Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.160
Filtrar
1.
Lancet ; 404(10454): 753-763, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181595

RESUMEN

BACKGROUND: The optimal antiviral drug for treatment of severe influenza remains unclear. To support updated WHO influenza clinical guidelines, this systematic review and network meta-analysis evaluated antivirals for treatment of patients with severe influenza. METHODS: We systematically searched MEDLINE, Embase, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature, Global Health, Epistemonikos, and ClinicalTrials.gov for randomised controlled trials published up to Sept 20, 2023, that enrolled hospitalised patients with suspected or laboratory-confirmed influenza and compared direct-acting influenza antivirals against placebo, standard care, or another antiviral. Pairs of coauthors independently extracted data on study characteristics, patient characteristics, antiviral characteristics, and outcomes, with discrepancies resolved by discussion or by a third coauthor. Key outcomes of interest were time to alleviation of symptoms, duration of hospitalisation, admission to intensive care unit, progression to invasive mechanical ventilation, duration of mechanical ventilation, mortality, hospital discharge destination, emergence of antiviral resistance, adverse events, adverse events related to treatments, and serious adverse events. We conducted frequentist network meta-analyses to summarise the evidence and evaluated the certainty of evidence using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. This study is registered with PROSPERO, CRD42023456650. FINDINGS: Of 11 878 records identified by our search, eight trials with 1424 participants (mean age 36-60 years for trials that reported mean or median age; 43-78% male patients) were included in this systematic review, of which six were included in the network meta-analysis. The effects of oseltamivir, peramivir, or zanamivir on mortality compared with placebo or standard care without placebo for seasonal and zoonotic influenza were of very low certainty. Compared with placebo or standard care, we found low certainty evidence that duration of hospitalisation for seasonal influenza was reduced with oseltamivir (mean difference -1·63 days, 95% CI -2·81 to -0·45) and peramivir (-1·73 days, -3·33 to -0·13). Compared with standard care, there was little or no difference in time to alleviation of symptoms with oseltamivir (0·34 days, -0·86 to 1·54; low certainty evidence) or peramivir (-0·05 days, -0·69 to 0·59; low certainty evidence). There were no differences in adverse events or serious adverse events with oseltamivir, peramivir, and zanamivir (very low certainty evidence). Uncertainty remains about the effects of antivirals on other outcomes for patients with severe influenza. Due to the small number of eligible trials, we could not test for publication bias. INTERPRETATION: In hospitalised patients with severe influenza, oseltamivir and peramivir might reduce duration of hospitalisation compared with standard care or placebo, although the certainty of evidence is low. The effects of all antivirals on mortality and other important patient outcomes are very uncertain due to scarce data from randomised controlled trials. FUNDING: World Health Organization.


Asunto(s)
Antivirales , Gripe Humana , Humanos , Antivirales/uso terapéutico , Antivirales/efectos adversos , Hospitalización/estadística & datos numéricos , Gripe Humana/tratamiento farmacológico , Metaanálisis en Red , Oseltamivir/uso terapéutico , Oseltamivir/efectos adversos , Ensayos Clínicos Controlados Aleatorios como Asunto , Zanamivir/uso terapéutico
2.
Antiviral Res ; 229: 105959, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986873

RESUMEN

Avian influenza outbreaks, including ones caused by highly pathogenic A(H5N1) clade 2.3.4.4b viruses, have devastated animal populations and remain a threat to humans. Risk elements assessed for emerging influenza viruses include their susceptibility to approved antivirals. Here, we screened >20,000 neuraminidase (NA) or polymerase acidic (PA) protein sequences of potentially pandemic A(H5Nx), A(H7Nx), and A(H9N2) viruses that circulated globally in 2010-2023. The frequencies of NA or PA substitutions associated with reduced inhibition (RI) or highly reduced inhibition (HRI) by NA inhibitors (NAIs) (oseltamivir, zanamivir) or a cap-dependent endonuclease inhibitor (baloxavir) were low: 0.60% (137/22,713) and 0.62% (126/20,347), respectively. All tested subtypes were susceptible to NAIs and baloxavir at sub-nanomolar concentrations. A(H9N2) viruses were the most susceptible to oseltamivir, with IC50s 3- to 4-fold lower than for other subtypes (median IC50: 0.18 nM; n = 22). NA-I222M conferred RI of A(H5N1) viruses by oseltamivir (with a 26-fold IC50 increase), but NA-S246N did not reduce inhibition. PA-E23G, PA-K34R, PA-I38M/T, and the previously unreported PA-A36T caused RI by baloxavir in all subtypes tested. Avian A(H9N2) viruses endemic in Egyptian poultry predominantly acquired PA-I38V, which causes only a <3-fold decrease in the baloxavir EC50 and fails to meet the RI criteria. PA-E199A/D in A(H7Nx) and A(H9N2) viruses caused a 2- to 4-fold decrease in EC50 (close to the borderline for RI) and should be closely monitored. Our data indicate antiviral susceptibility is high among avian influenza A viruses with pandemic potential and present novel markers of resistance to existing antiviral interventions.


Asunto(s)
Antivirales , Aves , Dibenzotiepinas , Farmacorresistencia Viral , Inhibidores Enzimáticos , Genotipo , Virus de la Influenza A , Gripe Aviar , Neuraminidasa , Oseltamivir , Piridonas , Triazinas , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/genética , Antivirales/farmacología , Gripe Aviar/virología , Animales , Inhibidores Enzimáticos/farmacología , Dibenzotiepinas/farmacología , Farmacorresistencia Viral/genética , Piridonas/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Virus de la Influenza A/enzimología , Triazinas/farmacología , Oseltamivir/farmacología , Aves/virología , Morfolinas/farmacología , Endonucleasas/antagonistas & inhibidores , Endonucleasas/genética , Endonucleasas/metabolismo , Subtipo H9N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H9N2 del Virus de la Influenza A/genética , Proteínas Virales/genética , Proteínas Virales/antagonistas & inhibidores , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/enzimología , Zanamivir/farmacología , Fenotipo , Humanos , Concentración 50 Inhibidora
3.
Int J Biol Macromol ; 275(Pt 1): 133564, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955298

RESUMEN

Influenza viruses contribute significantly to the global health burden, necessitating the development of strategies against transmission as well as effective antiviral treatments. The present study reports a biomimetic strategy inspired by the natural antiviral properties of mucins. A bovine serum albumin (BSA) conjugate decorated with the multivalent neuraminidase inhibitor Zanamivir (ZA-BSA) was synthesized using copper-free click chemistry. This synthetic pseudo-mucin exhibited potent neuraminidase inhibitory activity against several influenza strains. Virus capture and growth inhibition assays demonstrated its effective absorption of virion particles and ability to prevent viral infection in nanomolar concentrations. Investigation of the underlying antiviral mechanism of ZA-BSA revealed a dual mode of action, involving disruption of the initial stages of host-cell binding and fusion by inducing viral aggregation, followed by blocking the release of newly assembled virions by targeting neuraminidase activity. Notably, the conjugate also exhibited potent inhibitory activity against Oseltamivir-resistant neuraminidase variant comparable to the monomeric Zanamivir. These findings highlight the application of multivalent drug presentation on protein scaffold to mimic mucin adsorption of viruses, together with counteracting drug resistance. This innovative approach has potential for the creation of antiviral agents against influenza and other viral infections.


Asunto(s)
Antivirales , Mucinas , Neuraminidasa , Virión , Zanamivir , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Zanamivir/farmacología , Zanamivir/química , Antivirales/farmacología , Antivirales/química , Mucinas/metabolismo , Mucinas/química , Humanos , Virión/efectos de los fármacos , Animales , Albúmina Sérica Bovina/química , Perros , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Células de Riñón Canino Madin Darby , Orthomyxoviridae/efectos de los fármacos , Orthomyxoviridae/enzimología
4.
Antiviral Res ; 228: 105938, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897317

RESUMEN

We compared the duration of fever in children infected with A(H1N1)pdm09, A(H3N2), or influenza B viruses following treatment with baloxavir marboxil (baloxavir) or neuraminidase inhibitors (NAIs) (oseltamivir, zanamivir, or laninamivir). This observational study was conducted at 10 outpatient clinics across 9 prefectures in Japan during the 2012-2013 and 2019-2020 influenza seasons. Patients with influenza rapid antigen test positive were treated with one of four anti-influenza drugs. The type/subtype of influenza viruses were identified from MDCK or MDCK SIAT1 cell-grown samples using two-step real-time PCR. Daily self-reported body temperature after treatment were used to evaluate the duration of fever by treatment group and various underlying factors. Among 1742 patients <19 years old analyzed, 452 (26.0%) were A(H1N1)pdm09, 827 (48.0%) A(H3N2), and 463 (26.0%) influenza B virus infections. Among fours treatment groups, baloxavir showed a shorter median duration of fever compared to oseltamivir in univariate analysis for A(H1N1)pdm09 virus infections (baloxavir, 22.0 h versus oseltamivir, 26.7 h, P < 0.05; laninamivir, 25.5 h, and zanamivir, 25.0 h). However, this difference was not significant in multivariable analyses. For A(H3N2) virus infections, there were no statistically significant differences observed (20.3, 21.0, 22.0, and 19.0 h) uni- and multivariable analyses. For influenza B, baloxavir shortened the fever duration by approximately 15 h than NAIs (20.3, 35.0, 34.3, and 34.1 h), as supported by uni- and multivariable analyses. Baloxavir seems to have comparable clinical effectiveness with NAIs on influenza A but can be more effective for treating pediatric influenza B virus infections than NAIs.


Asunto(s)
Antivirales , Dibenzotiepinas , Fiebre , Guanidinas , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Virus de la Influenza B , Gripe Humana , Morfolinas , Oseltamivir , Piranos , Piridonas , Ácidos Siálicos , Triazinas , Zanamivir , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Antivirales/uso terapéutico , Antivirales/farmacología , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/genética , Niño , Zanamivir/uso terapéutico , Zanamivir/análogos & derivados , Zanamivir/farmacología , Triazinas/uso terapéutico , Triazinas/farmacología , Guanidinas/uso terapéutico , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Piridonas/uso terapéutico , Dibenzotiepinas/uso terapéutico , Japón , Femenino , Masculino , Preescolar , Oseltamivir/uso terapéutico , Fiebre/tratamiento farmacológico , Fiebre/virología , Adolescente , Morfolinas/uso terapéutico , Lactante , Estaciones del Año , Tiepinas/uso terapéutico , Tiepinas/farmacología , Oxazinas/uso terapéutico , Factores de Tiempo , Benzoxazinas/uso terapéutico
5.
J Antimicrob Chemother ; 79(7): 1590-1596, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38775746

RESUMEN

BACKGROUND: An analysis was conducted in Japan to determine the most cost-effective neuraminidase inhibitor for the treatment of influenza virus infections from the healthcare payer's standpoint. OBJECTIVE: This study reanalysed the findings of a previous study that had some limitations (no probabilistic sensitivity analysis and quality of life scores measured by the EQ-5D-3L instead of the EQ-5D-5L) and used a decision tree model with only three health conditions. METHODS: This study incorporated new data from a network meta-analysis study into the first examination. The second examination involved constructing a new decision tree model encompassing seven health conditions and identifying costs, which consisted of medical costs and drug prices based on the 2020 version of the Japanese medical fee index. Effectiveness outcomes were measured using EQ-5D-5L questionnaires for adult patients with a history of influenza virus infections within a 14-day time horizon. Deterministic and probabilistic sensitivity analyses were performed to examine the uncertainty. RESULTS: In the first examination, the base-case cost-effectiveness analysis confirmed that oseltamivir outperformed laninamivir, zanamivir and peramivir, making it the most cost-effective neuraminidase inhibitor. The second examination revealed that oseltamivir dominated the other agents. Both deterministic and probabilistic sensitivity analyses showed robust results that validated oseltamivir as the most cost effective among the four neuraminidase inhibitors. CONCLUSIONS: This study thus reaffirms oseltamivir's position as the most cost-effective neuraminidase inhibitor for the treatment of influenza virus infections in Japan from the perspective of healthcare payment. These findings can help decision makers and healthcare providers in Japan.


Asunto(s)
Antivirales , Análisis Costo-Beneficio , Economía Farmacéutica , Gripe Humana , Metaanálisis en Red , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/economía , Antivirales/economía , Antivirales/uso terapéutico , Japón , Neuraminidasa/antagonistas & inhibidores , Oseltamivir/economía , Oseltamivir/uso terapéutico , Adulto , Árboles de Decisión , Zanamivir/uso terapéutico , Zanamivir/economía , Piranos/economía
6.
EMBO Mol Med ; 16(6): 1228-1253, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38789599

RESUMEN

In the injured brain, new neurons produced from endogenous neural stem cells form chains and migrate to injured areas and contribute to the regeneration of lost neurons. However, this endogenous regenerative capacity of the brain has not yet been leveraged for the treatment of brain injury. Here, we show that in healthy brain chains of migrating new neurons maintain unexpectedly large non-adherent areas between neighboring cells, allowing for efficient migration. In instances of brain injury, neuraminidase reduces polysialic acid levels, which negatively regulates adhesion, leading to increased cell-cell adhesion and reduced migration efficiency. The administration of zanamivir, a neuraminidase inhibitor used for influenza treatment, promotes neuronal migration toward damaged regions, fosters neuronal regeneration, and facilitates functional recovery. Together, these findings shed light on a new mechanism governing efficient neuronal migration in the adult brain under physiological conditions, pinpoint the disruption of this mechanism during brain injury, and propose a promising therapeutic avenue for brain injury through drug repositioning.


Asunto(s)
Encéfalo , Movimiento Celular , Neuraminidasa , Neuronas , Neuraminidasa/metabolismo , Neuraminidasa/antagonistas & inhibidores , Movimiento Celular/efectos de los fármacos , Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratones , Zanamivir/farmacología , Inhibidores Enzimáticos/farmacología , Ácidos Siálicos/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Recuperación de la Función/efectos de los fármacos , Ratones Endogámicos C57BL , Adhesión Celular/efectos de los fármacos , Humanos , Masculino
7.
Antiviral Res ; 227: 105918, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795911

RESUMEN

The most widely used class of antivirals available for Influenza treatment are the neuraminidase inhibitors (NAI) Oseltamivir and Zanamivir. However, amino acid (AA) substitutions in the neuraminidase may cause reduced inhibition or high antiviral resistance. In Mexico, the current state of knowledge about NAI susceptibility is scarce, in this study we report the results of 14 years of Influenza surveillance by phenotypic and genotypic methods. A total of 255 isolates were assessed with the NAI assay, including Influenza A(H1N1)pdm09, A(H3N2) and Influenza B (IBV). Furthermore, 827 sequences contained in the GISAID platform were analyzed in search of relevant mutations.Overall, five isolates showed highly reduced inhibition or reduced inhibition to Oseltamivir, and two showed reduced inhibition to Zanamivir in the NAI assays. Additionally, five A(H1N1)pdm09 sequences from the GISAID possessed AA substitutions associated to reduced inhibition to Oseltamivir and none to Zanamivir. Oseltamivir resistant A(H1N1)pdm09 harbored the H275Y mutation. No genetic mutations were identified in Influenza A(H3N2) and IBV. Overall, these results show that in Mexico the rate of NAI resistance is low (0.6%), but it is essential to continue the Influenza surveillance in order to understand the drug susceptibility of circulating strains.


Asunto(s)
Antivirales , Farmacorresistencia Viral , Virus de la Influenza B , Gripe Humana , Neuraminidasa , Oseltamivir , Zanamivir , Farmacorresistencia Viral/genética , Antivirales/farmacología , México/epidemiología , Humanos , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/genética , Gripe Humana/virología , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Oseltamivir/farmacología , Zanamivir/farmacología , Neuraminidasa/genética , Neuraminidasa/antagonistas & inhibidores , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Mutación , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Adulto , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Adolescente , Niño , Sustitución de Aminoácidos , Adulto Joven , Persona de Mediana Edad , Femenino , Preescolar , Genotipo , Masculino , Anciano , Pruebas de Sensibilidad Microbiana , Proteínas Virales/genética
8.
Pharmacotherapy ; 44(5): 383-393, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38656741

RESUMEN

STUDY OBJECTIVE: To determine whether there is a signal for gastrointestinal (GI) or intracranial (IC) hemorrhage associated with the use of antiviral medications for influenza in the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database. DESIGN: Disproportionality analysis. DATA SOURCE: The FAERS database was searched using OpenVigil 2.1 to identify GI and IC hemorrhage events reported between 2004 and 2022. MEASUREMENTS: Antiviral medications for influenza included the following: oseltamivir, zanamivir, peramivir, and baloxavir marboxil. Hemorrhage events were identified using Standardized Medical Dictionary for Regulatory Activities (MedDRA) Queries for GI and IC hemorrhages. Reporting odds ratios (RORs) were calculated to compare the occurrence of GI and IC hemorrhage events between antiviral drugs for influenza and (i) all other medications and (ii) antibiotics. RORs were also calculated for each of the individual antiviral medications. MAIN RESULTS: A total of 245 cases of GI hemorrhage and 23 cases of IC hemorrhage were identified in association with four antivirals. In comparison with all other drugs, the RORs of GI hemorrhage for oseltamivir, zanamivir, peramivir, baloxavir, and all antivirals combined were 1.17, 0.62, 4.44, 2.53, and 1.22, respectively, indicating potential variations in GI hemorrhage risk among the antivirals. In contrast, in comparison with all other drugs, the RORs of IC hemorrhage for oseltamivir (0.44), zanamivir (0.16), baloxavir (0.44), and all antivirals combined (0.41) were less than 1.0 which is consistent with no elevated risk of IC hemorrhage. CONCLUSION: In this study, some signals for GI hemorrhage were observed, particularly for peramivir and baloxavir marboxil. Further investigation is warranted to better understand and evaluate the potential risks of GI hemorrhage associated with antiviral treatments for influenza.


Asunto(s)
Sistemas de Registro de Reacción Adversa a Medicamentos , Antivirales , Bases de Datos Factuales , Dibenzotiepinas , Hemorragia Gastrointestinal , Gripe Humana , Oseltamivir , United States Food and Drug Administration , Humanos , Antivirales/efectos adversos , Estados Unidos/epidemiología , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Hemorragia Gastrointestinal/inducido químicamente , Hemorragia Gastrointestinal/epidemiología , Oseltamivir/efectos adversos , Dibenzotiepinas/efectos adversos , Ácidos Carbocíclicos , Hemorragias Intracraneales/inducido químicamente , Hemorragias Intracraneales/epidemiología , Zanamivir/efectos adversos , Zanamivir/uso terapéutico , Triazinas/efectos adversos , Persona de Mediana Edad , Masculino , Guanidinas/efectos adversos , Morfolinas/efectos adversos , Piridonas/efectos adversos , Femenino , Adulto , Anciano
9.
mBio ; 15(5): e0017524, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38551343

RESUMEN

Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the Food and Drug Administration are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These recommended antivirals are currently effective for major subtypes of IVs as the compounds target conserved domains in neuraminidase or polymerase acidic (PA) protein. However, this trend may gradually change due to the selection of antiviral drugs and the natural evolution of IVs. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.


Asunto(s)
Antivirales , Ensayos Clínicos como Asunto , Desarrollo de Medicamentos , Gripe Humana , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Dibenzotiepinas , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Morfolinas , Orthomyxoviridae/efectos de los fármacos , Piridonas , Triazinas , Zanamivir/farmacología , Zanamivir/uso terapéutico
10.
Biochemistry ; 63(3): 264-272, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38190441

RESUMEN

Vital to the treatment of influenza is the use of antivirals such as Oseltamivir (Tamiflu) and Zanamivir (Relenza); however, antiviral resistance is becoming an increasing problem for these therapeutics. The RNA-dependent RNA polymerase acidic N-terminal (PAN) endonuclease, a critical component of influenza viral replication machinery, is an antiviral target that was recently validated with the approval of Baloxavir Marboxil (BXM). Despite its clinical success, BXM has demonstrated susceptibility to resistance mutations, specifically the I38T, E23K, and A36 V mutants of PAN. To better understand the effects of these mutations on BXM resistance and improve the design of more robust therapeutics, this study examines key differences in protein-inhibitor interactions with two inhibitors and the I38T, E23K, and A36 V mutants. Differences in inhibitor binding were evaluated by measuring changes in binding to PAN using two biophysical methods. The binding mode of two distinct inhibitors was determined crystallographically with both wild-type and mutant forms of PAN. Collectively, these studies give some insight into the mechanism of antiviral resistance of these mutants.


Asunto(s)
Dibenzotiepinas , Gripe Humana , Morfolinas , Tiepinas , Humanos , Oxazinas , Piridinas/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , Endonucleasas/genética , Tiepinas/farmacología , Tiepinas/uso terapéutico , Piridonas/uso terapéutico , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Zanamivir/uso terapéutico , Triazinas/farmacología , Triazinas/uso terapéutico
11.
J Infect Chemother ; 30(3): 266-270, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37832825

RESUMEN

To assess the extent of susceptibility to the four neuraminidase inhibitors (NAIs) approved in Japan of the epidemic viruses in the 2022-23 influenza season in Japan, we measured the 50 % inhibitory concentration (IC50) of oseltamivir, zanamivir, peramivir, and laninamivir in influenza virus isolates from patients. Viral isolation was done with specimens obtained prior to and after treatment, and the type/subtype was determined by RT-PCR using type- and subtype-specific primers. The IC50 was determined by a neuraminidase inhibition assay using a fluorescent substrate. Virus isolates, one A(H1N1)pdm09 and 74 A(H3N2), were measured in the 2022-23 season. The geometric mean IC50s of the 74 A(H3N2) isolated prior to treatment were 0.78 nM, 0.66 nM, 2.08 nM, and 2.85 nM for oseltamivir, peramivir, zanamivir, and laninamivir, respectively, comparable to those of the previous ten studied seasons. No A(H3N2) with highly reduced sensitivity to any of the NAIs was found in the 2022-23 season prior to or after drug administration. These results indicate that the sensitivity to these four commonly used NAIs has been maintained, at least for A(H3N2), in the 2022-23 influenza season in Japan, after the 2020-21 and 2021-22 seasons when the prevalence of influenza was extremely low.


Asunto(s)
Ácidos Carbocíclicos , Guanidinas , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Piranos , Ácidos Siálicos , Humanos , Zanamivir/farmacología , Zanamivir/uso terapéutico , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Neuraminidasa , Estaciones del Año , Japón/epidemiología , Subtipo H3N2 del Virus de la Influenza A , Antivirales/farmacología , Antivirales/uso terapéutico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
12.
J Virol Methods ; 323: 114838, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37914041

RESUMEN

In influenza A virus-infected cells, newly synthesized viral neuraminidases (NAs) transiently localize at the host cell Golgi due to glycosylation, before their expression on the cell surface. It remains unproven whether Golgi-localized intracellular NAs exhibit sialidase activity. We have developed a sialidase imaging probe, [2-(benzothiazol-2-yl)-5-(non-1-yn-1-yl) phenyl]-α-D-N-acetylneuraminic acid (BTP9-Neu5Ac). This probe is designed to be cleaved by sialidase activity, resulting in the release of a hydrophobic fluorescent compound, 2-(benzothiazol-2-yl)-5-(non-1-yn-1-yl) phenol (BTP9). BTP9-Neu5Ac makes the location of sialidase activity visually detectable by the BTP9 fluorescence that results from the action of sialidase activity. In this study, we established a protocol to visualize the sialidase activity of intracellular NA at the Golgi of influenza A virus-infected cells using BTP9-Neu5Ac. Furthermore, we employed this fluorescence imaging protocol to elucidate the intracellular inhibition of laninamivir octanoate, an anti-influenza drug. At approximately 7 h after infection, newly synthesized viral NAs localized at the Golgi. Using our developed protocol, we successfully histochemically stained the sialidase activity of intracellular viral NAs localized at the Golgi. Importantly, we observed that laninamivir octanoate effectively inhibited the intracellular viral NA, in contrast to drugs like zanamivir or laninamivir. Our study establishes a visualization protocol for intracellular viral NA sialidase activity and visualizes the inhibitory effect of laninamivir octanoate on Golgi-localized intracellular viral NA in infected cells.


Asunto(s)
Antivirales , Inhibidores Enzimáticos , Virus de la Influenza A , Neuraminidasa , Proteínas Virales , Humanos , Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/enzimología , Neuraminidasa/análisis , Neuraminidasa/antagonistas & inhibidores , Imagen Óptica/métodos , Zanamivir/farmacología , Proteínas Virales/análisis , Proteínas Virales/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología
15.
Artículo en Inglés | MEDLINE | ID: mdl-37817300

RESUMEN

As part of its role in the World Health Organization's (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a record total of 12,073 human influenza positive samples during 2022. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or embryonated hen's eggs for potential use in seasonal influenza virus vaccines. In 2022, influenza A(H3N2) viruses predominated over influenza A(H1N1)pdm09 and B viruses, accounting for 77% of all viruses analysed. The majority of A(H1N1)pdm09, A(H3N2) and influenza B viruses analysed at the Centre were found to be antigenically and genetically similar to the respective WHO recommended vaccine strains for the southern hemisphere in 2022. Of 3,372 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, two A(H1N1)pdm09 viruses showed highly reduced inhibition against oseltamivir.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Animales , Femenino , Humanos , Australia/epidemiología , Pollos , Farmacorresistencia Viral/genética , Farmacorresistencia Viral/inmunología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/epidemiología , Gripe Humana/genética , Gripe Humana/inmunología , Gripe Humana/prevención & control , Oseltamivir/farmacología , Organización Mundial de la Salud , Zanamivir/farmacología , Antivirales/farmacología
16.
Am J Physiol Heart Circ Physiol ; 325(6): H1337-H1353, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37801046

RESUMEN

Neuraminidases cleave sialic acids from glycocalyx structures and plasma neuraminidase activity is elevated in type 2 diabetes (T2D). Therefore, we hypothesize circulating neuraminidase degrades the endothelial glycocalyx and diminishes flow-mediated dilation (FMD), whereas its inhibition restores shear mechanosensation and endothelial function in T2D settings. We found that compared with controls, subjects with T2D have higher plasma neuraminidase activity, reduced plasma nitrite concentrations, and diminished FMD. Ex vivo and in vivo neuraminidase exposure diminished FMD and reduced endothelial glycocalyx presence in mouse arteries. In cultured endothelial cells, neuraminidase reduced glycocalyx coverage. Inhalation of the neuraminidase inhibitor, zanamivir, reduced plasma neuraminidase activity, enhanced endothelial glycocalyx length, and improved FMD in diabetic mice. In humans, a single-arm trial (NCT04867707) of zanamivir inhalation did not reduce plasma neuraminidase activity, improved glycocalyx length, or enhanced FMD. Although zanamivir plasma concentrations in mice reached 225.8 ± 22.0 ng/mL, in humans were only 40.0 ± 7.2 ng/mL. These results highlight the potential of neuraminidase inhibition for ameliorating endothelial dysfunction in T2D and suggest the current Food and Drug Administration-approved inhaled dosage of zanamivir is insufficient to achieve desired outcomes in humans.NEW & NOTEWORTHY This work identifies neuraminidase as a key mediator of endothelial dysfunction in type 2 diabetes that may serve as a biomarker for impaired endothelial function and predictive of development and progression of cardiovascular pathologies associated with type 2 diabetes (T2D). Data show that intervention with the neuraminidase inhibitor zanamivir at effective plasma concentrations may represent a novel pharmacological strategy for restoring the glycocalyx and ameliorating endothelial dysfunction.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Enfermedades Vasculares , Ratones , Humanos , Animales , Zanamivir/farmacología , Neuraminidasa/química , Neuraminidasa/farmacología , Células Endoteliales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Antivirales/farmacología , Inhibidores Enzimáticos/farmacología
17.
mBio ; 14(5): e0127323, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37610204

RESUMEN

Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the FDA are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. Notably, owing to the high variability of IVs, no drug exists that can effectively treat all types and subtypes of IVs. Moreover, the current trend of drug resistance is likely to continue as the viral genome is constantly mutating. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.


Asunto(s)
Gripe Humana , Orthomyxoviridae , Humanos , Gripe Humana/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Oseltamivir/uso terapéutico , Zanamivir/uso terapéutico , Farmacorresistencia Viral/genética , Neuraminidasa/genética , Inhibidores Enzimáticos/farmacología
18.
Antiviral Res ; 217: 105701, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567255

RESUMEN

Neuraminidase inhibitors (NAIs) are recommended for influenza treatment and prevention worldwide. The most widely prescribed NAI is oral oseltamivir, while inhaled zanamivir is less commonly used. Using phenotypic neuraminidase (NA) enzymatic assays and molecular modeling approaches, we examined the ability of the investigational orally-dosed NAI AV5080 to inhibit viruses of the influenza A(H1N1)pdm09, A(H3N2), A(H5N1), and A(H7N9) subtypes and the influenza B/Victoria- and B/Yamagata-lineages containing NA substitutions conferring oseltamivir or zanamivir resistance including: NA-R292K, NA-E119G/V, NA-H274Y, NA-I122L/N, and NA-R150K. Broadly, AV5080 showed enhanced in vitro efficacy when compared with oseltamivir and/or zanamivir. Reduced AV5080 inhibition was determined for influenza A viruses with NA-E119G and NA-R292K, and for B/Victoria-lineage viruses with NA-I122N/L and B/Yamagata-lineage virus with NA-R150K. Molecular modeling suggested loss of the short hydrogen bond to the carboxyl group of AV5080 affected inhibition of NA-R292K viruses, whereas loss of the salt bridge with the guanidine group of AV5080 affected inhibition of NA-E119G. The resistance profiles and predicted binding modes of AV5080 and zanamivir are most similar, but dissimilar to those of oseltamivir, in part because of a guanidine moiety compensatory binding effect. Overall, our data suggests that AV5080 is a promising orally-dosed NAI that exhibited similar or superior in vitro efficacy against viruses with reduced or highly reduced inhibition phenotypes with respect to currently approved NAIs.


Asunto(s)
Herpesvirus Cercopitecino 1 , Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Gripe Humana , Humanos , Antivirales/farmacología , Farmacorresistencia Viral/genética , Inhibidores Enzimáticos/farmacología , Guanidina/metabolismo , Guanidinas/metabolismo , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/virología , Neuraminidasa/genética , Oseltamivir/farmacología , Zanamivir/farmacología
19.
Sci Immunol ; 8(84): eadg9459, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37352373

RESUMEN

The immune system eliminates pathogen intruders such as viruses and bacteria. To recruit immune effectors to virus-infected cells, we conjugated a small molecule, the influenza neuraminidase inhibitor zanamivir, to a nanobody that recognizes the kappa light chains of mouse immunoglobulins. This adduct was designed to achieve half-life extension of zanamivir through complex formation with the much-larger immunoglobulins in the circulation. The zanamivir moiety targets the adduct to virus-infected cells, whereas the anti-kappa component simultaneously delivers polyclonal immunoglobulins of indeterminate specificity and all isotypes. Activation of antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity promoted elimination of influenza neuraminidase-positive cells. A single dose of the conjugate protected mice against influenza A or B viruses and was effective even when given several days after infection with a lethal dose of virus. In the absence of circulating immunoglobulins, we observed no in vivo protection from the adduct. The type of conjugates described here may thus find application for both anti-influenza prophylaxis and therapy.


Asunto(s)
Gripe Humana , Zanamivir , Ratones , Animales , Humanos , Zanamivir/farmacología , Zanamivir/uso terapéutico , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Cadenas Ligeras de Inmunoglobulina/uso terapéutico , Neuraminidasa/uso terapéutico , Gripe Humana/prevención & control , Ratones Endogámicos BALB C
20.
Viruses ; 15(5)2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37243142

RESUMEN

In this study, we describe the input data and processing steps to find antiviral lead compounds by a virtual screen. Two-dimensional and three-dimensional filters were designed based on the X-ray crystallographic structures of viral neuraminidase co-crystallized with substrate sialic acid, substrate-like DANA, and four inhibitors (oseltamivir, zanamivir, laninamivir, and peramivir). As a result, ligand-receptor interactions were modeled, and those necessary for binding were utilized as screen filters. Prospective virtual screening (VS) was carried out in a virtual chemical library of over half a million small organic substances. Orderly filtered moieties were investigated based on 2D- and 3D-predicted binding fingerprints disregarding the "rule-of-five" for drug likeness, and followed by docking and ADMET profiling. Two-dimensional and three-dimensional screening were supervised after enriching the dataset with known reference drugs and decoys. All 2D, 3D, and 4D procedures were calibrated before execution, and were then validated. Presently, two top-ranked substances underwent successful patent filing. In addition, the study demonstrates how to work around reported VS pitfalls in detail.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Inhibidores Enzimáticos/farmacología , Estudios Prospectivos , Zanamivir/farmacología , Antivirales/uso terapéutico , Virus de la Influenza A/metabolismo , Neuraminidasa/metabolismo , Gripe Humana/tratamiento farmacológico , Gripe Humana/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA