infected host, and thus are rather bioinert in nature. Caf1 is, however, very amenable to structural mutagenesis which allows the incorporation of useful bioactive functions and the modulation of the fibre's mechanical properties. Its high-yielding recombinant synthesis also ensures plentiful quantities of polymer are available to drive development. These advantageous features make Caf1 an archetype for the development of new polymers and materials based upon bacterial fimbriae. Here, we cover recent advances in this new field, and look to future possibilities of this promising biopolymer.


Asunto(s)
Antígenos Bacterianos , Yersinia pestis , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/química , Fimbrias Bacterianas/metabolismo , Polímeros/química , Ciencia de los Materiales , Yersinia pestis/química , Yersinia pestis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...