Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.861
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732072

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory disease. Despite new methods of diagnostics and treatment as well as extensive biological and immunosuppressive treatment, the etiology of RA is not fully understood. Moreover, the problem of diagnosis and treatment of RA patients is still current and affects a large group of patients. It is suggested that endoplasmic reticulum (ER)-related features may impair adaptation to chronic stress, inferring the risk of rheumatoid arthritis. The main goal in this study was evaluation of changes in mRNA translation to determine chronic ER stress conditions in rheumatoid arthritis patients. The study group consist of 86 individuals including a total of 56 rheumatoid arthritis patients and 30 healthy controls. The expression level of mRNA form blood samples of RA patients as well as controls of the unfolded protein response (UPR)-associated genes (p-eIF2, BCL-2, PERK, ATF4, and BAX) were investigated using real-time qPCR. GAPDH expression was used as a standard control. Considering the median, the expression levels of PERK, BCL-2, p-eIF2, ATF4, and BAX were found to be significantly increased in the blood of RA patients compared with the control group. The p-value for the PERK gene was 0.0000000036, the p-value for the BCL-2 gene was 0.000000014, the p-value for the p-eIF2 gene was 0.006948, the p-value for the ATF4 gene was 0.0000056, and the p-value for the BAX gene was 0.00019, respectively. Thus, it can be concluded that the targeting of the components of the PERK-dependent UPR signaling pathway via small-molecule PERK inhibitors may contribute to the development of novel, innovative treatment strategies against rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide , Estrés del Retículo Endoplásmico , Perfilación de la Expresión Génica , Respuesta de Proteína Desplegada , eIF-2 Quinasa , Humanos , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Artritis Reumatoide/sangre , Respuesta de Proteína Desplegada/genética , Femenino , Masculino , Persona de Mediana Edad , Estrés del Retículo Endoplásmico/genética , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Adulto , Anciano , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Estudios de Casos y Controles , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/genética
2.
Hum Exp Toxicol ; 43: 9603271241251447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720657

RESUMEN

PURPOSE: To explore the effect of acacetin on subarachnoid hemorrhage (SAH) and its possible mechanism. METHODS: SAH model of rat was established, and intraperitoneally injected with three doses of acacetin. To verify the role of PERK pathway, we used the CCT020312 (PERK inhibitor) and Tunicamycin (activators of endoplasmic reticulum stress). The SAH score, neurological function score, brain edema content, and Evans blue (EB) exudate were evaluated. Western blot was used to determine the expression of inflammation-associated proteins and PERK pathway. The activation of microglia was also determined through Iba-1 detection. TEM and immunofluorescence staining of LC3B were performed to observe the autophagy degree of SAH rats after acacetin. Tunel/NeuN staining, HE and Nissl' staining were performed for neuronal damage. RESULTS: Acacetin increased the neurological function score, reduce brain water content, Evans blue exudation and SAH scores. The microglia in cerebral cortex were activated after SAH, while acacetin could inhibit its activation, and decreased the expression of TNF-α and IL-6 proteins. The pathological staining showed the severe neuronal damage and increased neuronal apoptosis after SAH, while acacetin could improve these pathological changes. We also visualized the alleviated autophagy after acacetin. The expression of Beclin1 and ATF4 proteins were increased, but acacetin could inhibit them. Acacetin also inactivated PERK pathway, which could improve the neuronal injury and neuroinflammation after SAH, inhibit the microglia activation and the overactivated autophagy through PERK pathway. CONCLUSION: Acacetin may alleviate neuroinflammation and neuronal damage through PERK pathway, thus having the protective effect on EBI after SAH.


Asunto(s)
Autofagia , Flavonas , Microglía , Enfermedades Neuroinflamatorias , Ratas Sprague-Dawley , Transducción de Señal , Hemorragia Subaracnoidea , eIF-2 Quinasa , Animales , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Autofagia/efectos de los fármacos , eIF-2 Quinasa/metabolismo , Masculino , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Ratas , Transducción de Señal/efectos de los fármacos , Flavonas/farmacología , Flavonas/uso terapéutico
3.
Sci Rep ; 14(1): 10248, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702372

RESUMEN

Ambient air temperature is a key factor affecting human health. Female reproductive disorders are representative health risk events under low temperature. However, the mechanism involving in cold-induced female reproductive disorders remains largely unknown. Female mice were intermittently exposed to cold conditions (4 °C) to address the health risk of low temperature on female reproductive system. Primary granulosa cells (GCs) were prepared and cultured under low temperature (35 °C) or exposed to ß3-adrenoreceptor agonist, isoproterenol, to mimic the condition of cold exposure. Western-blot, RT-PCR, co-IP, ELISA, pharmacological inhibition or siRNA-mediated knockdown of target gene were performed to investigate the possible role of hormones, gap conjunction proteins, and ER stress sensor protein in regulating female reproductive disorders under cold exposure. Cold exposure induced estrous cycle disorder and follicular dysplasia in female mice, accompanying with abnormal upregulation of progesterone and its synthetic rate-limiting enzyme, StAR, in the ovarian granulosa cells. Under the same conditions, an increase in connexin 43 (CX43) expressions in the GCs was also observed, which contributed to elevated progesterone levels in the ovary. Moreover, ER stress sensor protein, PERK, was activated in the ovarian GCs after cold exposure, leading to the upregulation of downstream NRF2-dependent CX43 transcription and aberrant increase in progesterone synthesis. Most importantly, blocking PERK expression in vivo significantly inhibited NRF2/CX43/StAR/progesterone pathway activation in the ovary and efficiently rescued the prolongation of estrous cycle and the increase in follicular atresia of the female mice induced by cold stress. We have elucidated the mechanism of ovarian PERK/NRF2/CX43/StAR/progesterone pathway activation in mediating female reproductive disorder under cold exposure. Targeting PERK might be helpful for maintaining female reproductive health under cold conditions.


Asunto(s)
Frío , Conexina 43 , Células de la Granulosa , Factor 2 Relacionado con NF-E2 , Progesterona , Transducción de Señal , eIF-2 Quinasa , Animales , Femenino , eIF-2 Quinasa/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratones , Progesterona/metabolismo , Células de la Granulosa/metabolismo , Conexina 43/metabolismo , Conexina 43/genética , Frío/efectos adversos , Ovario/metabolismo , Ciclo Estral
4.
Mol Reprod Dev ; 91(4): e23742, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38644727

RESUMEN

Preeclampsia (PE) is a common pregnancy complication with a high mortality rate. Abnormally activated endoplasmic reticulum stress (ERS) is believed to be responsible for the destruction of key placental cells-trophoblasts. Phenylbutyric acid (4-PBA), an ERS inhibitor, is involved in regulating the development of ERS-related diseases. At present, how 4-PBA affects trophoblasts and its mechanisms is still unclear. In this study, PE cell models were established by stimulating HTR-8/SVneo cells with hypoxia. To verify the underlying mechanisms of 4-PBA on PE, CCT020312, an activator of PERK, was also used. The results showed that 4-PBA restored hypoxia-induced trophoblast viability, inhibited HIF-1α protein expression, inflammation, and PERK/ATF-4/CHOP pathway. Hoechst 33342 staining and flow cytometry results confirmed that 4-PBA decreased hypoxia-induced apoptosis in trophoblasts. The results of the JC-1 analysis and apoptosis initiation enzyme activity assay also demonstrated that 4-PBA inhibited apoptosis related to the mitochondrial pathway. Furthermore, by detecting autophagy in trophoblasts, an increased number of autophagic vesicles, damaged mitochondria, enhanced dansylcadaverine fluorescence, enhanced levels of autophagy proteins Beclin-1, LC3II, and decreased p62 were seen in hypoxia-stimulated cells. These changes were reversed by 4-PBA. Furthermore, it was observed that CCT020312 reversed the effects of 4-PBA on the viability, apoptosis, and autophagosome number of hypoxia-induced trophoblasts. In summary, 4-PBA reduces autophagy and apoptosis via the PERK/ATF-4/CHOP pathway and mitochondrial pathway, thereby restoring the viability of hypoxic trophoblasts. These findings provide a solid evidence base for the use of 4-PBA in PE treatment and guide a new direction for improving the outcomes of patients with PE.


Asunto(s)
Factor de Transcripción Activador 4 , Apoptosis , Autofagia , Hipoxia de la Célula , Fenilbutiratos , Preeclampsia , Factor de Transcripción CHOP , Trofoblastos , eIF-2 Quinasa , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Trofoblastos/patología , Femenino , Humanos , Preeclampsia/metabolismo , Preeclampsia/tratamiento farmacológico , Preeclampsia/patología , Autofagia/efectos de los fármacos , Factor de Transcripción CHOP/metabolismo , Apoptosis/efectos de los fármacos , Embarazo , Fenilbutiratos/farmacología , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 4/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Línea Celular
5.
Zhen Ci Yan Jiu ; 49(4): 358-366, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38649203

RESUMEN

OBJECTIVES: To analyze the effects of electroacupuncture (EA) at "Fenglong" (ST40) and "Zusanli" (ST36) of different intensities and durations on rats with non-alcoholic fatty liver disease (NAFLD) based on the protein kinase R-like endoplasmic reticulum kinase (PERK)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP) signaling pathway, so as to explore its mechanism underlying improvement of NAFLD. METHODS: SD rats were randomly divided into normal diet group, high-fat model group, sham EA group, strong stimulation EA (SEA) group, and weak stimulation EA (WEA) group, with 15 rats in each group. Each group was further divided into 2, 3, and 4-week subgroups. NAFLD rat model was established by feeding a high-fat diet. After successful modeling, rats in the SEA and WEA groups received EA at bilateral ST40 and ST36 with dense and sparse waves (4 Hz/20 Hz) at current intensities of 4 mA (SEA group) and 2 mA (WEA group), lasting for 20 minutes, once a day, 5 days a week with 2 days of rest. The sham EA group only had the EA apparatus connected without electricity. Different duration subgroups were intervened for 2, 3, and 4 weeks. After the intervention, the contents of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in rats were detected by an automatic biochemical analyzer;liver morphological changes were observed by Oil Red O staining;real-time fluorescence quantitative PCR and Western blot were used to detect the expression of PERK, ATF4, and CHOP mRNAs and proteins in the rat liver tissue. RESULTS: In the high-fat model group, there was a significant accumulation of red lipid droplets in the liver cells, which was reduced significantly in the SEA group at the 4th week. Compared with the normal diet group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and proteins in the liver tissue were elevated (P<0.01) in the high-fat model group . Compared with the high-fat model group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, CHOP mRNAs and proteins in the liver tissue were decreased (P<0.01, P<0.05) in the SEA and WEA groups. Compared with the sham EA group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs were decreased (P<0.01, P<0.05) in the SEA and WEA groups, the expression of PERK, ATF4, and CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA group at the 2nd, 3rd, and 4th week, the expression of PERK and CHOP proteins at the 2nd, 3rd, 4th week and ATF4 protein at 2nd week in the liver tissue were decreased (P<0.01, P<0.05) in the WEA group. Compared with the SEA group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and proteins in the liver tissue were elevated (P<0.05, P<0.01) in the WEA group. Compared with the 2-week time point within the groups, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and PERK proteins in the liver tissue were decreased (P<0.01, P<0.05) in the SEA and WEA groups at 3rd and 4th week, the expression of ATF4 proteins in the liver tissue was decreased (P<0.01) in the SEA group at 3rd and 4th week, and the expression of CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA group at 4th week and in the WEA group at 3rd and 4th week. Compared with the 3-week time point within the groups, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs were significantly decreased (P<0.05, P<0.01) in the SEA and WEA groups at 4th week, the expression of PERK and CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA and WEA groups at 4th week, and the expression of ATF4 protein in the liver tissue was decreased (P<0.05) in the SEA group at 4th week. CONCLUSIONS: EA at ST40 and ST36 can significantly improve liver function in NAFLD rats, and its mechanism of action may involve inhibiting PERK expression thereby targeting the downstream ATF4/CHOP signaling pathway to suppress endoplasmic reticulum stress, exerting a liver protective effect;the optimal effect was observed with EA intensity of 4 mA for 4 weeks.


Asunto(s)
Factor de Transcripción Activador 4 , Puntos de Acupuntura , Electroacupuntura , Hígado , Enfermedad del Hígado Graso no Alcohólico , Ratas Sprague-Dawley , Transducción de Señal , Factor de Transcripción CHOP , eIF-2 Quinasa , Animales , Ratas , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/genética , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética
6.
Int Immunopharmacol ; 132: 112061, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608474

RESUMEN

OBJECTIVE: Osteoarthritis (OA) is a degenerative disease characterized by the gradual degeneration of chondrocytes, involving endoplasmic reticulum (ER) stress. Esculin is a natural compound with antioxidant, anti-inflammatory and anti-tumor properties. However, its impact on ER stress in OA therapy has not been thoroughly investigated. We aim to determine the efficiency of Esculin in OA treatment and its underlying mechanism. METHODS: We utilized the tert-butyl hydroperoxide (TBHP) to establish OA model in chondrocytes. The expression of SIRT1, PERK/eIF2α pathway-related proteins, apoptosis-associated proteins and ER stress-related proteins were detected by Western blot and Real-time PCR. The apoptosis was evaluated by flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. X-ray imaging, Hematoxylin & Eosin staining, Safranin O staining and immunohistochemistry were used to assess the pharmacological effects of Esculin in the anterior cruciate ligament transection (ACLT) rat OA model. RESULTS: Esculin downregulated the expression of PERK/eIF2α pathway-related proteins, apoptosis-associated proteins and ER stress-related proteins, while upregulated the expression of SIRT1 and Bcl2 in the TBHP-induced OA model in vitro. It was coincident with the results of TUNEL staining and flow cytometry. We further confirmed the protective effect of Esculin in the rat ACLT-related model. CONCLUSION: Our results suggest the potential therapeutic value of Esculin on osteoarthritis. It probably inhibits the PERK-eIF2α-ATF4-CHOP pathway by upregulating SIRT1, thereby mitigating endoplasmic reticulum stress and protecting chondrocytes from apoptosis.


Asunto(s)
Apoptosis , Condrocitos , Modelos Animales de Enfermedad , Factor 2 Eucariótico de Iniciación , Osteoartritis , Estrés Oxidativo , Ratas Sprague-Dawley , Transducción de Señal , Sirtuina 1 , Factor de Transcripción CHOP , eIF-2 Quinasa , Animales , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/patología , Sirtuina 1/metabolismo , Sirtuina 1/genética , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoartritis/patología , Factor 2 Eucariótico de Iniciación/metabolismo , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética , Ratas , Estrés Oxidativo/efectos de los fármacos , Masculino , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Cultivadas
7.
Nat Commun ; 15(1): 3481, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664417

RESUMEN

Viral myocarditis, an inflammatory disease of the myocardium, is a significant cause of sudden death in children and young adults. The current coronavirus disease 19 pandemic emphasizes the need to understand the pathogenesis mechanisms and potential treatment strategies for viral myocarditis. Here, we found that TRIM29 was highly induced by cardiotropic viruses and promoted protein kinase RNA-like endoplasmic reticulum kinase (PERK)-mediated endoplasmic reticulum (ER) stress, apoptosis, and reactive oxygen species (ROS) responses that promote viral replication in cardiomyocytes in vitro. TRIM29 deficiency protected mice from viral myocarditis by promoting cardiac antiviral functions and reducing PERK-mediated inflammation and immunosuppressive monocytic myeloid-derived suppressor cells (mMDSC) in vivo. Mechanistically, TRIM29 interacted with PERK to promote SUMOylation of PERK to maintain its stability, thereby promoting PERK-mediated signaling pathways. Finally, we demonstrated that the PERK inhibitor GSK2656157 mitigated viral myocarditis by disrupting the TRIM29-PERK connection, thereby bolstering cardiac function, enhancing cardiac antiviral responses, and curbing inflammation and immunosuppressive mMDSC in vivo. Our findings offer insight into how cardiotropic viruses exploit TRIM29-regulated PERK signaling pathways to instigate viral myocarditis, suggesting that targeting the TRIM29-PERK axis could mitigate disease severity.


Asunto(s)
Adenina , Estrés del Retículo Endoplásmico , Indoles , Miocarditis , Miocitos Cardíacos , eIF-2 Quinasa , Animales , Humanos , Masculino , Ratones , Adenina/análogos & derivados , Apoptosis , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Miocarditis/virología , Miocarditis/metabolismo , Miocarditis/patología , Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/virología , Miocitos Cardíacos/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Replicación Viral
8.
Cell Death Dis ; 15(4): 276, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637497

RESUMEN

The Unfolded Protein Response (UPR) is an essential cellular process activated by the accumulation of unfolded proteins within the Endoplasmic Reticulum (ER), a condition referred to as ER stress. Three ER anchored receptors, IRE1, PERK and ATF6 act as ER stress sensors monitoring the health of the ER. Upon detection of ER stress, IRE1, PERK and ATF6 initiate downstream signaling pathways collectively referred to as the UPR. The overarching aim of the UPR is to restore ER homeostasis by reducing ER stress, however if that is not possible, the UPR transitions from a pro-survival to a pro-death response. While our understanding of the key signaling pathways central to the UPR is well defined, the same is not true of the subtle signaling events that help fine tune the UPR, supporting its ability to adapt to varying amplitudes or durations of ER stress. In this study, we demonstrate cross talk between the IRE1 and PERK branches of the UPR, wherein IRE1 via XBP1s signaling helps to sustain PERK expression during prolonged ER stress. Our findings suggest cross talk between UPR branches aids adaptiveness thereby helping to support the plasticity of UPR signaling responses.


Asunto(s)
Proteínas Serina-Treonina Quinasas , eIF-2 Quinasa , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Transducción de Señal , Respuesta de Proteína Desplegada
9.
Discov Med ; 36(183): 753-764, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665024

RESUMEN

BACKGROUND: Dental fluorosis is a discoloration of the teeth caused by the excessive consumption of fluoride. It represents a distinct manifestation of chronic fluorosis in dental tissues, exerting adverse effects on the human body, particularly on teeth. The transmembrane protein 16a (TMEM16A) is expressed at the junction of the endoplasmic reticulum and the plasma membrane. Alterations in its channel activity can disrupt endoplasmic reticulum calcium homeostasis and intracellular calcium ion concentration, thereby inducing endoplasmic reticulum stress (ERS). This study aims to investigate the influence of calcium supplements and TMEM16A on ERS in dental fluorosis. METHODS: C57BL/6 mice exhibiting dental fluorosis were subjected to an eight-week treatment with varying calcium concentrations: low (0.071%), medium (0.79%), and high (6.61%). Various assays, including Hematoxylin and Eosin (HE) staining, immunohistochemistry, real-time fluorescence quantitative polymerase chain reaction (qPCR), and Western blot, were employed to assess the impact of calcium supplements on fluoride content, ameloblast morphology, TMEM16A expression, and endoplasmic reticulum stress-related proteins (calreticulin (CRT), glucose-regulated protein 78 (GRP78), inositol requiring kinase 1α (IRE1α), PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6)) in the incisors of mice affected by dental fluorosis. Furthermore, mice with dental fluorosis were treated with the TMEM16A inhibitor T16Ainh-A01 along with a medium-dose calcium to investigate the influence of TMEM16A on fluoride content, ameloblast morphology, and endoplasmic reticulum stress-related proteins in the context of mouse incisor fluorosis. RESULTS: In comparison to the model mice, the fluoride content in incisors significantly decreased following calcium supplements (p < 0.01). Moreover, the expression of TMEM16A, CRT, GRP78, IRE1α, PERK, and ATF6 were also exhibited a substantial reduction (p < 0.01), with the most pronounced effect observed in the medium-dose calcium group. Additionally, the fluoride content (p < 0.05) and the expression of CRT, GRP78, IRE1α, PERK, and ATF6 (p < 0.01) were further diminished following concurrent treatment with the TMEM16A inhibitor T16Ainh-A01 and a medium dose of calcium. CONCLUSIONS: The supplementation of calcium or the inhibition of TMEM16A expression appears to mitigate the detrimental effects of fluorosis by suppressing endoplasmic reticulum stress. These findings hold implications for identifying potential therapeutic targets in addressing dental fluorosis.


Asunto(s)
Calcio , Suplementos Dietéticos , Fluorosis Dental , Animales , Masculino , Ratones , Factor de Transcripción Activador 6/metabolismo , Adenina/análogos & derivados , Ameloblastos/metabolismo , Ameloblastos/patología , Ameloblastos/efectos de los fármacos , Anoctamina-1/metabolismo , Anoctamina-1/antagonistas & inhibidores , Anoctamina-1/genética , Calcio/metabolismo , Modelos Animales de Enfermedad , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/metabolismo , Fluoruros/toxicidad , Fluoruros/efectos adversos , Fluorosis Dental/patología , Fluorosis Dental/metabolismo , Fluorosis Dental/etiología , Indoles , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores
10.
PLoS Pathog ; 20(4): e1012133, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662794

RESUMEN

The discovery that extracellular vesicles (EVs) serve as carriers of virus particles calls for a reevaluation of the release strategies of non-enveloped viruses. Little is currently known about the molecular mechanisms that determine the release and composition of EVs produced by virus-infected cells, as well as conservation of these mechanisms among viruses. We previously described an important role for the Leader protein of the picornavirus encephalomyocarditis virus (EMCV) in the induction of virus-carrying EV subsets with distinct molecular and physical properties. EMCV L acts as a 'viral security protein' by suppressing host antiviral stress and type-I interferon (IFN) responses. Here, we tested the ability of functionally related picornavirus proteins of Theilers murine encephalitis virus (TMEV L), Saffold virus (SAFV L), and coxsackievirus B3 (CVB3 2Apro), to rescue EV and EV-enclosed virus release when introduced in Leader-deficient EMCV. We show that all viral security proteins tested were able to promote virus packaging in EVs, but that only the expression of EMCV L and CVB3 2Apro increased overall EV production. We provide evidence that one of the main antiviral pathways counteracted by this class of picornaviral proteins, i.e. the inhibition of PKR-mediated stress responses, affected EV and EV-enclosed virus release during infection. Moreover, we show that the enhanced capacity of the viral proteins EMCV L and CVB3 2Apro to promote EV-enclosed virus release is linked to their ability to simultaneously promote the activation of the stress kinase P38 MAPK. Taken together, we demonstrate that cellular stress pathways involving the kinases PKR and P38 are modulated by the activity of non-structural viral proteins to increase the release EV-enclosed viruses during picornavirus infections. These data shed new light on the molecular regulation of EV production in response to virus infection.


Asunto(s)
Vesículas Extracelulares , Picornaviridae , Proteínas Virales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virología , Humanos , Picornaviridae/metabolismo , Picornaviridae/fisiología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Animales , eIF-2 Quinasa/metabolismo , Liberación del Virus/fisiología , Ratones , Theilovirus/metabolismo , Infecciones por Cardiovirus/virología , Infecciones por Cardiovirus/metabolismo , Virus de la Encefalomiocarditis/metabolismo , Virus de la Encefalomiocarditis/fisiología
11.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 241-247, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650127

RESUMEN

Oral squamous cell carcinoma (OSCC) is a common malignant tumor. Importin7 (IPO7) is responsible for nucleoplasmic transport of RNAs and proteins, and it has been confirmed to be involved in the development of human cancers. This study aimed to explore the function and mechanism of IPO7 in OSCC. IPO7 expression in tissues and cells was determined by RT-qPCR. Cell proliferative, migratory, and invasive capabilities were detected through transwell assay and colony formation assay. Mice xenograft models were established for evaluating tumor growth. Autophagy was estimated by the LC3 levels in cells through western blot and immunofluorescence (IF). Western blot was utilized to detect the key proteins in PERK/EIF2AK3/ATF4 pathway for assessing the endoplasmic reticulum stress (ERS). The interaction of IPO7 and homeobox A10 (HOXA10) was tested by GST pull-down assay and Co-IP assay. ChIP assay and luciferase reporter assay were utilized to determine the combination of HOXA10 and EIF2AK3. We proved that IPO7 was upregulated in OSCC tissues and cells, and its depletion reduced cell proliferation, migration, invasion and tumor growth. Furthermore, LC3 expression in cells was found to be reduced by IPO7 knockdown. IPO7 promoted OSCC tumor metastasis by activating autophagy. Additionally, we discovered that IPO7 could regulate ERS by activating the PERK/ATF4 pathway. EIF2AK3 upregulation can promote cell autophagy. Furthermore, IPO7 was proven to promote nuclear translocation of HOXA10 in cells. EIF2AK3 promoter can bind to HOXA10. Rescue assay confirmed that HOXA10 upregulation can reverse the effect of IPO7 silencing on OSCC progression. IPO7 can enhance proliferation, migration, invasion, and autophagy by nuclear translocation of HOXA10 and the activation of EIF2AK3/ATF4 pathway in OSCC.


Asunto(s)
Autofagia , Carcinoma de Células Escamosas , Movimiento Celular , Núcleo Celular , Proliferación Celular , Proteínas Homeobox A10 , Proteínas de Homeodominio , Neoplasias de la Boca , alfa Carioferinas , eIF-2 Quinasa , Humanos , Autofagia/genética , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Movimiento Celular/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Núcleo Celular/metabolismo , Ratones , Estrés del Retículo Endoplásmico/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Transducción de Señal , Carioferinas/metabolismo , Carioferinas/genética , Masculino , Ratones Endogámicos BALB C , Femenino , Invasividad Neoplásica
12.
Glia ; 72(7): 1259-1272, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38587137

RESUMEN

After spinal cord injury (SCI), re-establishing cellular homeostasis is critical to optimize functional recovery. Central to that response is PERK signaling, which ultimately initiates a pro-apoptotic response if cellular homeostasis cannot be restored. Oligodendrocyte (OL) loss and white matter damage drive functional consequences and determine recovery potential after thoracic contusive SCI. We examined acute (<48 h post-SCI) and chronic (6 weeks post-SCI) effects of conditionally deleting Perk from OLs prior to SCI. While Perk transcript is expressed in many types of cells in the adult spinal cord, its levels are disproportionately high in OL lineage cells. Deletion of OL-Perk prior to SCI resulted in: (1) enhanced acute phosphorylation of eIF2α, a major PERK substrate and the critical mediator of the integrated stress response (ISR), (2) enhanced acute expression of the downstream ISR genes Atf4, Ddit3/Chop, and Tnfrsf10b/Dr5, (3) reduced acute OL lineage-specific Olig2 mRNA, but not neuronal or astrocytic mRNAs, (4) chronically decreased OL content in the spared white matter at the injury epicenter, (5) impaired hindlimb locomotor recovery, and (6) reduced chronic epicenter white matter sparing. Cultured primary OL precursor cells with reduced PERK expression and activated ER stress response showed: (1) unaffected phosphorylation of eIF2α, (2) enhanced ISR gene induction, and (3) increased cytotoxicity. Therefore, OL-Perk deficiency exacerbates ISR signaling and potentiates white matter damage after SCI. The latter effect is likely mediated by increased loss of Perk-/- OLs.


Asunto(s)
Oligodendroglía , Recuperación de la Función , Traumatismos de la Médula Espinal , eIF-2 Quinasa , Animales , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología , Oligodendroglía/metabolismo , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Recuperación de la Función/fisiología , Ratones , Ratones Transgénicos , Femenino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
13.
Vet Microbiol ; 293: 110095, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643723

RESUMEN

Porcine epidemic diarrhea virus (PEDV) envelope protein (E) has been characterized as an important structural protein that plays critical roles in the interplay with its host to affect the virus life cycle. Stress granules (SGs) are host translationally silent ribonucleoproteins, which are mainly induced by the phosphorylation of eIF2α in the PERK/eIF2α signaling pathway. Our previous study found that PEDV E protein caused endoplasmic reticulum stress response (ERS)-mediated suppression of antiviral proteins' translation. However, the link and the underlying mechanism by which PEDV induces SGs formation and suppresses host translation remain elusive. In this study, our results showed that PEDV E protein significantly elevated the expression of GRP78, CANX, and phosphorylation of PERK and eIF2α, indicating that the PERK/eIF2α branch of ERS was activated. PEDV E protein localized to the ER and aggregated into puncta to reconstruct ER structure, and further induced SGs formation, which has been caused through upregulating the G3BP1 expression level. In addition, a significant global translational stall and endogenous protein translation attenuation were detected in the presence of E protein overexpression, but the global mRNA transcriptional level remained unchanged, suggesting that the shutoff of protein translation was associated with the translation, not with the transcription process. Collectively, this study demonstrates that PERK/eIF2α activation is required for SGs formation and protein translation stall. This study is beneficial for us to better understand the mechanism by which PEDV E suppresses host protein synthesis, and provides us a new insight into the host translation regulation during virus infection.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Virus de la Diarrea Epidémica Porcina , Biosíntesis de Proteínas , Transducción de Señal , Gránulos de Estrés , eIF-2 Quinasa , Virus de la Diarrea Epidémica Porcina/fisiología , Animales , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Porcinos , Células Vero , Gránulos de Estrés/metabolismo , Gránulos de Estrés/genética , Chlorocebus aethiops , Chaperón BiP del Retículo Endoplásmico/metabolismo , Fosforilación , Estrés del Retículo Endoplásmico
14.
J Biol Chem ; 300(4): 107151, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462161

RESUMEN

The integrated stress response (ISR) refers to signaling pathways initiated by stress-activated eIF2α kinases. Distinct eIF2α kinases respond to different stress signals, including amino acid deprivation and mitochondrial stress. Such stress-induced eIF2α phosphorylation attenuates general mRNA translation and, at the same time, stimulates the preferential translation of specific downstream factors to orchestrate an adaptive gene expression program. In recent years, there have been significant new advances in our understanding of ISR during metabolic stress adaptation. Here, I discuss those advances, reviewing among others the ISR activation mechanisms in response to amino acid deprivation and mitochondrial stress. In addition, I review how ISR regulates the amino acid metabolic pathways and how changes in the ISR impact the physiology and pathology of various disease models.


Asunto(s)
Adaptación Fisiológica , Factor 2 Eucariótico de Iniciación , Estrés Fisiológico , Humanos , Animales , Factor 2 Eucariótico de Iniciación/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Aminoácidos/metabolismo , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Fosforilación , Biosíntesis de Proteínas
15.
Rom J Morphol Embryol ; 65(1): 27-33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38527981

RESUMEN

Cyclophosphamide (CP) is an alkylating chemotherapeutic agent commonly used in cancer treatments. In this study, we aimed to investigate the effects of 4-Hydroperoxy cyclophosphamide (4-HC), which is active form of CP, on glucose-regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), phospho-protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (p-PERK), phospho-inositol-requiring enzyme 1 alpha (p-IRE1α), eukaryotic translation initiation factor 2 alpha (eIF2α), and caspase-3 messenger ribonucleic acids (mRNAs) and proteins that play roles in the ER stress pathway and apoptosis in U87 and T98 human glioblastoma cell lines. U87 and T98 human glioblastoma cell lines were divided into control and 4-HC-treated groups. Cell viability assay was used to detect the half maximal inhibitory concentration (IC50) for 24 hours of 4-HC. Immunocytochemistry and quantitative polymerase chain reaction (qPCR) methods were used to evaluate the levels of proteins and their mRNAs. The IC50 values of U87 and T98 cells were calculated as 15.67±0.58 µM and 19.92±1 µM, respectively. The levels of GRP78, ATF6, p-PERK, p-IRE1α, eIF2α, and caspase-3 protein expressions in the 4-HC-treated group compared to that in the control group. These increased protein expressions also were correlated with the mRNA levels. The ER stress signal pathway could be active in 4-HC-induced cell death. Further studies of ER-related stress mechanisms in anticancer treatment would be important for effective therapeutic strategies.


Asunto(s)
Glioblastoma , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/farmacología , Endorribonucleasas/farmacología , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/farmacología , Caspasa 3/farmacología , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Línea Celular , Apoptosis , Ciclofosfamida/farmacología
16.
Curr Biol ; 34(7): 1390-1402.e4, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38428416

RESUMEN

Collective cell migration is integral to many developmental and disease processes. Previously, we discovered that protein phosphatase 1 (Pp1) promotes border cell collective migration in the Drosophila ovary. We now report that the Pp1 phosphatase regulatory subunit dPPP1R15 is a critical regulator of border cell migration. dPPP1R15 is an ortholog of mammalian PPP1R15 proteins that attenuate the endoplasmic reticulum (ER) stress response. We show that, in collectively migrating border cells, dPPP1R15 phosphatase restrains an active physiological protein kinase R-like ER kinase- (PERK)-eIF2α-activating transcription factor 4 (ATF4) stress pathway. RNAi knockdown of dPPP1R15 blocks border cell delamination from the epithelium and subsequent migration, increases eIF2α phosphorylation, reduces translation, and drives expression of the stress response transcription factor ATF4. We observe similar defects upon overexpression of ATF4 or the eIF2α kinase PERK. Furthermore, we show that normal border cells express markers of the PERK-dependent ER stress response and require PERK and ATF4 for efficient migration. In many other cell types, unresolved ER stress induces initiation of apoptosis. In contrast, border cells with chronic RNAi knockdown of dPPP1R15 survive. Together, our results demonstrate that the PERK-eIF2α-ATF4 pathway, regulated by dPPP1R15 activity, counteracts the physiological ER stress that occurs during collective border cell migration. We propose that in vivo collective cell migration is intrinsically "stressful," requiring tight homeostatic control of the ER stress response for collective cell cohesion, dynamics, and movement.


Asunto(s)
Transducción de Señal , eIF-2 Quinasa , Animales , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Apoptosis , Movimiento Celular , Monoéster Fosfórico Hidrolasas/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Mamíferos
17.
Biochem Biophys Res Commun ; 706: 149728, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38479246

RESUMEN

Influenza A virus is the cause of a widespread human disease with high morbidity and mortality rates. The influenza virus encodes non-structural protein 1 (NS1), an exceedingly multifunctional virulence component. NS1 plays essential roles in viral replication and evasion of the cellular innate immune system. Protein kinase RNA-activated also known as protein kinase R (PKR) phosphorylates translation initiation factor eIF-2α on serine 51 to inhibit protein synthesis in virus-infected mammalian cells. Consequently, PKR activation inhibits mRNA translation, which results in the assert of both viral protein synthesis and cellular and possibly apoptosis in response to virus infection. Host signaling pathways are important in the replication of influenza virus, but the mechanisms involved remain to be characterized. Herein, the structure of NS1 and PKR complex was determined using Cryo-EM. We found the N91, E94, and G95 residues of PKR bind directly with N188, D125, and K126, respectively, of NS1. Furthermore, the study shows that PKR peptide offers a potential treatment for Influenza A virus infections.


Asunto(s)
Virus de la Influenza A , eIF-2 Quinasa , Animales , Humanos , eIF-2 Quinasa/metabolismo , Proteínas no Estructurales Virales/química , Virus de la Influenza A/genética , Microscopía por Crioelectrón , Línea Celular , Antivirales/metabolismo , Replicación Viral , Mamíferos/metabolismo
18.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474017

RESUMEN

Ubiquitin-specific protease 7 inhibitors (USP7i) are considered a novel class of anticancer drugs. Cancer cells occasionally become insensitive to anticancer drugs, known as chemoresistance, by acquiring multidrug resistance, resulting in poor clinical outcomes in patients with cancer. However, the chemoresistance of cancer cells to USP7i (P22077 and P5091) and mechanisms to overcome it have not yet been investigated. In the present study, we generated human cancer cells with acquired resistance to USP7i-induced cell death. Gene expression profiling showed that heat stress response (HSR)- and unfolded protein response (UPR)-related genes were largely upregulated in USP7i-resistant cancer cells. Biochemical studies showed that USP7i induced the phosphorylation and activation of heat shock transcription factor 1 (HSF1), mediated by the endoplasmic reticulum (ER) stress protein kinase R-like ER kinase (PERK) signaling pathway. Inhibition of HSF1 and PERK significantly sensitized cancer cells to USP7i-induced cytotoxicity. Our study demonstrated that the ER stress-PERK axis is responsible for chemoresistance to USP7i, and inhibiting PERK is a potential strategy for improving the anticancer efficacy of USP7i.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Peptidasa Específica de Ubiquitina 7/genética , eIF-2 Quinasa/metabolismo , Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Antineoplásicos/farmacología
19.
J Med Chem ; 67(7): 5259-5271, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38530741

RESUMEN

A series of activators of GCN2 (general control nonderepressible 2) kinase have been developed, leading to HC-7366, which has entered the clinic as an antitumor therapy. Optimization resulted in improved permeability compared to that of the original indazole hinge binding scaffold, while maintaining potency at GCN2 and selectivity over PERK (protein kinase RNA-like endoplasmic reticulum kinase). The improved ADME properties of this series led to robust in vivo compound exposure in both rats and mice, allowing HC-7366 to be dosed in xenograft models, demonstrating that activation of the GCN2 pathway by this compound leads to tumor growth inhibition.


Asunto(s)
Proteínas Serina-Treonina Quinasas , eIF-2 Quinasa , Humanos , Ratones , Ratas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , eIF-2 Quinasa/metabolismo , Ratones Endogámicos C57BL , ARN , Retículo Endoplásmico/metabolismo
20.
Ecotoxicol Environ Saf ; 274: 116193, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460407

RESUMEN

Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.


Asunto(s)
Acetatos , Clormequat , Sobrecarga de Hierro , Fenoles , Espermatogénesis , Animales , Masculino , Ratones , Ratas , Clormequat/metabolismo , Clormequat/toxicidad , Sobrecarga de Hierro/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Semillas , Espermatogénesis/efectos de los fármacos , Testículo , eIF-2 Quinasa/efectos de los fármacos , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...