Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 188: 114504, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823880

RESUMEN

(Poly)phenols inhibit α-amylase by directly binding to the enzyme and/or by forming starch-polyphenol complexes. Conventional methods using starch as the substrate measure inhibition from both mechanisms, whereas the use of shorter oligosaccharides as substrates exclusively measures the direct interaction of (poly)phenols with the enzyme. In this study, using a chromatography-based method and a short oligosaccharide as the substrate, we investigated the detailed structural prerequisites for the direct inhibition of human salivary and pancreatic α-amylases by over 50 (poly)phenols from the (poly)phenol groups: flavonols, flavones, flavanones, flavan-3-ols, polymethoxyflavones, isoflavones, anthocyanidins and phenolic acids. Despite being structurally very similar (97% sequence homology), human salivary and pancreatic α-amylases were inhibited to different extents by the tested (poly)phenols. The most potent human salivary α-amylase inhibitors were luteolin and pelargonidin, while the methoxylated anthocyanidins, peonidin and petunidin, significantly blocked pancreatic enzyme activity. B-ring methoxylation of anthocyanidins increased inhibition against both human α-amylases while hydroxyl groups at C3 and B3' acted antagonistically in human salivary inhibition. C4 carbonyl reduction, or the positive charge on the flavonoid structure, was the key structural feature for human pancreatic inhibition. B-ring glycosylation did not affect salivary enzyme inhibition, but increased pancreatic enzyme inhibition when compared to its corresponding aglycone. Overall, our findings indicate that the efficacy of interaction with human α-amylase is mainly influenced by the type and placement of functional groups rather than the number of hydroxyl groups and molecular weight.


Asunto(s)
alfa-Amilasas Pancreáticas , Polifenoles , alfa-Amilasas Salivales , Humanos , Relación Estructura-Actividad , Polifenoles/farmacología , Polifenoles/química , alfa-Amilasas Salivales/metabolismo , alfa-Amilasas Salivales/antagonistas & inhibidores , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , alfa-Amilasas Pancreáticas/metabolismo , Antocianinas/química , Antocianinas/farmacología , Antocianinas/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , alfa-Amilasas/química , Saliva/enzimología , Saliva/química
2.
Mar Drugs ; 20(3)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35323488

RESUMEN

A rapid and sensitive method using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) was applied for the analysis of the metabolic profile of acarviostatin-containing aminooligosaccharides derived from Streptomyces sp. HO1518. A total of ninety-eight aminooligosaccharides, including eighty potential new compounds, were detected mainly based on the characteristic fragment ions originating from quinovosidic bond cleavages in their molecules. Following an LC-MS-guided separation technique, seven new aminooligosaccharides (10-16) along with four known related compounds (17-20) were obtained directly from the crude extract of strain HO1518. Compounds 10-13 represent the first examples of aminooligosaccharides with a rare acarviostatin II02-type structure. In addition, all isolates displayed considerable inhibitory effects on three digestive enzymes, which revealed that the number of the pseudo-trisaccharide core(s), the feasible length of the oligosaccharides, and acyl side chain exerted a crucial influence on their bioactivities. These results demonstrated that the UPLC-QTOF-MS/MS-based metabolomics approach could be applied for the rapid identification of aminooligosaccharides and other similar structures in complex samples. Furthermore, this study highlights the potential of acylated aminooligosaccharides with conspicuous α-glucosidase and lipase inhibition for the future development of multi-target anti-diabetic drugs.


Asunto(s)
Inhibidores de Glicósido Hidrolasas/química , Lipasa/antagonistas & inhibidores , Oligosacáridos/química , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Streptomyces/química , Sacarasa/antagonistas & inhibidores , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , alfa-Glucosidasas/química
3.
J Biomol Struct Dyn ; 40(4): 1801-1812, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33054572

RESUMEN

Type II Diabetes Mellitus (DM) is caused by insulin resistance in peripheral tissue and impaired insulin secretion through a dysfunction of the pancreatic ß-cell. Acarbose is an anti-DM drug, it is effective but its continuous use may lead to undesirable side effects. Hence, the development of novel drugs from natural source that have both anti-diabetic and anti-oxidant activities, with little or no side effect during long-term use is of great importance. To investigate the anti-DM and anti-oxidant phyto-constituents of Chromoleana odorata, e-pharmacophore model was generated using human pancreatic α-amylase (HPA) standard inhibitor, Acarbose to map important pharmacophoric features of HPA, and used to screen several phyto-constituents of C. odorata to match at least 4 sites of the generated hypothesis. Glide and Induced Fit Docking followed by Prime MM-GBSA calculation, drug-likeness and ADME studies were employed for high fitness (>1.0) compounds retrieved from e-pharmacophore screening process. The drug-likeness properties of the lead compounds, Quercetin and Ombuin were analyzed taking into account the Lipinski's and Veber's rules. Further, machine-learning approach was used to generate QSAR model. The computed model, kpls_desc_19 was used to predict the bioactivity (pIC50) of Quercetin and Ombuin. Phyto-constituents of C. odorata; Quercetin and Ombuin have shown better and promising results when compared to that of the standard, acarbose. Based on the present study, orally delivered Quercetin and Ombuin from C. odorata are relatively better inhibitor of HPA, thus they can be a useful therapeutic candidate in the management/treatment of DM when compared to acarbose.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Chromolaena , Diabetes Mellitus Tipo 2 , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Fitoquímicos/farmacología , Acarbosa/farmacología , Chromolaena/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Simulación del Acoplamiento Molecular
4.
Food Funct ; 12(23): 11862-11871, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34734615

RESUMEN

In this study, the mechanisms of the delay of starch digestion by luteolin were revealed by studying the luteolin-PPA (porcine pancreatic α-amylase) interaction and luteolin-starch interaction. The luteolin-PPA interaction was investigated by inhibitory kinetics analysis, fluorescence quenching, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy and molecular docking. The results of the inhibitory kinetics revealed that luteolin was a mixed-type inhibitor of PPA and that the inhibitory action was reversible. Fluorescence spectroscopy (including fluorescence quenching and thermodynamics) and molecular docking analyses indicated that hydrogen bonds and hydrophobic forces were the main forces between PPA and luteolin. CD and FT-IR spectroscopy analyses showed that the interaction between luteolin and PPA changed the secondary structure of PPA and induced a decline in its activity. In addition, the luteolin-starch interaction was also studied using UV-visible absorption and X-ray diffraction analyses. These indicated that luteolin could bind with PPA, and that hydrogen bonds and van der Waals forces may be present. Overall, luteolin delayed starch digestion not only by binding with PPA but also by binding with starch. Thus, luteolin has the potential to prevent and control diabetes by being added into starch-based food to delay starch digestion.


Asunto(s)
Digestión/efectos de los fármacos , Luteolina , Almidón/metabolismo , Animales , Luteolina/química , Luteolina/metabolismo , Luteolina/farmacología , Modelos Biológicos , Simulación del Acoplamiento Molecular , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Unión Proteica , Almidón/química , Porcinos
5.
Carbohydr Res ; 499: 108220, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33341220

RESUMEN

Diabetes mellitus is a multifactorial disease, which is frequently complicated by the development of hyperglycaemia-induced chronic complications. The therapy of diabetes mellitus often requires combinations of two or more drugs in order both to control glycaemic levels and to prevent hyperglycaemia-induced dangerous affairs. The application of multi-target agents, which are able to control simultaneously several pathogenic mechanisms, represents a useful alternative and, in fact, their discovery is a pursued aim of the research. Some (5-arylidene-4-oxo-2-thioxothiazolidin-3-yl)acetic acids, which we had previously reported as inhibitors of selected enzymes critically implicated in diabetes mellitus, were tested against pancreatic α-amylase and intestinal α-glucosidase. These enzymes catalyse the hydrolysis of dietary oligo- and polysaccharides into monosaccharides and, consequently, are responsible for postprandial hyperglycaemia; therefore, their inhibition is one of the possible strategies to control glycaemic levels in diabetes mellitus. In addition, we investigated the aggregation tendency of the tested compounds, through direct and indirect methods, in order to evaluate the mechanism of their multiple action and discover if aggregation may contribute to the inhibition of the target enzymes. Overall, compounds 1, 3 and 4 exhibited the most favourable profile since they were shown to act as multi-target inhibitors of enzymes involved in pathways related to diabetes mellitus, without producing aggregates even at high micromolar concentrations and, therefore, can be promising agents for further developments.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/farmacología , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Tiazolidinas/farmacología , Diabetes Mellitus/metabolismo , Inhibidores de Glicósido Hidrolasas/efectos adversos , Inhibidores de Glicósido Hidrolasas/química , Humanos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/química , Ligandos , Estructura Molecular , alfa-Amilasas Pancreáticas/metabolismo , Tiazolidinas/efectos adversos , Tiazolidinas/química
6.
PLoS One ; 15(4): e0231815, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32348327

RESUMEN

Reducing carbohydrates digestion by having a low glycaemic index (GI) foods has been linked to weight loss. Inhibiting related enzymes is an alternative way to decrease carbohydrate digestion. RCM-107 (Slimming Plus), an eight-herb formula that is modified from RCM-104, indicated significant weight-loss action in clinical trials. However, no published research has studied its mechanism of action on reducing carbohydrate absorption via suppressing the activities of porcine pancreatic alpha-amylase (PPA). In this paper, we used fluorescence PPA inhibition assay to investigate the inhibitory effects of RCM-107 and the individual herbs present in this herbal mixture on amylase activity. Subsequently, molecular docking predicted the key active compounds that may be responsible for the enzyme inhibition. According to our results, both the RCM-107 formula and several individual herbs displayed α-amylase inhibitory effects. Also, marginal synergistic effects of RCM-107 were detected. In addition, alisol B, (-)-epigallocatechin-3-gallate (EGCG) and plantagoside have been predicted as the key active compounds that may be responsible for the α-amylase inhibition effect of RCM-107 according to inter-residue contact analysis. Finally, Glu233, Gln63, His305, Asp300 and Tyr151 are predicted to be markers of important areas with which potential amylase inhibitors would interact. Therefore, our data has provided new knowledge on the mechanisms of action of the RCM-107 formula and its individual herbal ingredients for weight loss, in terms of decreasing carbohydrate digestion via the inhibition of pancreatic alpha-amylase.


Asunto(s)
Fármacos Antiobesidad/farmacología , Medicamentos Herbarios Chinos/farmacología , Obesidad/tratamiento farmacológico , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Pérdida de Peso/efectos de los fármacos , Animales , Fármacos Antiobesidad/química , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Catequina/análogos & derivados , Catequina/química , Catequina/farmacología , Colestenonas/química , Colestenonas/farmacología , Medicamentos Herbarios Chinos/química , Pruebas de Enzimas , Flavanonas/química , Flavanonas/farmacología , Glucósidos/química , Glucósidos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Obesidad/metabolismo , alfa-Amilasas Pancreáticas/química , alfa-Amilasas Pancreáticas/metabolismo , Porcinos
7.
Nat Prod Res ; 34(6): 759-765, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30445852

RESUMEN

Silymarin is a mixture of flavonolignans extracted from the fruit of Silybum marianum (milk thistle). The latter is used as a medicinal plant to treat liver and gallbladder disorders. Recently, silymarin has been investigated for its effects against diabetes mellitus, and shown to reduce serum levels of glucose in model animals and in clinical trials. This effect can be explained mainly by the protective effect of silymarin against pancreatic beta-cells, but the involvement of other mechanisms is possible. We demonstrated the α-amylase inhibitory activity of silymarin and investigated the components responsible for this effect. Two major flavonolignans, silibinin and silychristin, did not show inhibition against α-amylase, but two novel silychristin derivatives conjugated with dehydrodiconiferyl alcohol were isolated as the mildly inhibiting components of silymarin. Further analyses indicated the presence of various silychristin derivatives in silymarin that may act synergistically to show α-amylase inhibitory activity.[Formula: see text].


Asunto(s)
Alcoholes/química , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Silybum marianum/química , Silimarina/química , Alcoholes/farmacología , Animales , Antioxidantes/farmacología , Páncreas/efectos de los fármacos , Páncreas/enzimología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Silimarina/farmacología
8.
J Agric Food Chem ; 67(40): 11108-11118, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31496243

RESUMEN

A blood glucose level lowering effect is postulated for polyphenols (PPs), which is in part attributed to the inhibition of α-amylase. To estimate structure-effect relationships, chlorogenic acid (CA), phlorizin (PHL), epigallocatechin gallate (EGCG), epicatechin (EC), and malvidin-3-glucoside (Mlv-3-glc) were used as inhibitors in an enzyme assay, on the basis of the conversion of GalG2CNP by α-amylase. The detection of CNP was performed by UV/vis spectroscopy. The data reveal that the inhibitor strength decreases as follows: EGCG > Mlv-3-glc > EC > PHL ∼ CA. Detection of the substrate conversion by isothermal titration calorimetry supports these results. All PPs showed mixed inhibition, except for CA and EGCG wherein the competitive proportion was predominant. Investigations by saturation transfer difference NMR revealed interaction of PPs with α-amylase prevalently based on interactions with the aromatic or conjugated system. A correlation between the extent of the conjugated system and the IC50 of the PP could be found.


Asunto(s)
Antocianinas/química , Catequina/análogos & derivados , Catequina/química , Ácido Clorogénico/química , Inhibidores Enzimáticos/química , Glucósidos/química , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Florizina/química , Animales , Calorimetría , alfa-Amilasas Pancreáticas/química , Porcinos
9.
Molecules ; 24(18)2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491840

RESUMEN

To improve the current understanding of the role of stilbenoids in the management of diabetes, the inhibition of the pancreatic α-amylase by resveratrol derivatives was investigated. To approach in a systematic way, the mechanistic and structural aspects of the interaction, potential bioactive agents were prepared as single molecules, that were used for the biological evaluation of the determinants of inhibitory binding. Some dimeric stilbenoids-in particular, viniferin isomers- were found to be better than the reference drug acarbose in inhibiting the pancreatic α-amylase. Racemic mixtures of viniferins were more effective inhibitors than the respective isolated pure enantiomers at an equivalent total concentration, and displayed cooperative effects not observed with the individual enantiomers. The molecular docking analysis provided a thermodynamics-based rationale for the measured inhibitory ability and for the observed synergistic effects. Indeed, the binding of additional ligands on the surface of the alpha-amylase was found to decrease the dissociation constant of inhibitors bound to the active site of the enzyme, thus providing a mechanistic rationale for the observed inhibitory synergies.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Resveratrol/química , Resveratrol/farmacología , Sitios de Unión , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad Cuantitativa , Resveratrol/análogos & derivados
10.
J Mol Model ; 25(9): 275, 2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31451948

RESUMEN

Amylases are interesting targets for antidiabetic drugs because their inhibition is able to lower glycaemia without the need of hormonal control, as promoted by insulin or glibenclamide. In this context, the comparison between the binding features of α-amylases with their substrate and known inhibitors may provide insights aiming at the discovery of new antidiabetic drugs. In this work, the structure of the porcine pancreatic α-amylase was modelled with the acarbose pentasaccharide inhibitor, and used in structure-based virtual screening simulations based on a library containing the structures of amylose (AMY), acarbose (ACA) and the more representative structures of condensed tannin (CTN) and hydrolysable tannin (HTN). After validation of the methodology by redocking (mean rmsd ~ 0.8 Å), the scores provided by programs AutoDock/Molegro were contradictory (- 1.5/- 23.3; - 3.5/- 24.6; - 4.3/- 14.6; -/- 19.5 for AMY, ACA, CTN and HTN respectively), indicating that a more sensitive methodology was necessary. The ΔGbinding was calculated by the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, which indicated that the HTN, ACA and CTN had higher affinities for the enzyme regarding the AMY substrate, with values of - 350.0, - 346.2, - 320.5 and - 209.2 kJ mol-1, respectively. The predicted relative affinities of HTN and CTN are in agreement with those obtained experimentally. The results provided useful information for the characterization of tannin binding to α-amylase, which can be applied in future studies aiming at finding new hypoglycaemic molecules among natural products.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Taninos Hidrolizables/farmacología , Simulación de Dinámica Molecular , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Animales , Inhibidores Enzimáticos/metabolismo , Taninos Hidrolizables/metabolismo , Hipoglucemiantes/farmacología , alfa-Amilasas Pancreáticas/metabolismo , Unión Proteica , Sus scrofa/metabolismo
11.
ACS Chem Biol ; 14(8): 1751-1759, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31241898

RESUMEN

De novo macrocyclic peptides, derived using selection technologies such as phage and mRNA display, present unique and unexpected solutions to challenging biological problems. This is due in part to their unusual folds, which are able to present side chains in ways not available to canonical structures such as α-helices and ß-sheets. Despite much recent interest in these molecules, their folding and binding behavior remains poorly characterized. In this work, we present cocrystallization, docking, and solution NMR structures of three de novo macrocyclic peptides that all bind as competitive inhibitors with single-digit nanomolar Ki to the active site of human pancreatic α-amylase. We show that a short stably folded motif in one of these is nucleated by internal hydrophobic interactions in an otherwise dynamic conformation in solution. Comparison of the solution structures with a target-bound structure from docking indicates that stabilization of the bound conformation is provided through interactions with the target protein after binding. These three structures also reveal a surprising functional convergence to present a motif of a single arginine sandwiched between two aromatic residues in the interactions of the peptide with the key catalytic residues of the enzyme, despite little to no other structural homology. Our results suggest that intramolecular hydrophobic interactions are important for priming binding of small macrocyclic peptides to their target and that high rigidity is not necessary for high affinity.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , alfa-Amilasas Pancreáticas/metabolismo , Péptidos Cíclicos/metabolismo , Dominio Catalítico , Cristalización , Humanos , Simulación del Acoplamiento Molecular , alfa-Amilasas Pancreáticas/química , Unión Proteica , Conformación Proteica , Pliegue de Proteína
12.
Food Chem ; 283: 468-474, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30722900

RESUMEN

The binding interactions between young apple polyphenols and porcine pancreatic α-amylase were investigated through isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) and molecular docking. The results obtained were compared with those obtained through inhibition kinetics and fluorescence quenching. It was found that binding of tannic acid, chlorogenic acid, caffeic acid and epicatechin with α-amylase is an exothermal process, with the binding constants in the order of tannic acid > chlorogenic acid > caffeic acid > epicatechin. This is consistent with the orders of reciprocal of competitive inhibition constant and fluorescence quenching constant. The binding energy obtained through molecular docking showed the same order, except for epicatechin. These results are consistent with the inhibition of α-amylase being caused by the binding of the polyphenols with the enzyme. In addition, from the fluorescence quenching and DSC data, total polyphenols, tannic acid, chlorogenic acid and caffeic acid were found to partially unfold the enzyme structure.


Asunto(s)
Malus/química , alfa-Amilasas Pancreáticas/metabolismo , Polifenoles/metabolismo , Animales , Sitios de Unión , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo , Calorimetría , Dominio Catalítico , Ácido Clorogénico/química , Ácido Clorogénico/metabolismo , Malus/metabolismo , Simulación del Acoplamiento Molecular , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Polifenoles/química , Porcinos , Taninos/química , Taninos/metabolismo , Termodinámica
13.
J Enzyme Inhib Med Chem ; 34(1): 577-588, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30724629

RESUMEN

α-Amylase has been considered an important therapeutic target for the management of type 2 diabetes mellitus (T2DM), decreasing postprandial hyperglycaemia (PPHG). In the present work, a panel of 40 structurally related flavonoids was tested, concerning their ability to inhibit α-amylase activity, using a microanalysis screening system, an inhibitory kinetic analysis and molecular docking calculations. From the obtained results, it was possible to observe that the flavone with a -Cl ion at 3-position of C-ring, an -OH group at 3'- and 4'- positions of B-ring and at 5- and 7- positions of A-ring and the C2 = C3 double bond, was the most active tested flavonoid, through competitive inhibition. In conclusion, some of the tested flavonoids have shown promising inhibition of α-amylase and may be considered as possible alternatives to the modulation of T2DM.


Asunto(s)
Flavonoides/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Dosis-Respuesta a Droga , Flavonoides/síntesis química , Flavonoides/química , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Humanos , Estructura Molecular , alfa-Amilasas Pancreáticas/metabolismo , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
14.
Mar Drugs ; 16(11)2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30360574

RESUMEN

Five new acylated aminooligosaccharides (1⁻5), together with one known related analogue (6), were isolated from Streptomyces sp. HO1518. Their structure was identified by extensive spectroscopic analysis, including 1D and 2D NMR data and high resolution electrospray ionization mass spectrometry (HRESIMS), and by comparison with those reported in the literature. All of the new compounds showed more promising porcine pancreatic α-amylase (PPA) inhibitory activities than the clinical drug acarbose, indicating them as potential pharmaceutical drug leads toward type II diabetes.


Asunto(s)
Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Oligosacáridos/química , Oligosacáridos/farmacología , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Streptomyces/química , Animales , Secuencia de Carbohidratos , Proliferación Celular/efectos de los fármacos , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Oligosacáridos/aislamiento & purificación , Porcinos
15.
Int J Biol Macromol ; 120(Pt B): 2589-2596, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30195612

RESUMEN

In this study, lotus leaf flavonoids (LLF) were found to show a notable inhibition activity on α-amylase in a mixed-type manner with IC50 value of (5.58 ±â€¯0.10) mg/mL. The intrinsic fluorescence of α-amylase was quenched by the interaction with LLF through a static quenching mechanism, and LLF-α-amylase complex was spontaneously formed mainly driven by the hydrophobic interaction and hydrogen bonding. Multispectroscopic analyses (synchronous fluorescence, three-dimensional fluorescence, circular dichroism (CD) and fourier transform infrared spectra (FT-IR)) comprehensively demonstrated that the binding of LLF to α-amylase would change the conformation and microenvironment of α-amylase, resulting in inhibiting the enzyme activity. The present study indicated that LLF had potential to be as an ingredient in functional food for the prevention of type-2 diabetes.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Lotus/química , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Hojas de la Planta/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/metabolismo , Flavonoides/metabolismo , Cinética , alfa-Amilasas Pancreáticas/metabolismo , Termodinámica
16.
Biochemistry ; 57(37): 5384-5387, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30180544

RESUMEN

Helianthamide is a potent inhibitor of human pancreatic α-amylase (HPA) ( KI = 0.01 nM) produced by the Caribbean sea anemone Stichodactyla helianthus. Helianthamide was previously shown to be structurally homologous to the ß-defensins and represents a new structural class of protein inhibitors of α-amylase. To understand the source of this potent inhibition, we performed site-directed mutagenesis studies on helianthamide fusion proteins. A novel YIYH inhibitory motif that interacts with conserved active site residues was originally proposed as being central to inhibitory activity based on the X-ray crystal structure of the porcine pancreatic α-amylase-helianthamide complex. However, variants in which these polar residues were replaced, individually, with alanine or phenylalanine bound only 5-46-fold more weakly than wild-type helianthamide, suggesting modest contributions from these interactions. In contrast, individual replacement of helianthamide's six cysteine residues with alanine resulted in much larger decreases in potency (a ≤1.3 × 104 increase in KI compared to that of the wild type). In a complementary approach, a series of small peptides based on helianthamide's sequence were synthesized and tested. Of these 19 synthetic peptides, only two showed any appreciable affinity for HPA, with inhibition constants of 141 and 396 µM, significantly higher than that of intact helianthamide. These results suggest that helianthamide's potent HPA inhibition does not rely so much on the accumulation of individual polar contacts but rather its ability to form an extensive hydrophobic interface with the enzyme and occlude the active site cleft.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Anémonas de Mar/química , Animales , Humanos , Conformación Proteica
17.
Food Chem ; 258: 164-173, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-29655719

RESUMEN

The effects of tea polyphenols on binding of porcine pancreatic α-amylase (PPA) with normal maize starch granules were studied through solution depletion assays, fluorescence spectroscopy and initial rate kinetics. Only polyphenols which have inhibitory activity against PPA increased the binding of PPA with starch. The results are consistent with a binding equilibrium between polyphenols, starch and PPA. The dissociation constant (Kd) for PPA binding was decreased by tea polyphenols, with the effects greater for theaflavins than catechins and for galloylated than non-galloylated polyphenols. Tea polyphenols were also shown to increase the binding rate of PPA to starch. In addition, there were positive linear correlations between 1/Kd and reciprocal of competitive inhibition constant (1/Kic) and between 1/Kd and fluorescence quenching constant (KFQ). Despite the greater amount of PPA on the granules, starch hydrolysis is reduced because the polyphenol inhibition of PPA persists after binding to starch.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Polifenoles/farmacología , Almidón/metabolismo , Té/química , alfa-Amilasas/metabolismo , Animales , Biflavonoides/farmacología , Catequina/farmacología , Hidrólisis , Cinética , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Polifenoles/metabolismo , Espectrometría de Fluorescencia , Almidón/química , Porcinos , Zea mays/química , alfa-Amilasas/antagonistas & inhibidores
18.
Nutrients ; 10(3)2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29495635

RESUMEN

In the current study, we investigated the inhibitory activity of pyridoxine, pyridoxal, and pyridoxamine, against various digestive enzymes such as α-glucosidases, sucrase, maltase, and glucoamylase. Inhibition of these enzymes involved in the absorption of disaccharide can improve post-prandial hyperglycemia due to a carbohydrate-based diet. Pyridoxal (4.14 mg/mL of IC50) had the highest rat intestinal α-glucosidase inhibitory activity, followed by pyridoxamine and pyridoxine (4.85 and 5.02 mg/mL of IC50, respectively). Pyridoxal demonstrated superior inhibition against maltase (0.38 mg/mL IC50) and glucoamylase (0.27 mg/mLIC50). In addition, pyridoxal showed significant higher α-amylase inhibitory activity (10.87 mg/mL of IC50) than that of pyridoxine (23.18 mg/mL of IC50). This indicates that pyridoxal can also inhibit starch hydrolyzing by pancreatic α-amylase in small intestine. Based on these in vitro results, the deeper evaluation of the anti-hyperglycemic potential of pyridoxine and its derivatives using Sprague-Dawley (SD) rat models, was initiated. The post-prandial blood glucose levels were tested two hours after sucrose/starch administration, with and without pyridoxine and its derivatives. In the animal trial, pyridoxal (p < 0.05) had a significantly reduction to the postprandial glucose levels, when compared to the control. The maximum blood glucose levels (Cmax) of pyridoxal administration group were decreased by about 18% (from 199.52 ± 22.93 to 164.10 ± 10.27, p < 0.05) and 19% (from 216.92 ± 12.46 to 175.36 ± 10.84, p < 0.05) in sucrose and starch loading tests, respectively, when compared to the control in pharmacodynamics study. The pyridoxal administration significantly decreased the minimum, maximum, and mean level of post-prandial blood glucose at 0.5 h after meals. These results indicate that water-soluble vitamin pyridoxine and its derivatives can decrease blood glucose level via the inhibition of carbohydrate-hydrolyzing and absorption-linked enzymes. Therefore, pyridoxal may have the potential to be used as a food ingredient for the prevention of prediabetes progression to type 2 diabetes.


Asunto(s)
Glucemia/efectos de los fármacos , Carbohidratos de la Dieta/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/farmacología , Intestino Delgado/efectos de los fármacos , Piridoxal/farmacología , Piridoxamina/farmacología , Piridoxina/farmacología , Animales , Glucemia/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glucano 1,4-alfa-Glucosidasa/antagonistas & inhibidores , Glucano 1,4-alfa-Glucosidasa/metabolismo , Hidrólisis , Hiperglucemia/sangre , Hiperglucemia/enzimología , Técnicas In Vitro , Intestino Delgado/enzimología , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , alfa-Amilasas Pancreáticas/metabolismo , Periodo Posprandial , Piridoxina/análogos & derivados , Ratas Sprague-Dawley , alfa-Glucosidasas/metabolismo
19.
Food Chem ; 245: 1196-1203, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29287342

RESUMEN

Edible seaweeds are valuable because of their organoleptic properties and complex polysaccharide content. A study was conducted to investigate the potential of dried edible seaweed extracts, its potential phenolic compounds and alginates for α-amylase inhibitory effects. The kinetics of inhibition was assessed in comparison with acarbose. The methanol extract of Laminaria digitata and the acetone extract of Undaria pinnatifida showed inhibitory activity against α-amylase, IC50 0.74 ±â€¯0.02 mg/ml and 0.81 ±â€¯0.03 mg/ml, respectively; both showed mixed-type inhibition. Phenolic compound, 2,5-dihydroxybenzoic acid was found to be a potent inhibitor of α-amylase with an IC50 value of 0.046 ±â€¯0.004 mg/ml. Alginates found in brown seaweeds appeared to be potent inhibitors of α-amylase activity with an IC50 of (0.075 ±â€¯0.010-0.103 ±â€¯0.017) mg/ml, also a mixed-type inhibition. Overall, the findings provide information that crude extracts of brown edible seaweeds, phenolic compounds and alginates are potent α-amylase inhibitors, thereby potentially retarding glucose liberation from starches and alleviation of postprandial hyperglycaemia.


Asunto(s)
Alginatos/farmacología , Inhibidores Enzimáticos/farmacología , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Polifenoles/farmacología , Algas Marinas/química , Acarbosa/farmacología , Animales , Inhibidores Enzimáticos/química , Gentisatos/farmacología , Hiperglucemia/tratamiento farmacológico , Concentración 50 Inhibidora , Laminaria/química , alfa-Amilasas Pancreáticas/metabolismo , Porcinos , Undaria/química
20.
Molecules ; 22(10)2017 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-29065451

RESUMEN

Metabolic syndrome typically includes Type 2 diabetes associated with hyperglycemia, central obesity, dyslipidemia and hypertension. It is highly related to oxidative stress, formation of advanced glycated end products (AGEs) and key enzymes, such as carbohydrate digesting enzymes like pancreatic α-amylase and intestinal α-glucosidase, pancreatic lipase and angiotensin I-converting enzyme (ACE). This study used an in vitro approach to assess the potential of four extracts of Siegesbeckia orientalis linne on key enzymes relevant to metabolic syndrome. In this research, S. orientailis was firstly extracted by ethanol. The ethanol extract (SE) was then partitioned sequentially with hexane, ethyl acetate and methanol, and these extracts were named SE-Hex, SE-EA and SE-MeOH, respectively. The experimental results showed that SE-EA had the highest total phenolic content (TPC, 76.9 ± 1.8 mg/g) and the total flavonoids content (TFC, 5.3 ± 0.3 mg/g). This extract exhibited the most significant antioxidant activities, including DPPH radical-scavenging capacity (IC50 = 161.8 ± 2.4 µg/mL), ABTS radical-scavenging capacity (IC50 = 13.9 ± 1.5 µg/mL) and reducing power. For anti-glycation activities, SE-EA showed the best results in the inhibition of AGEs, as well as inhibitory activities against α-glucosidase (IC50 = 362.3 ± 9.2 µg/mL) and α-amylase (IC50 = 119.0 ± 17.7 µg/mL). For anti-obesity activities, SE-EA indicated the highest suppression effect on pancreatic lipase (IC50 = 3.67 ± 0.52 mg/mL). Finally, for anti-hypertension activity, SE-EA also demonstrated the strongest inhibitory activity on ACE (IC50 = 626.6 ± 15.0 µg/mL). Close relationships were observed among the parameters of TPC, antioxidant activities, inhibitory activities on α-amylase, α-glucosidase, lipase and ACE (R > 0.9). Moderate correlations were found among the parameters of TFC, antioxidant activities, and suppression of dicarbonyl compounds formation (R = 0.5-0.9). Taken together these in vitro studies reveal the therapeutic potential of SE-EA extract in the prevention and treatment of metabolic disorders.


Asunto(s)
Antioxidantes/farmacología , Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Hiperglucemia/tratamiento farmacológico , Síndrome Metabólico/enzimología , Extractos Vegetales/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antioxidantes/química , Asteraceae/química , Flavonoides/química , Flavonoides/farmacología , Productos Finales de Glicación Avanzada/química , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Hiperglucemia/enzimología , Hiperglucemia/patología , Lipasa/antagonistas & inhibidores , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/patología , Estrés Oxidativo/efectos de los fármacos , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Extractos Vegetales/química , alfa-Glucosidasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...