Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Nano Lett ; 23(11): 4844-4853, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37220024

RESUMEN

Here, we demonstrate the concerted inhibition of different influenza A virus (IAV) strains using a low-molecular-weight dual-action linear polymer. The 6'-sialyllactose and zanamivir conjugates of linear polyglycerol are optimized for simultaneous targeting of hemagglutinin and neuraminidase on the IAV surface. Independent of IAV subtypes, hemagglutination inhibition data suggest better adsorption of the heteromultivalent polymer than homomultivalent analogs onto the virus surface. Cryo-TEM images imply heteromultivalent compound-mediated virus aggregation. The optimized polymeric nanomaterial inhibits >99.9% propagation of various IAV strains 24 h postinfection in vitro at low nM concentrations and is up to 10000× more effective than the commercial zanamivir drug. In a human lung ex vivo multicyclic infection setup, the heteromultivalent polymer outperforms the commercial drug zanamivir and homomultivalent analogs or their physical mixtures. This study authenticates the translational potential of the dual-action targeting approach using small polymers for broad and high antiviral efficacy.


Asunto(s)
Alphainfluenzavirus , Glicosilación , Polímeros/química , Polímeros/farmacología , Alphainfluenzavirus/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Antivirales/química , Antivirales/farmacología , Humanos , Zanamivir/química , Zanamivir/farmacología
2.
J Biomol Struct Dyn ; 40(21): 11434-11447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34369311

RESUMEN

Development of antiviral drugs is an urgent need to control and prevent the presently circulating H5N1 avian influenza virus which is affects the human respiratory tract. The complex crystal structure of N1-N-acetylneuranamic acid (sialic acid, SIA) is not available as complex and hence SIA and zanamivir (ZMR) are docked into the binding site of N1 neuraminidase. Based on the analysis, the initial complex structures have been simulated for 120 ns to get insight into the binding modes and interaction between protein-ligand complex systems. NAMD pair interaction energy and MM-PBSA binding free energy are calculated and show that there are two possible binding modes (BM1 and BM2) for N1-SIA and a single binding mode (BM1) for and N1-ZMR complex structures respectively. BM1 of N1-SIA is the most preferred binding mode. On contrary to the currently available drugs in which the chair conformation is distorted, in both the binding modes of N1-SIA, the binding pocket of N1 neuraminidase is able to accommodate SIA in 2C5 chair conformation which is the preferred conformation of SIA in solution state. In N1-ZMR complex, ZMR is bind in a distorted chair conformation. The neuraminidase binding pocket is also able to accommodate galactose of SIAα(2→3)GAL and SIAα(2→6)GAL. RMSD, RMSF and hydrogen bonding analyses have been carried out to identify the conformational flexibility and structural stability of each complex system. All the analyses show that SIA can be used as an inhibitor for N1 neuraminidase of H5N1 influenza viral infection. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antivirales , Subtipo H5N1 del Virus de la Influenza A , Neuraminidasa , Antivirales/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ácido N-Acetilneuramínico/química , Neuraminidasa/química , Zanamivir/farmacología , Zanamivir/química
3.
J Med Chem ; 64(23): 17403-17412, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34797984

RESUMEN

Antiviral therapy of influenza virus infections depends heavily on two viral neuraminidase (NA) inhibitors, oseltamivir (OSV) and zanamivir (ZNV). The efficacy of OSV is challenged by the development of viral resistance, while the clinical use of ZNV is limited by its poor pharmacokinetic profile and requirement for twice-daily intranasal administration. We have developed a novel NA inhibitor by conjugating ZNV to cholesterol. The ZNV-cholesterol conjugate showed markedly improved antiviral efficacy and plasma half-life compared with ZNV. Single-dose administration of the conjugate protected the mice from lethal challenges with wild-type or mutant H1N1 influenza viruses bearing an OSV-resistant H275Y-substitution. Mechanistic studies showed that the conjugate targeted the cell membrane and entered the host cells, thereby inhibiting the NA function and the assembly of progeny virions. The ZNV-cholesterol conjugate represents a potential new treatment for influenza infections with sustained effect. Cholesterol conjugation may be an effective strategy for improving the pharmacokinetics and efficacy of other small-molecule therapeutics.


Asunto(s)
Antivirales/farmacología , Colesterol/química , Inhibidores Enzimáticos/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores , Zanamivir/química , Animales , Antivirales/farmacocinética , Farmacorresistencia Viral/genética , Inhibidores Enzimáticos/farmacocinética , Semivida , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Ratones , Ratones Endogámicos BALB C , Mutación , Ratas , Ratas Sprague-Dawley , Replicación Viral/efectos de los fármacos
4.
Acc Chem Res ; 54(3): 569-582, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33448789

RESUMEN

The field of total synthesis has reached a stage in which emphasis has been increasingly focused on synthetic efficiency rather than merely achieving the synthesis of a target molecule. The pursuit of synthetic efficiency, typically represented by step count and overall yield, is a rich source of inspiration and motivation for synthetic chemists to invent innovative strategies and methods. Among them, convergent strategy has been well recognized as an effective approach to improve efficiency. This strategy generally involves coupling of fragments with similar complexity to furnish the target molecule via subsequent cyclization or late-stage functionalization. Thus, methodologies that enable effective connection of fragments are critical to devising a convergent plan. In our laboratory, convergent strategy has served as a long-standing principle for pursuing efficient synthesis during the course of planning and implementing synthetic projects. In this Account, we summarize our endeavors in the convergent synthesis of natural products over the last ten years. We show how we identify reasonable bond disconnections and employ enabling synthetic methodologies to maximize convergency, leading to the efficient syntheses of over two-dozen highly complex molecules from eight disparate families.In detail, we categorize our work into three parts based on the diverse reaction types for fragment assembly. First, we demonstrate the application of a powerful single-electron reducing agent, SmI2, in a late-stage cyclization step, forging the polycyclic skeletons of structurally fascinating Galbulimima alkaloids and Leucosceptrum sesterterpenoids. Next, we showcase how three different types of cycloaddition reactions can simultaneously construct two challenging C-C bonds in a single step, providing concise entries to three distinct families, namely, spiroquinazoline alkaloids, gracilamine, and kaurane diterpenoids. In the third part, we describe convergent assembly of ent-kaurane diterpenoids, gelsedine-type alkaloids, and several drug molecules via employing some bifunctional synthons. To access highly oxidized ent-kaurane diterpenoids, we introduce the hallmark bicyclo[3.2.1]octane ring system at an early stage, and then execute coupling and cyclization by means of a Hoppe's homoaldol reaction and a Mukaiyama-Michael-type addition, respectively. Furthermore, we showcase how the orchestrated combination of an asymmetric Michael addition, a tandem oxidation-aldol reaction and a pinacol rearrangement can dramatically improve the efficiency in synthesizing gelsedine-type alkaloids, with nary a protecting group. Finally, to address the supply issue of several drugs, including anti-influenza drug zanamivir and antitumor agent Et-743, we exploit scalable and practical approaches to provide advantages over current routes in terms of cost, ease of execution, and efficiency.


Asunto(s)
Productos Biológicos/síntesis química , Alcaloides/síntesis química , Alcaloides/química , Productos Biológicos/química , Compuestos Bicíclicos con Puentes/química , Carbono/química , Ciclización , Reacción de Cicloadición , Diterpenos de Tipo Kaurano/síntesis química , Diterpenos de Tipo Kaurano/química , Octanos/química , Oxidación-Reducción , Sesterterpenos/síntesis química , Sesterterpenos/química , Estereoisomerismo , Trabectedina/síntesis química , Trabectedina/química , Zanamivir/síntesis química , Zanamivir/química
5.
Nat Commun ; 11(1): 5597, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154358

RESUMEN

Seasonal influenza epidemics lead to 3-5 million severe infections and 290,000-650,000 annual global deaths. With deaths from the 1918 influenza pandemic estimated at >50,000,000 and future pandemics anticipated, the need for a potent influenza treatment is critical. In this study, we design and synthesize a bifunctional small molecule by conjugating the neuraminidase inhibitor, zanamivir, with the highly immunogenic hapten, dinitrophenyl (DNP), which specifically targets the surface of free virus and viral-infected cells. We show that this leads to simultaneous inhibition of virus release, and immune-mediated elimination of both free virus and virus-infected cells. Intranasal or intraperitoneal administration of a single dose of drug to mice infected with 100x MLD50 virus is shown to eradicate advanced infections from representative strains of both influenza A and B viruses. Since treatments of severe infections remain effective up to three days post lethal inoculation, our approach may successfully treat infections refractory to current therapies.


Asunto(s)
Antivirales/administración & dosificación , Antivirales/farmacología , Inmunoterapia/métodos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , 2,4-Dinitrofenol/administración & dosificación , 2,4-Dinitrofenol/química , 2,4-Dinitrofenol/inmunología , Administración Intranasal , Animales , Anticuerpos/administración & dosificación , Anticuerpos/inmunología , Antivirales/química , Línea Celular , Citotoxicidad Inmunológica/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Humanos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/enzimología , Virus de la Influenza A/fisiología , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/enzimología , Virus de la Influenza B/fisiología , Infusiones Parenterales , Ratones , Ratones Endogámicos BALB C , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Unión Proteica , Resultado del Tratamiento , Liberación del Virus/efectos de los fármacos , Zanamivir/administración & dosificación , Zanamivir/química , Zanamivir/farmacología
6.
Molecules ; 25(18)2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32947893

RESUMEN

Neuraminidase (NA) of influenza viruses enables the virus to access the cell membrane. It degrades the sialic acid contained in extracellular mucin. Later, it is responsible for releasing newly formed virions from the membrane of infected cells. Both processes become key functions within the viral cycle. Therefore, it is a therapeutic target for research of the new antiviral agents. Structure-activity relationships studies have revealed which are the important functional groups for the receptor-ligand interaction. Influenza virus type A NA activity was inhibited by five scaffolds without structural resemblance to sialic acid. Intending small organic compound repositioning along with drug repurposing, this study combined in silico simulations of ligand docking into the known binding site of NA, along with in vitro bioassays. The five proposed scaffolds are N-acetylphenylalanylmethionine, propanoic 3-[(2,5-dimethylphenyl) carbamoyl]-2-(piperazin-1-yl) acid, 3-(propylaminosulfonyl)-4-chlorobenzoic acid, ascorbic acid (vitamin C), and 4-(dipropylsulfamoyl) benzoic acid (probenecid). Their half maximal inhibitory concentration (IC50) was determined through fluorometry. An acidic reagent 2'-O-(4-methylumbelliferyl)-α-dN-acetylneuraminic acid (MUNANA) was used as substrate for viruses of human influenza H1N1 or avian influenza H5N2. Inhibition was observed in millimolar ranges in a concentration-dependent manner. The IC50 values of the five proposed scaffolds ranged from 6.4 to 73 mM. The values reflect a significant affinity difference with respect to the reference drug zanamivir (p < 0.001). Two compounds (N-acetyl dipeptide and 4-substituted benzoic acid) clearly showed competitive mechanisms, whereas ascorbic acid reflected non-competitive kinetics. The five small organic molecules constitute five different scaffolds with moderate NA affinities. They are proposed as lead compounds for developing new NA inhibitors which are not analogous to sialic acid.


Asunto(s)
Inhibidores Enzimáticos/química , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H5N2 del Virus de la Influenza A/enzimología , Neuraminidasa/antagonistas & inhibidores , Antivirales/química , Antivirales/metabolismo , Ácido Benzoico/química , Ácido Benzoico/metabolismo , Sitios de Unión , Unión Competitiva , Inhibidores Enzimáticos/metabolismo , Humanos , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Ácido N-Acetilneuramínico/química , Neuraminidasa/metabolismo , Relación Estructura-Actividad , Zanamivir/química , Zanamivir/metabolismo
7.
Angew Chem Int Ed Engl ; 59(36): 15532-15536, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32421225

RESUMEN

In this study, we demonstrate the concept of "topology-matching design" for virus inhibitors. With the current knowledge of influenza A virus (IAV), we designed a nanoparticle-based inhibitor (nano-inhibitor) that has a matched nanotopology to IAV virions and shows heteromultivalent inhibitory effects on hemagglutinin and neuraminidase. The synthesized nano-inhibitor can neutralize the viral particle extracellularly and block its attachment and entry to the host cells. The virus replication was significantly reduced by 6 orders of magnitude in the presence of the reverse designed nano-inhibitors. Even when used 24 hours after the infection, more than 99.999 % inhibition is still achieved, which indicates such a nano-inhibitor might be a potent antiviral for the treatment of influenza infection.


Asunto(s)
Antivirales/farmacología , Diseño de Fármacos , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Nanopartículas/química , Zanamivir/farmacología , Animales , Antivirales/síntesis química , Antivirales/química , Perros , Glicerol/química , Glicerol/farmacología , Humanos , Lactosa/análogos & derivados , Lactosa/química , Lactosa/farmacología , Células de Riñón Canino Madin Darby/efectos de los fármacos , Células de Riñón Canino Madin Darby/virología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Tamaño de la Partícula , Polímeros/química , Polímeros/farmacología , Ácidos Siálicos/química , Ácidos Siálicos/farmacología , Propiedades de Superficie , Replicación Viral/efectos de los fármacos , Zanamivir/síntesis química , Zanamivir/química
8.
Travel Med Infect Dis ; 35: 101646, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32294562

RESUMEN

BACKGROUND: The COVID-19 has now been declared a global pandemic by the World Health Organization. There is an emergent need to search for possible medications. METHOD: Utilization of the available sequence information, homology modeling, and in slico docking a number of available medications might prove to be effective in inhibiting the SARS-CoV-2 two main drug targets, the spike glycoprotein, and the 3CL protease. RESULTS: Several compounds were determined from the in silico docking models that might prove to be effective inhibitors for SARS-CoV-2. Several antiviral medications: Zanamivir, Indinavir, Saquinavir, and Remdesivir show potential as and 3CLPRO main proteinase inhibitors and as a treatment for COVID-19. CONCLUSION: Zanamivir, Indinavir, Saquinavir, and Remdesivir are among the exciting hits on the 3CLPRO main proteinase. It is also exciting to uncover that Flavin Adenine Dinucleotide (FAD) Adeflavin, B2 deficiency medicine, and Coenzyme A, a coenzyme, may also be potentially used for the treatment of SARS-CoV-2 infections. The use of these off-label medications may be beneficial in the treatment of the COVID-19.


Asunto(s)
Betacoronavirus/química , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/química , Descubrimiento de Drogas/métodos , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/química , Proteínas no Estructurales Virales/química , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/química , Alanina/uso terapéutico , Sitios de Unión , COVID-19 , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/uso terapéutico , Humanos , Indinavir/química , Indinavir/uso terapéutico , Simulación del Acoplamiento Molecular , Uso Fuera de lo Indicado , Pandemias , Neumonía Viral/tratamiento farmacológico , SARS-CoV-2 , Saquinavir/química , Saquinavir/uso terapéutico , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Homología Estructural de Proteína , Proteínas no Estructurales Virales/antagonistas & inhibidores , Zanamivir/química , Zanamivir/uso terapéutico , Tratamiento Farmacológico de COVID-19
9.
Biomed Khim ; 65(6): 520-525, 2019 Oct.
Artículo en Ruso | MEDLINE | ID: mdl-31876523

RESUMEN

The overall model for prediction of IC50 values for inhibitors of neuraminidase influenza virus A and B has been created. It combines data about IC50 values of complexes of 40 variants of neuraminidases of influenza A (7 serotypes) and B and three known inhibitors (oseltamivir, zanamivir, peramivir). The model also uses only data of enthalpy contributions to the potential energy of inhibitor/protein and substrate (MUNANA)/protein complexes. The calculation procedures are ported to use software with support of GPU accelerators, that significant decrease the computation time. The corresponding correlation coefficient (R²) for pIC50 prediction was within 0.45-0.58, the SEM values of around 0.7 (the range of used pIC50 data set is from 4.55 to 10.22).


Asunto(s)
Antivirales/química , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Ácidos Carbocíclicos , Ciclopentanos/química , Inhibidores Enzimáticos/química , Guanidinas/química , Virus de la Influenza A/enzimología , Virus de la Influenza B/enzimología , Oseltamivir/química , Zanamivir/química
10.
Mol Pharm ; 15(9): 4110-4120, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30102858

RESUMEN

With regular influenza epidemics and the prevalence of drug-resistant influenza virus strains, it is extremely crucial to develop effective and low-toxicity anti-influenza A virus drugs that act on conserved sites of novel targets. Here, we found a new anti-influenza virus compound, 1,3-dihydroxy-6-benzo[ c]chromene (D715-2441), from a library of 8026 small-molecule compounds by cell-based MTT assay and explored the underlying mechanisms. Our results revealed that D715-2441 possessed antiviral activities against multiple subtypes of influenza A viruses (IAVs) strains, including H1N1, H5N1, H7N9, H3N2, the clinical isolate 690 (H3), and oseltamivir-resistant strains with the H274Y NA mutation, and suppressed the early steps in the virus replication cycle. Further mechanistic studies indicated that D715-2441 clearly inhibited viral polymerase activity and directly influenced the location of the PB2 protein. Moreover, binding affinity analyses confirmed that D715-2441 bound specifically to the PB2cap protein. Further, protein sequence alignment and a computer-aided molecular docking indicated that highly conserved amino acid residues in the cap-binding pocket of PB2cap were possible binding sites for D715-2441, which indicates that D715-2441 might be employed as a cap-binding competitor. Moreover, the combination of D715-2441 and zanamivir possessed a remarkable synergistic antiviral effect, with an FICI value of 0.40. In conclusion, these results strongly suggest that D715-2441 has potential as a promising candidate against IAV infection. More importantly, our work offers novel options for the strategic development of PB2cap inhibitors of IAV.


Asunto(s)
Antivirales/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Células A549 , Animales , Antivirales/química , Western Blotting , Línea Celular , Perros , Sinergismo Farmacológico , Células HEK293 , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Subtipo H7N9 del Virus de la Influenza A/efectos de los fármacos , Subtipo H7N9 del Virus de la Influenza A/metabolismo , Microscopía Fluorescente , Simulación del Acoplamiento Molecular , Oseltamivir/química , Oseltamivir/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Resonancia por Plasmón de Superficie , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos , Zanamivir/química , Zanamivir/farmacología
11.
Bioorg Med Chem ; 26(19): 5349-5358, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29903413

RESUMEN

Inhibitors of viral neuraminidase enzymes have been previously developed as therapeutics. Humans can express multiple forms of neuraminidase enzymes (NEU1, NEU2, NEU3, NEU4) that share a similar active site and enzymatic mechanism with their viral counterparts. Using a panel of purified human neuraminidase enzymes, we tested the inhibitory activity of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA), zanamivir, oseltamivir, and peramivir against each of the human isoenzymes. We find that, with the exceptions of DANA and zanamivir, these compounds show generally poor activity against the human neuraminidase enzymes. To provide insight into the interactions of viral inhibitors with human neuraminidases, we conducted molecular dynamics simulations using homology models based on coordinates reported for NEU2. Simulations revealed that an organized water is displaced by zanamivir in binding to NEU2 and NEU3 and confirmed the critical importance of engaging the binding pocket of the C7-C9 glycerol sidechain. Our results suggest that compounds designed to target the human neuraminidases should provide more selective tools for interrogating these enzymes. Furthermore, they emphasize a need for additional structural data to enable structure-based drug design in these systems.


Asunto(s)
Inhibidores Enzimáticos/química , Neuraminidasa/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Antivirales/química , Antivirales/metabolismo , Sitios de Unión , Dominio Catalítico , Inhibidores Enzimáticos/metabolismo , Humanos , Concentración 50 Inhibidora , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Cinética , Simulación de Dinámica Molecular , Neuraminidasa/metabolismo , Alineación de Secuencia , Proteínas Virales/metabolismo , Zanamivir/química , Zanamivir/metabolismo
12.
Arch Microbiol ; 200(7): 1129-1133, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29777255

RESUMEN

Bacterial vaginosis is a genital tract infection, thought to be caused by transformation of a lactobacillus-rich flora to a dysbiotic microbiota enriched in mixed anaerobes. The most prominent of these is Gardnerella vaginalis (GV), an anaerobic pathogen that produces sialidase enzyme to cleave terminal sialic acid residues from human glycans. Notably, high sialidase activity is associated with preterm birth and low birthweight. We explored the potential of the sialidase inhibitor Zanamavir against GV whole cell sialidase activity using methyl-umbelliferyl neuraminic acid (MU-NANA) cleavage assays, with Zanamavir causing a 30% reduction in whole cell GV sialidase activity (p < 0.05). Furthermore, cellular invasion assays using HeLa cervical epithelial cells, infected with GV, demonstrated that Zanamivir elicited a 50% reduction in cell association and invasion (p < 0.05). Our data thus highlight that pharmacological sialidase inhibitors are able to modify BV-associated sialidase activity and influence host-pathogen interactions and may represent novel therapeutic adjuncts.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Gardnerella vaginalis/enzimología , Neuraminidasa/antagonistas & inhibidores , Vaginosis Bacteriana/microbiología , Zanamivir/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Inhibidores Enzimáticos/farmacología , Células Epiteliales/microbiología , Femenino , Gardnerella vaginalis/química , Gardnerella vaginalis/efectos de los fármacos , Gardnerella vaginalis/fisiología , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Neuraminidasa/química , Neuraminidasa/metabolismo , Vagina/microbiología , Zanamivir/farmacología
13.
Eur J Med Chem ; 154: 314-323, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29843102

RESUMEN

Zanamivir (ZA) and guanidino-oseltamivir carboxylic acid (GOC) are very potent inhibitors against influenza neuraminidase (NA). The guanidinium moiety plays an important role in NA binding; however, its polar cationic nature also hinders the use of ZA and GOC from oral administration. In this study, we investigated the use of ZA and GOC acylguanidine derivatives as possible orally available prodrugs. The acylguanidine derivatives were prepared by coupling with either n-octanoic acid or (S)-naproxen. The lipophilic acyl substituents were verified to improve cell permeability, and may also improve the bioavailability of acylguanidine compounds. In comparison, the acylguanidines bearing linear octanoyl chain showed better NA inhibitory activity and higher hydrolysis rate than the corresponding derivatives having bulky branched naproxen moiety. Our molecular docking experiments revealed that the straight octanoyl chain could extend to the 150-cavity and 430-cavity of NA to gain extra hydrophobic interactions. Mice receiving the ZA octanoylguanidine derivative survived from influenza infection better than those treated with ZA, whereas the GOC octanoylguanidine derivative could be orally administrated to treat mice with efficacy equal to oseltamivir. Our present study demonstrates that incorporation of appropriate lipophilic acyl substituents to the polar guanidine group of ZA and GOC is a feasible approach to develop oral drugs for influenza therapy.


Asunto(s)
Antivirales/farmacología , Orthomyxoviridae/efectos de los fármacos , Oseltamivir/farmacología , Profármacos/farmacología , Zanamivir/farmacología , Administración Oral , Antivirales/administración & dosificación , Antivirales/química , Relación Dosis-Respuesta a Droga , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Oseltamivir/administración & dosificación , Oseltamivir/química , Profármacos/administración & dosificación , Profármacos/química , Relación Estructura-Actividad , Zanamivir/administración & dosificación , Zanamivir/química
14.
J Biomol Struct Dyn ; 36(4): 966-980, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28279127

RESUMEN

We present here in silico studies on antiviral drug resistance due to a novel mutation of influenza A/H1N1 neuraminidase (NA) protein. Influenza A/H1N1 virus was responsible for a recent pandemic and is currently circulating among the seasonal influenza strains. M2 and NA are the two major viral proteins related to pathogenesis in humans and have been targeted for drug designing. Among them, NA is preferred because the ligand-binding site of NA is highly conserved between different strains of influenza virus. Different mutations of the NA active site residues leading to drug resistance or susceptibility of the virus were studied earlier. We report here a novel mutation (S247R) in the NA protein that was sequenced earlier from the nasopharyngeal swab from Sri Lanka and Thailand in the year 2009 and 2011, respectively. Another mutation (S247N) was already known to confer resistance to oseltamivir. We did a comparative study of these two mutations vis-a-vis the drug-sensitive wild type NA to understand the mechanism of drug resistance of S247N and to predict the probability of the novel S247R mutation to become resistant to the currently available drugs, oseltamivir and zanamivir. We performed molecular docking- and molecular dynamics-based analysis of both the mutant proteins and showed that mutation of S247R affects drug binding to the protein by positional displacement due to altered active site cavity architecture, which in turn reduces the affinity of the drug molecules to the NA active site. Our analysis shows that S247R may have high probability of being resistant.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/tratamiento farmacológico , Neuraminidasa/química , Neuraminidasa/genética , Proteínas Virales/química , Proteínas Virales/genética , Dominio Catalítico/efectos de los fármacos , Dominio Catalítico/genética , Simulación por Computador , Farmacorresistencia Viral/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/genética , Gripe Humana/virología , Ligandos , Mutación , Neuraminidasa/antagonistas & inhibidores , Oseltamivir/efectos adversos , Oseltamivir/química , Oseltamivir/uso terapéutico , Unión Proteica , Proteínas Virales/antagonistas & inhibidores , Zanamivir/efectos adversos , Zanamivir/química , Zanamivir/uso terapéutico
15.
Molecules ; 22(11)2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29149072

RESUMEN

Neuraminidaseis a key enzyme in the life cycle of influenza viruses and is present in some bacterial pathogens. We here assess the inhibitory potency of plant tannins versus clinically used inhibitors on both a viral and a bacterial model neuraminidase by applying the 2'-(4-methylumbelliferyl)-α-d-N-acetylneuraminic acid (MUNANA)-based activity assay. A range of flavan-3-ols, ellagitannins and chemically defined proanthocyanidin fractions was evaluated in comparison to oseltamivir carboxylate and zanamivir for their inhibitory activities against viral influenza A (H1N1) and bacterial Vibrio cholerae neuraminidase (VCNA). Compared to the positive controls, all tested polyphenols displayed a weak inhibition of the viral enzyme but similar or even higher potency on the bacterial neuraminidase. Structure-activity relationship analyses revealed the presence of galloyl groups and the hydroxylation pattern of the flavan skeleton to be crucial for inhibitory activity. The combination of zanamivir and EPs® 7630 (root extract of Pelargonium sidoides) showed synergistic inhibitory effects on the bacterial neuraminidase. Co-crystal structures of VCNA with oseltamivir carboxylate and zanamivir provided insight into bacterial versus viral enzyme-inhibitor interactions. The current data clearly indicate that inhibitor potency strongly depends on the biological origin of the enzyme and that results are not readily transferable. The therapeutic relevance of our findings is briefly discussed.


Asunto(s)
Antibacterianos/farmacología , Antivirales/farmacología , Pruebas de Enzimas , Neuraminidasa/antagonistas & inhibidores , Oseltamivir/análogos & derivados , Taninos/farmacología , Zanamivir/farmacología , Antibacterianos/química , Antivirales/química , Sinergismo Farmacológico , Pruebas de Enzimas/métodos , Taninos Hidrolizables/farmacología , Concentración 50 Inhibidora , Neuraminidasa/química , Oseltamivir/química , Oseltamivir/farmacología , Taninos/química , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/enzimología , Proteínas Virales/antagonistas & inhibidores , Zanamivir/química
16.
J Chem Theory Comput ; 13(10): 5097-5105, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-28820938

RESUMEN

A detailed understanding of the drug-receptor association process is of fundamental importance for drug design. Due to the long time scales of typical binding kinetics, the atomistic simulation of the ligand traveling from bulk solution into the binding site is still computationally challenging. In this work, we apply a multiscale approach of combined Molecular Dynamics (MD) and Brownian Dynamics (BD) simulations to investigate association pathway ensembles for the two prominent H1N1 neuraminidase inhibitors oseltamivir and zanamivir. Including knowledge of the approximate binding site location allows for the selective confinement of detailed but expensive MD simulations and application of less demanding BD simulations for the diffusion controlled part of the association pathway. We evaluate a binding criterion based on the residence time of the inhibitor in the binding pocket and compare it to geometric criteria that require prior knowledge about the binding mechanism. The method ranks the association rates of both inhibitors in qualitative agreement with experiment and yields reasonable absolute values depending, however, on the reaction criteria. The simulated association pathway ensembles reveal that, first, ligands are oriented in the electrostatic field of the receptor. Subsequently, a salt bridge is formed between the inhibitor's carboxyl group and neuraminidase residue Arg368, followed by adopting the native binding mode. Unexpectedly, despite oseltamivir's higher overall association rate, the rate into the intermediate salt-bridge state was found to be higher for zanamivir. The present methodology is intrinsically parallelizable and, although computationally demanding, allows systematic binding rate calculation on selected sets of potential drug molecules.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Simulación de Dinámica Molecular , Neuraminidasa/antagonistas & inhibidores , Receptores de Droga/antagonistas & inhibidores , Antivirales/química , Inhibidores Enzimáticos/química , Subtipo H1N1 del Virus de la Influenza A/enzimología , Cinética , Neuraminidasa/metabolismo , Oseltamivir/química , Oseltamivir/farmacología , Receptores de Droga/metabolismo , Zanamivir/química , Zanamivir/farmacología
17.
Anal Chem ; 89(9): 4889-4896, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28374582

RESUMEN

Natural product screening for new bioactive compounds can greatly benefit from low reagents consumption and high throughput capacity of droplet-based microfluidic systems. However, the creation of large droplet libraries in which each droplet carries a different compound is a challenging task. A possible solution is to use an HPLC coupled to a droplet generating microfluidic device to sequentially encapsulate the eluting compounds. In this work we demonstrate the feasibility of carrying out enzyme inhibiting assays inside nanoliter droplets with the different components of a natural crude extract after being separated by a coupled HPLC column. In the droplet formation zone, the eluted components are mixed with an enzyme and a fluorogenic substrate that permits to follow the enzymatic reaction in the presence of each chromatographic peak and identify those inhibiting the enzyme activity. Using a fractal shape channel design and automated image analysis, we were able to identify inhibitors of Clostridium perfringens neuraminidase present in a root extract of the Pelargonium sidoides plant. This work demonstrates the feasibility of bioprofiling a natural crude extract after being separated in HPLC using microfluidic droplets online and represents an advance in the miniaturization of natural products screening.


Asunto(s)
Productos Biológicos/análisis , Cromatografía Líquida de Alta Presión/métodos , Inhibidores Enzimáticos/análisis , Técnicas Analíticas Microfluídicas/métodos , Neuraminidasa/antagonistas & inhibidores , Extractos Vegetales/análisis , Productos Biológicos/química , Clostridium perfringens/enzimología , Pruebas de Enzimas , Inhibidores Enzimáticos/química , Pelargonium/química , Extractos Vegetales/química , Raíces de Plantas/química , Zanamivir/análisis , Zanamivir/química
18.
AAPS PharmSciTech ; 18(5): 1585-1594, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27624069

RESUMEN

The full-resolution next generation impactor (NGI) and three abbreviated impactor systems were used to obtain the apparent aerodynamic particle size distribution (APSD) and other quality measures for marketed dry powder inhalers (DPIs) using the compendial method and efficient data analysis (EDA). APSD for the active pharmaceutical ingredient (API) in Spiriva® Handihaler®, Foradil® Aerolizer®, and Relenza® Diskhaler® was obtained using a full-resolution NGI at 39, 60, and 90 L/min, respectively. Two reduced NGI (rNGI) configurations, the filter-only configuration (rNGI-f) and the modified-cup configuration (rNGI-mc), and the fast-screening impactor (FSI) with appropriate inserts to provide a 5-µm cut size were evaluated. The fine particle dose (FPD) obtained using the FSI for Spiriva was statistically similar to that obtained using the full NGI. However, the FPD for both Foradil and Relenza obtained using the FSI was significantly different from that obtained using the full NGI. Despite this, no significant differences were observed for the fine particle fraction (FPF) obtained using the FSI relative to that obtained from the full NGI for any of the DPIs. The use of abbreviated impactor systems appears promising with good agreement observed with the full-resolution NGI, except for small differences observed for the rNGI-mc configuration. These small differences may be product- and/or flow rate-specific, and further evaluation will be required to resolve these differences.


Asunto(s)
Aerosoles , Inhaladores de Polvo Seco/métodos , Fumarato de Formoterol , Bromuro de Tiotropio , Zanamivir , Administración por Inhalación , Aerosoles/química , Aerosoles/farmacología , Fumarato de Formoterol/administración & dosificación , Fumarato de Formoterol/química , Humanos , Ensayo de Materiales/métodos , Inhaladores de Dosis Medida , Tamaño de la Partícula , Fármacos del Sistema Respiratorio/administración & dosificación , Fármacos del Sistema Respiratorio/química , Tecnología Farmacéutica/instrumentación , Tecnología Farmacéutica/métodos , Bromuro de Tiotropio/administración & dosificación , Bromuro de Tiotropio/química , Zanamivir/administración & dosificación , Zanamivir/química
19.
J Chem Theory Comput ; 12(12): 6098-6108, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27951676

RESUMEN

Neuraminidase (NA) inhibitors are used for the prevention and treatment of influenza A virus infections. Two subtypes of NA, N1 and N2, predominate in viruses that infect humans, but differential patterns of drug resistance have emerged in each subtype despite highly homologous active sites. To understand the molecular basis for the selection of these drug resistance mutations, structural and dynamic analyses on complexes of N1 and N2 NA with substrates and inhibitors were performed. Comparison of dynamic substrate and inhibitor envelopes and interactions at the active site revealed how differential patterns of drug resistance have emerged for specific drug resistance mutations, at residues I222, S246, and H274 in N1 and E119 in N2. Our results show that the differences in intermolecular interactions, especially van der Waals contacts, of the inhibitors versus substrates at the NA active site effectively explain the selection of resistance mutations in the two subtypes. Avoiding such contacts that render inhibitors vulnerable to resistance by better mimicking the dynamics and intermolecular interactions of substrates can lead to the development of novel inhibitors that avoid drug resistance in both subtypes.


Asunto(s)
Inhibidores Enzimáticos/química , Virus de la Influenza A/enzimología , Neuraminidasa/antagonistas & inhibidores , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Sitios de Unión , Farmacorresistencia Viral/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Enlace de Hidrógeno , Gripe Humana/patología , Gripe Humana/virología , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Neuraminidasa/genética , Neuraminidasa/metabolismo , Oseltamivir/química , Oseltamivir/metabolismo , Oseltamivir/farmacología , Unión Proteica , Estructura Cuaternaria de Proteína , Electricidad Estática , Especificidad por Sustrato , Termodinámica , Zanamivir/química , Zanamivir/metabolismo , Zanamivir/farmacología
20.
J Mol Graph Model ; 69: 144-53, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27611645

RESUMEN

The fragment molecular orbital (FMO) method was applied to quantum chemical calculations of neuramic acid, the natural substrate of the influenza virus neuraminidase, and two of its competitive inhibitors, Oseltamivir (Tamiful(®)) and Zanamivir (Relenza(®)), to investigate their hydrated structures and energetics. Each of the three ligands was immersed in an explicit water solvent, geometry-optimized by classical MM and QM/MM methods, and subjected to FMO calculations with 2-, 3-, and 4-body corrections under several fragmentation options. The important findings were that QM/MM optimization was preferable to obtain reliable hydrated structures of the ligands, that the 3-body correction was important for quantitative evaluation of the solvation energy, and that the dehydration effect was most remarkable near the hydrophobic sections of the ligands. In addition, the hydration energy calculated by the explicit solvent was compared with the hydration free energy calculated by the implicit solvent via the Poisson-Boltzmann equation, and the two showed a fairly good correlation. These findings will serve as useful information for rapid drug design.


Asunto(s)
Virus de la Influenza A/enzimología , Modelos Moleculares , Neuraminidasa/química , Neuraminidasa/metabolismo , Agua/química , Enlace de Hidrógeno , Ligandos , Teoría Cuántica , Reproducibilidad de los Resultados , Solventes/química , Termodinámica , Zanamivir/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...