Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.089
Filtrar
1.
Nat Commun ; 15(1): 4048, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744821

RESUMEN

Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is well-studied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.


Asunto(s)
Bacterias , Ciclo del Carbono , Glucanos , Glucanos/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Fitoplancton/metabolismo , Biomasa , Diatomeas/metabolismo , Eutrofización , Carbono/metabolismo , Zooplancton/metabolismo , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/química , Proteínas Bacterianas/metabolismo
2.
Sci Total Environ ; 929: 172351, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615783

RESUMEN

Whole-lake microalgal biomass surveys were carried out in Lake Balaton to investigate the seasonal, spatial, and temporal changes of benthic algae, as well as to identify the drivers of the phytobenthos. Phytobenthos was controlled mainly by light: the highest benthic algal biomass was in the shallow littoral region characterized by large grain size (sand) with good light availability but lower nutrient content in the sediment. During the investigated period, phytoplankton biomass showed a significant decrease in almost the entire lake. At the same time, the biomass of benthic algae increased significantly in the eastern areas, increasing the contribution of total lake microalgae biomass (from 20 % to 27 %). Benthic algal biomass increase can be explained by the better light supply, owing to the artificially maintained high water level which greatly mitigates water mixing. The decrease in planktonic algal biomass could be attributed to increased zooplankton grazing, which is otherwise negatively affected by mixing. As a result of the high water level, the trophic structure of the lake has been rearranged in recent decades with a shift from the planktonic life form to the benthic one while the nutrient supply has largely remained unchanged.


Asunto(s)
Biomasa , Monitoreo del Ambiente , Lagos , Microalgas , Microalgas/fisiología , Lagos/química , Fitoplancton , Plancton , Zooplancton , Eutrofización
3.
Mar Pollut Bull ; 202: 116363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621354

RESUMEN

Planktonic organisms, which have direct contact with water, serve as the entry point for mercury (Hg), into the marine food web, impacting its levels in higher organisms, including fish, mammals, and humans who consume seafood. This study provides insights into the distribution and behavior of Hg within the Baltic Sea, specifically the Gulf of Gdansk, focusing on pelagic primary producers and consumers. Phytoplankton Hg levels were primarily influenced by its concentrations in water, while Hg concentrations in zooplankton resulted from dietary exposure through suspended particulate matter and phytoplankton consumption. Hg uptake by planktonic organisms, particularly phytoplankton, was highly efficient, with Hg concentrations four orders of magnitude higher than those in the surrounding water. However, unlike biomagnification of Hg between SPM and zooplankton, biomagnification between zooplankton and phytoplankton was not apparent, likely due to the low trophic position and small size of primary consumers, high Hg elimination rates, and limited absorption.


Asunto(s)
Monitoreo del Ambiente , Cadena Alimentaria , Mercurio , Fitoplancton , Contaminantes Químicos del Agua , Zooplancton , Mercurio/análisis , Mercurio/metabolismo , Contaminantes Químicos del Agua/análisis , Animales , Océanos y Mares
4.
Sci Total Environ ; 929: 172414, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631624

RESUMEN

The integration of recombinase polymerase amplification (RPA) with CRISPR/Cas technology has revolutionized molecular diagnostics and pathogen detection due to its unparalleled sensitivity and trans-cleavage ability. However, its potential in the ecological and environmental monitoring scenarios for aquatic ecosystems remains largely unexplored, particularly in accurate qualitative/quantitative detection, and its actual performance in handling complex real environmental samples. Using zooplankton as a model, we have successfully optimized the RPA-CRISPR/Cas12a fluorescence detection platform (RPA-Cas-FQ), providing several crucial "technical tips". Our findings indicate the sensitivity of CRISPR/Cas12a alone is 5 × 109 copies/reaction, which can be dramatically increased to 5 copies/reaction when combined with RPA. The optimized RPA-Cas-FQ enables reliable qualitative and semi-quantitative detection within 50 min, and exhibits a good linear relationship between fluorescence intensity and DNA concentration (R2 = 0.956-0.974***). Additionally, we developed a rapid and straightforward identification procedure for single zooplankton by incorporating heat-lysis and DNA-barcode techniques. We evaluated the platform's effectiveness using real environmental DNA (eDNA) samples from the Three Gorges Reservoir, confirming its practicality. The eDNA-RPA-Cas-FQ demonstrated strong consistency (Kappa = 0.43***) with eDNA-Metabarcoding in detecting species presence/absence in the reservoir. Furthermore, the two semi-quantitative eDNA technologies showed a strong positive correlation (R2 = 0.58-0.87***). This platform also has the potential to monitor environmental pollutants by selecting appropriate indicator species. The novel insights and methodologies presented in this study represent a significant advancement in meeting the complex needs of aquatic ecosystem protection and monitoring.


Asunto(s)
Monitoreo del Ambiente , Zooplancton , Monitoreo del Ambiente/métodos , Animales , Sistemas CRISPR-Cas , ADN Ambiental/análisis , Técnicas de Amplificación de Ácido Nucleico/métodos , Recombinasas/metabolismo
5.
Sci Total Environ ; 927: 172244, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582116

RESUMEN

Size spectra analysis has been widely used to study pelagic ecosystems worldwide. It has a solid theoretical and empirical basis and can be used to provide useful information on ecosystem structure and trophic efficiency. The objective of this study was to obtain complete Normalized Biovolume Size Spectra (NBSS), including zooplankton, microplastics, and other suspended particles, along an estuary-shelf gradient. Plankton net samples (300 µm mesh) were obtained in the Rio Formoso Estuary, in Tamandaré Bay and on the continental shelf off Tamandaré, Brazil, during two years (from April/2013 to May/2015). Particles were identified by image analysis (ZooScan) and infrared spectroscopy (FTIR). Generally, NBSS slopes were close to -1 (i.e., between -1.09 and -0.85), except for NBSSz (zooplankton only) in the Estuary (-1.59) and in the Bay (-1.44), where the steepest slopes were observed, due to the importance of small-sized zooplankton in these areas. The NBSSz slope was significantly steeper in the Estuary and in the Bay than on the Shelf. The inclusion of particles into the NBSS (NBSSp) turned the slope significantly less steep in the Estuary and in the Bay. Intercepts were significantly higher in the Estuary than in the other areas, after including particles in the analysis (NBSSp), due to the extremely high total volume of biogenic particles in the estuary. The most relevant impacts of microplastics were detected within the larger size classes (> 2.60 mm Feret length, > 0.58 log10 mm3). In the Estuary, large-sized microplastics were similarly important (in terms of volume) as zooplankton. Large-sized polyethylene and polypropylene were more relevant in the Bay, large-sized nylon fibers on the Shelf (in the rainy season). The present study, a pioneering effort towards a synthetic analysis of zooplankton, microplastics, and other particles, highlights the importance of including non-living particles in size-based studies and ecosystem models.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Estuarios , Microplásticos , Contaminantes Químicos del Agua , Zooplancton , Microplásticos/análisis , Brasil , Contaminantes Químicos del Agua/análisis , Animales , Tamaño de la Partícula
6.
Sci Total Environ ; 927: 172266, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583615

RESUMEN

Global climate change and anthropogenic oligotrophication are expected to reshape the dynamics of primary production (PP) in aquatic ecosystems; however, few studies have explored their long-term effects. In theory, the PP of phytoplankton in Lake Biwa may decline over decades due to warming, heightened stratification, and anthropogenic oligotrophication. Furthermore, the PP of large phytoplankton, which are inedible to zooplankton, along with biomass-specific productivity (PBc), could decrease. In this study, data from 1976 to 2021 and active fluorometry measurements taken in 2020 and 2021 were evaluated. Quantitatively, the temporal dynamics of mean seasonal PP during 1971-2021 were assessed according to the carbon fixation rate to investigate relationships among environmental factors. Qualitatively, phytoplankton biomass, PP, and PBc were measured in two size fractions [edible (S) or inedible (L) for zooplankton] in 2020 and 2021, and the L:S balance for these three measures was compared between 1992 (low-temperature/high-nutrient conditions) and 2020-2021 (high-temperature/low-nutrient conditions) to assess seasonal dynamics. The results indicated that climate change and anthropogenic oligotrophication over the past 30 years have diminished Lake Biwa's PP since the 1990s, impacting the phenology of PP dynamics. However, the L:S balance in PP and PBc has exhibited minimal change between the data from 1992 and the 2020-2021 period. These findings suggest that, although climate change and oligotrophication may reduce overall PP, they may not markedly alter the inedible/edible phytoplankton balance in terms of PP and PBc. Instead, as total PP declines, the production of small edible phytoplankton may decrease proportionally, potentially affecting trophic transfer efficiency and material cycling in Lake Biwa.


Asunto(s)
Cambio Climático , Monitoreo del Ambiente , Lagos , Fitoplancton , Lagos/química , Biomasa , Zooplancton , Estaciones del Año , Ecosistema
7.
Sci Total Environ ; 930: 172837, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38688360

RESUMEN

Microplastics could be ingested by many organisms, including zooplankton, involving bioaccumulation and biomagnification mechanisms a cross food webs. The information about microplastic ingestion by zooplankton keeps increasing worldwide. However, it is still limited for particle sizes under 300 µm (small microplastics, SMPs) and in areas such as Southeast Asia, which is considered one of the hotspots for plastic debris. This study aimed to characterize the size, shape, and polymer types of the SMPs ingested by the copepod Centropages furcatus in Si Chang Island (upper Gulf of Thailand). The study spans offshore and coastal waters, with data collected across wet, intermediate, and dry seasons. Using a semi-automated technique for micro-FTIR (Fourier-transform infrared) scanning spectroscopy for particle analysis, we found ingested SMPs in all samples. A total of 750 individuals of the calanoid Centropages furcatus were analyzed, finding 309 plastic particles and an average ingestion value of 0.41 ± 0.13 particles ind-1, one of the highest recorded values. All the particles were fragments, with a predominant size under 50 µm, and polymer types as Polypropylene (PP, 71 %), followed by Ethylene-Propylene-Diene-Monomer (EPDM, 16 %) and Polyethylene (PE, 7 %). Up to 470.2 particles m-3 were estimated to be retained by this calanoid species and potentially available for trophic transfer. The effect of rainfall on SMPs ingestion was inconclusive, with a non-significant observed tendency to higher ingestion values near the coastal area than offshore area, suggesting a decrease in particle exposure due to the runoff effect. Nevertheless, future studies should increase the frequency of surveys to arrive at better conclusions.


Asunto(s)
Copépodos , Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Tailandia , Animales , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Cadena Alimentaria , Tamaño de la Partícula , Ingestión de Alimentos , Plásticos/análisis , Zooplancton
8.
Bull Environ Contam Toxicol ; 112(4): 61, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602522

RESUMEN

Total mercury (Hg) concentrations and carbon (δ13C) and nitrogen (δ15N) stable isotopes were quantified among aquatic invertebrate and sediment samples collected from Keuka Lake in New York's Finger Lakes region to evaluate temporal and spatial variability in Hg bioaccumulation and trophic ecology among these lower trophic levels. Hg concentrations ranged from 6.3 to 158.8 ng/g (dry wt) across dreissenid mussel, zooplankton, and juvenile (< 10 mm) and adult (≥ 10 mm) mysid shrimp (Mysis diluviana) samples. Hg concentrations were higher in samples collected from the western basin in 2015 relative to those for samples collected from this basin in 2022 (p < 0.001). While no specific mechanisms could be identified to explain this difference, higher δ15N values for zooplankton collected in 2015 support conclusions regarding the role of zooplankton trophic status on Hg concentrations in these populations. Spatial patterns in Hg concentrations were of generally low variability among samples collected from the lake's east, west and south basins in 2022. Trophic positions as inferred by δ15N were represented by adult mysids > juvenile mysids > large zooplankton (≥ 500 µm) > dreissenid mussels ≥ small zooplankton (64-500 µm). Differences were evident among the regression slopes describing the relationships between sample Hg concentrations and δ15N values across the lake's three basins (p = 0.028). However, this was primarily attributed to high δ15N values measured in dreissenid mussels collected from the south basin in 2022. Biota sediment accumulation factors ranged from 0.2 to 2.3 and were highest for adult M. diluviana but mysid δ13C values generally supported a pelagic pathway of Hg exposure relative to benthic sediments. Overall, these results provide additional support regarding the contributions of lower trophic levels to Hg biomagnification in aquatic food-webs.


Asunto(s)
Cadena Alimentaria , Mercurio , Animales , Bioacumulación , Lagos , Ecología , Zooplancton
9.
Sci Data ; 11(1): 361, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600091

RESUMEN

Species assemblage composition of marine microfossils offers the possibility to investigate ecological and climatological change on time scales inaccessible using conventional observations. Planktonic foraminifera - calcareous zooplankton - have an excellent fossil record and are used extensively in palaeoecology and palaeoceanography. During the Last Glacial Maximum (LGM; 19,000 - 23,000 years ago), the climate was in a radically different state. This period is therefore a key target to investigate climate and biodiversity under different conditions than today. Studying LGM climate and ecosystems indeed has a long history, yet the most recent global synthesis of planktonic foraminifera assemblage composition is now nearly two decades old. Here we present the ForCenS-LGM dataset with 2,365 species assemblage samples collected using standardised methods and with harmonised taxonomy. The data originate from marine sediments from 664 sites and present a more than 50% increase in coverage compared to previous work. The taxonomy is compatible with the most recent global core top dataset, enabling direct investigation of temporal changes in foraminifera biogeography and facilitating seawater temperature reconstructions.


Asunto(s)
Foraminíferos , Fósiles , Zooplancton , Animales , Biodiversidad , Ecosistema
10.
Sci Total Environ ; 927: 172378, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604362

RESUMEN

The neonicotinoid pesticide imidacloprid has been used worldwide since 1992. As one of the most important chemicals used in pest control, there have been concerns that its run-off into rivers and lakes could adversely affect aquatic ecosystems, where zooplankton play a central role in the energy flow from primary to higher trophic levels. However, studies assessing the effects of pesticides at the species level have relied on a Daphnia-centric approach, and no studies have been conducted using species-level assessments on a broad range of zooplankton taxa. In the present study, we therefore investigated the acute toxicity of imidacloprid on 27 freshwater crustacean zooplankton (18 cladocerans, 3 calanoid copepods and 6 cyclopoid copepods). The experiment showed that a majority of calanoid copepods and cladocerans were not affected at all by imidacloprid, with the exception of one species each of Ceriodaphnia and Diaphasoma, while all six cyclopoid copepods showed high mortality rates, even at concentrations of imidacloprid typically found in nature. In addition, we found a remarkable intra-taxonomic variation in susceptibility to this chemical. As many cyclopoid copepods are omnivorous, they act as predators as well as competitors with other zooplankton. Accordingly, their susceptibility to imidacloprid is likely to cause different responses at the community level through changes in predation pressure as well as changes in competitive interactions. The present results demonstrate the need for species-level assessments of various zooplankton taxa to understand the complex responses of aquatic communities to pesticide disturbance.


Asunto(s)
Insecticidas , Neonicotinoides , Nitrocompuestos , Contaminantes Químicos del Agua , Zooplancton , Animales , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Zooplancton/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Insecticidas/toxicidad , Copépodos/efectos de los fármacos , Agua Dulce , Cladóceros/efectos de los fármacos
11.
Mar Environ Res ; 197: 106481, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593647

RESUMEN

Marine distribution of dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) is greatly affected by the community structures of bacteria, phytoplankton, and zooplankton. Spatial distributions of dissolved and particulate DMSP (DMSPd,p), and DMS were measured and their relationships with DMSP lyase activity (DLA), abundance of DMSP-consuming bacteria (DCB), and the community structures of phytoplankton, zooplankton, and bacteria were determined during summer in the South China Sea (SCS). The depth distributions of DMSPd,p exhibited a similar trend with Chl a, reaching their maxima in the mixing layer. The DMS concentration was positively correlated with DCB abundance and DLA, indicating that DCB and DMSP lyase had a significant effect on DMS production. High DMS concentrations in the horizontal distribution coincided with high DCB abundance and DLA and may be due to the rapid growth of phytoplankton resulting from the high dissolved inorganic nitrogen concentration brought by the cold vortices. Moreover, the highest copepod abundance at station G3 coincided with the highest DMS concentrations there among stations B4, F2, and G3. These results suggest that copepod may play an important role in DMS production. The bacterial SAR11 clade was positively correlated with DLA, indicating its significant contribution to DMSP degradation in the SCS. These findings contribute to the understanding of the effect of the community assemblage on DMSP/DMS distributions in the SCS dominated by mesoscale vortices.


Asunto(s)
Agua de Mar , Compuestos de Sulfonio , Animales , Agua de Mar/química , Azufre/metabolismo , Compuestos de Sulfonio/química , Compuestos de Sulfonio/metabolismo , Sulfuros/metabolismo , Bacterias/metabolismo , Fitoplancton , China , Zooplancton/metabolismo
12.
Sci Rep ; 14(1): 8192, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589522

RESUMEN

In Fram Strait, we combined underway-sampling using the remote-controlled Automated Filtration System for Marine Microbes (AUTOFIM) with CTD-sampling for eDNA analyses, and with high-resolution optical measurements in an unprecedented approach to determine variability in plankton composition in response to physical forcing in a sub-mesoscale filament. We determined plankton composition and biomass near the surface with a horizontal resolution of ~ 2 km, and addressed vertical variability at five selected sites. Inside and near the filament, plankton composition was tightly linked to the hydrological dynamics related to the presence of sea ice. The comprehensive data set indicates that sea-ice melt related stratification near the surface inside the sub-mesoscale filament resulted in increased sequence abundances of sea ice-associated diatoms and zooplankton near the surface. In analogy to the physical data set, the underway eDNA data, complemented with highly sampled phytoplankton pigment data suggest a corridor of 7 km along the filament with enhanced photosynthetic biomass and sequence abundances of sea-ice associated plankton. Thus, based on our data we extrapolated an area of 350 km2 in Fram Strait with enhanced plankton abundances, possibly leading to enhanced POC export in an area that is around a magnitude larger than the visible streak of sea-ice.


Asunto(s)
Plancton , Zooplancton , Animales , Biomasa , Plancton/genética , Zooplancton/genética , Fotosíntesis , Fitoplancton/genética , Regiones Árticas , Ecosistema , Cubierta de Hielo
13.
Environ Sci Technol ; 58(18): 7998-8008, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38629179

RESUMEN

Understanding microplastic exposure and effects is critical to understanding risk. Here, we used large, in-lake closed-bottom mesocosms to investigate exposure and effects on pelagic freshwater ecosystems. This article provides details about the experimental design and results on the transport of microplastics and exposure to pelagic organisms. Our experiment included three polymers of microplastics (PE, PS, and PET) ranging in density and size. Nominal concentrations ranged from 0 to 29,240 microplastics per liter on a log scale. Mesocosms enclosed natural microbial, phytoplankton, and zooplankton communities and yellow perch (Perca flavescens). We quantified and characterized microplastics in the water column and in components of the food web (biofilm on the walls, zooplankton, and fish). The microplastics in the water stratified vertically according to size and density. After 10 weeks, about 1% of the microplastics added were in the water column, 0.4% attached to biofilm on the walls, 0.01% within zooplankton, and 0.0001% in fish. Visual observations suggest the remaining >98% were in a surface slick and on the bottom. Our study suggests organisms that feed at the surface and in the benthos are likely most at risk, and demonstrates the value of measuring exposure and transport to inform experimental designs and achieve target concentrations in different matrices within toxicity tests.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Zooplancton , Animales , Lagos , Ecosistema , Cadena Alimentaria , Monitoreo del Ambiente , Fitoplancton , Percas/metabolismo
14.
Environ Pollut ; 349: 123918, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574946

RESUMEN

The emergence of microplastics as a global contaminant of concern has coincided with climate change induced temperature warming in aquatic ecosystems. Warmer temperatures have been previously demonstrated to increase the toxicity of certain contaminants, but it is currently unclear if microplastics are similarly affected by temperature. As aquatic organisms simultaneously face microplastic pollution and both increasing and variable temperatures, understanding how temperature affects microplastic toxicity is pertinent in this era of human-induced global change. In this study, we investigate the effects of environmentally relevant microplastic exposure to Daphnia pulex survival, reproduction, and growth at three different temperatures. To simulate an environmentally relevant exposure scenario, we created microplastics with physicochemical characteristics often detected in nature, and exposed organisms to concentrations close to values reported in inland waters and 1-2 orders of magnitude higher. The three temperatures tested in this experiment included 12 °C, 20 °C, and 24 °C, to simulate cool/springtime, current, and warming scenarios. We found the highest concentration of microplastics significantly impacted survival and total offspring compared to the control at 20 °C and 24 °C, but not at 12 °C. The adverse effect of high microplastic concentrations on total offspring at warmer temperatures was driven by the high mortality of the juveniles. We observed no effect of microplastics on time to first reproduction or average growth rate at any temperature. Warmer temperatures exacerbated microplastic toxicity, although only for concentrations of microplastics not currently observed in nature, but these concentrations are possible in pollution hotspots, through pulses pollution events or future worsening environmental contamination. The results of our study illustrate the continued need to further investigate climate change related co-stressors such as warming temperatures in microplastic and pollution ecology, through environmentally realistic exposure scenarios.


Asunto(s)
Cambio Climático , Daphnia , Microplásticos , Contaminantes Químicos del Agua , Zooplancton , Microplásticos/toxicidad , Animales , Contaminantes Químicos del Agua/toxicidad , Zooplancton/efectos de los fármacos , Daphnia/efectos de los fármacos , Temperatura , Reproducción/efectos de los fármacos
15.
Sci Rep ; 14(1): 9815, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684814

RESUMEN

Kelp forest trophic cascades have been extensively researched, yet indirect effects to the zooplankton prey base and gray whales have not been explored. We investigate the correlative patterns of a trophic cascade between bull kelp and purple sea urchins on gray whales and zooplankton in Oregon, USA. Using generalized additive models (GAMs), we assess (1) temporal dynamics of the four species across 8 years, and (2) possible trophic paths from urchins to kelp, kelp as habitat to zooplankton, and kelp and zooplankton to gray whales. Temporal GAMs revealed an increase in urchin coverage, with simultaneous decline in kelp condition, zooplankton abundance and gray whale foraging time. Trophic path GAMs, which tested for correlations between species, demonstrated that urchins and kelp were negatively correlated, while kelp and zooplankton were positively correlated. Gray whales showed nuanced and site-specific correlations with zooplankton in one site, and positive correlations with kelp condition in both sites. The negative correlation between the kelp-urchin trophic cascade and zooplankton resulted in a reduced prey base for gray whales. This research provides a new perspective on the vital role kelp forests may play across multiple trophic levels and interspecies linkages.


Asunto(s)
Cadena Alimentaria , Kelp , Erizos de Mar , Ballenas , Zooplancton , Animales , Zooplancton/fisiología , Kelp/fisiología , Ballenas/fisiología , Erizos de Mar/fisiología , Ecosistema , Oregon
16.
Bioresour Technol ; 400: 130694, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614149

RESUMEN

Recycling waste into commercial products is a profitable strategy but the lifetime of immobilized cells for long-term waste treatment remains a problem. This study presents alternative cell immobilization methods for valorizing food waste (FW) and oily food waste (OFW) to microbial carotenoids and proteins. Carriers (pumice or smectite), magnetite nanoparticles, and isolated photosynthetic bacteria were integrated to obtain magnetically recoverable bacteria-pumice and bacteria-smectite nanocomposites. After recycling five batches (50 d), chemical oxygen demand removal from FW reached 76% and 78% with the bacteria-pumice and bacteria-smectite nanocomposite treatments, respectively, and oil degradation in OFW reached 71% and 62%, respectively. Destructive changes did not occur, suggesting the durability of nanocomposites. The used nanocomposites had no impact on the lifespan of Moina macrocopa or water quality as assessed by toxicity analysis. Bacteria-pumice and bacteria-smectite nanocomposites are efficient for food waste recycling and do not require secondary treatment before being discharged into the environment.


Asunto(s)
Bacterias , Células Inmovilizadas , Nanocompuestos , Silicatos , Zooplancton , Nanocompuestos/química , Silicatos/química , Silicatos/farmacología , Animales , Células Inmovilizadas/metabolismo , Alimentos , Reciclaje , Análisis de la Demanda Biológica de Oxígeno , Residuos , Biodegradación Ambiental , Aceites/química , Alimento Perdido y Desperdiciado
17.
Sci Total Environ ; 928: 172489, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621539

RESUMEN

There is a growing interest in the impact of acoustic pollution on aquatic ecosystems. Currently, research has primarily focused on hearing species, particularly fishes and mammals. However, species from lower trophic levels, including many invertebrates, are less studied despite their ecological significance. Among these taxa, studies examining the effects of sound on holozooplankton are extremely rare. This literature review examines the effects of sound on both marine and freshwater zooplankton. It highlights two differences: the few used organisms and the types of sound source. Marine studies focus on the effects of very intense acute sound on copepods, while freshwater studies focus on less intense chronic sound on cladocerans. But, in both, various negative effects are reported. The effects of sound remain largely unknown, although previous studies have shown that zooplankton can detect vibrations using mechanoreceptors. The perception of their environment can be affected by sounds, potentially causing stress. Limited research suggests that sound may affect the physiology, behaviour, and fitness of zooplankton. Following this review, I highlight the potential to use methods from ecology, ecotoxicology, and parasitology to study the effects of sound at the individual level, including changes in physiology, development, survival, and behaviour. Responses to sound, which could alter species interactions and population dynamics, are expected to have larger-scale implications with bottom-up effects, such as changes in food web dynamics and ecosystem functioning. To improve the study of the effect of sound, to better use zooplankton as biological models and as bioindicators, researchers need to better understand how they perceive their acoustic environment. Consequently, an important challenge is the measurement of particle motion to establish useable dose-response relationships and particle motion soundscapes.


Asunto(s)
Ecosistema , Zooplancton , Zooplancton/fisiología , Animales , Sonido , Monitoreo del Ambiente/métodos , Copépodos/fisiología
18.
Mar Environ Res ; 197: 106455, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507983

RESUMEN

Microplastics have been reported to be present in zooplankton, yet questions persist regarding their fate and dynamics within biota. We selected the commercial mysid shrimp, Mesopodopsis orientalis, as the focal zooplankton for this study due to their crucial role in our study area, the Inner Gulf of Thailand in January 2022. We investigated the presence of microplastics in mysid bodies and fecal pellets, examining both attached microplastics on external body parts and those ingested. In addition, we conducted microplastic feeding experiments, exposing mysids to various treatments of microplastics. The results of the field investigation indicate that mysids exhibited an average of 0.12 ± 0.03 microplastic items/mysid from whole-body samples. The shape, type, and color of microplastics found in mysids were similar to those present in seawater, with blue PET microfibers being the most prevalent. Our observations on live mysids revealed that microplastics were acquired through ingestion and adherence to appendages and exoskeletons. Microplastics were observed in mysid's fecal pellets at 0.09 ± 0.03 items/mysid, while microplastics adhering to the mysid's body and appendages were observed at 0.10 ± 0.04 items/mysid. The sizes of microplastics extracted from preserved mysids ranged from 58 µm to 4669 µm, with median of 507 µm. The laboratory experiments revealed that the presence of microalgae enhanced microplastic ingestion in mysids; microplastics incubated with a cyanobacterium, Oscillatoria sp., and diatom Navicula sp. significantly increased the number of microplastic particles ingested by mysids. This study showed that microplastics can be more ingested in mysids, especially when food items are present. Microplastic fate in these animals may involve expulsion into the environment or adherence, potentially facilitating their transfer up the marine food web.


Asunto(s)
Diatomeas , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Crustáceos , Zooplancton , Ingestión de Alimentos
19.
Chemosphere ; 353: 141577, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430937

RESUMEN

Pollution in aquatic ecosystems has been increasing drastically worldwide changing their water quality. Therefore, species must be adapted to these new scenarios. In Aguascalientes City, four representative urban reservoirs contain lead in the water column and extremely high concentrations of sediments. Therefore, an analysis was conducted to evaluate the resilience of zooplankton species to lead exposure in each reservoir using dormant and organisms. Results demonstrated a decrease range from 57.5 to 22.5% in overall diapausing egg hatching rate, while survivorship rate also decreased from 98 to 54% when organisms were exposed to the water of the four reservoirs and increasing lead concentrations. When Pb exposure increased, results showed a global negative effect on both hatching rate (decreasing from 58 to 30% at 0.09 mg L-1) and survivorship levels (decreasing from 100% to 0.07% at 0.09 mg L-1). We provide Species Sensitivity Distribution for both water reservoir dilutions and lead concentration to analyze diapausing eggs hatching and survivorship of offspring in the presence of same polluted conditions or lead of the autochthonous species found in reservoirs. Furthermore, specific analysis with two populations of the cladoceran Moina macrocopa showed clear dissimilar hatching patterns that suggested a different adaptive mechanism. Niagara population shows a hatching rate of approximately 25% in the first two days of reservoir water exposure, while UAA population drastically increased hatching rate to 75% on exposure at day seven. We provide the first record of bioaccumulation in ephippia of M. macrocopa.


Asunto(s)
Cladóceros , Resiliencia Psicológica , Rotíferos , Contaminantes Químicos del Agua , Animales , Plomo/toxicidad , Ecosistema , México , Contaminantes Químicos del Agua/toxicidad , Eutrofización , Zooplancton
20.
Sensors (Basel) ; 24(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38544222

RESUMEN

Bioluminescence is light produced by organisms through chemical reactions. In most cases, bioluminescent organisms produce light in response to mechanical stimulation, including from shear around objects moving in the water. Many phytoplankton and zooplankton are capable of producing bioluminescence, which is commonly measured as bioluminescence potential, defined as mechanically stimulated light measured inside of a chambered pump-through bathyphotometer. We have developed a numerical model of a pump-through bathyphotometer and simulated flow using Lagrangian particles as an approximation for bioluminescent marine plankton taxa. The results indicate that all particles remain in the detection chamber for a residence time of at least 0.25 s. This suggests that the total first flash of bioluminescent autotrophic and heterotrophic dinoflagellates will be measured based on the existing literature regarding their flash duration. We have found low sensitivity of particle residence time to variations in particle size, density, or measurement depth. In addition, the results show that a high percentage of organisms may experience stimulation well before the detection chamber, or even multiple stimulations within the detection chamber. The results of this work serve to inform the processing of current bioluminescent potential data and assist in the development of future instruments.


Asunto(s)
Dinoflagelados , Animales , Dinoflagelados/fisiología , Fitoplancton , Simulación por Computador , Plancton , Zooplancton
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...