Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 39(32): 6325-6338, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31182637

RESUMEN

Ras/Raf/MEK/ERK (Ras-ERK) signaling has been implicated in the effects of drugs of abuse. Inhibitors of MEK1/2, the kinases upstream of ERK1/2, have been critical in defining the role of the Ras-ERK cascade in drug-dependent alterations in behavioral plasticity, but the Ras family of small GTPases has not been extensively examined in drug-related behaviors. We examined the role of Ras Guanine Nucleotide Releasing Factor 1 (RasGRF1) and 2 (RasGRF2), upstream regulators of the Ras-ERK signaling cascade, on cocaine self-administration (SA) in male mice. We first established a role for Ras-ERK signaling in cocaine SA, demonstrating that pERK1/2 is upregulated following SA in C57BL/6N mice in striatum. We then compared RasGRF1 and RasGRF2 KO mouse lines, demonstrating that cocaine SA in RasGRF2 KO mice was increased relative to WT controls, whereas RasGRF1 KO and WT mice did not differ. This effect in RasGRF2 mice is likely mediated by the Ras-ERK signaling pathway, as pERK1/2 upregulation following cocaine SA was absent in RasGRF2 KO mice. Interestingly, the lentiviral knockdown of RasGRF2 in the NAc had the opposite effect to that in RasGRF2 KO mice, reducing cocaine SA. We subsequently demonstrated that the MEK inhibitor PD325901 administered peripherally prior to cocaine SA increased cocaine intake, replicating the increase seen in RasGRF2 KO mice, whereas PD325901 administered into the NAc decreased cocaine intake, similar to the effect seen following lentiviral knockdown of RasGRF2. These data indicate a role for RasGRF2 in cocaine SA in mice that is ERK-dependent, and suggest a differential effect of global versus site-specific RasGRF2 inhibition.SIGNIFICANCE STATEMENT Exposure to drugs of abuse activates a variety of intracellular pathways, and following repeated exposure, persistent changes in these pathways contribute to drug dependence. Downstream components of the Ras-ERK signaling cascade are involved in the acute and chronic effects of drugs of abuse, but their upstream mediators have not been extensively characterized. Here we show, using a combination of molecular, pharmacological, and lentiviral techniques, that the guanine nucleotide exchange factor RasGRF2 mediates cocaine self-administration via an ERK-dependent mechanism, whereas RasGRF1 has no effect on responding for cocaine. These data indicate dissociative effects of mediators of Ras activity on cocaine reward and expand the understanding of the contribution of Ras-ERK signaling to drug-taking behavior.


Asunto(s)
Trastornos Relacionados con Cocaína/fisiopatología , Cocaína/farmacología , Cuerpo Estriado/fisiopatología , Sistema de Señalización de MAP Quinasas/fisiología , Recompensa , Factores de Intercambio de Guanina Nucleótido ras/fisiología , Acetilación , Animales , Benzamidas/farmacología , Cocaína/administración & dosificación , Condicionamiento Operante , Cuerpo Estriado/efectos de los fármacos , Difenilamina/análogos & derivados , Difenilamina/farmacología , Técnicas de Silenciamiento del Gen , Vectores Genéticos/genética , Histonas/metabolismo , Lentivirus/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiopatología , Especificidad de Órganos , Fosforilación , Procesamiento Proteico-Postraduccional , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Autoadministración , Factores de Intercambio de Guanina Nucleótido ras/deficiencia , Factores de Intercambio de Guanina Nucleótido ras/genética , ras-GRF1/deficiencia , ras-GRF1/genética , ras-GRF1/fisiología
2.
Brain Behav ; 8(11): e01089, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30259712

RESUMEN

BACKGROUND: RasGrf1 is a guanine-nucleotide releasing factor that enhances Ras activity. Human PTTG1 is an oncoprotein found in pituitary tumors and later identified as securin, a protein isolated from yeast with a reported role in chromosome separation. It has been suggested that RasGrf1 is an important upstream component of signal transduction pathways regulating Pttg1 expression and controlling beta cell development and their physiological response. At memory formation level, there are contradictory data regarding the role of RasGrf1, while Pttg1 has not been previously studied. Both proteins are expressed in the mammalian hippocampus, which is one of the key brain areas for spatial learning and memory. OBJECTIVE: The aim of this work was to study a potential link between RasGrf1 and Pttg1 in memory formation. METHOD: Spatial learning and memory test in the Pttg1 KO, RasGrf1 KO, and Pttg1-RasGrf1 double KO and their correspondent WT mice using a Barnes maze. RESULTS: In comparison with the WT control mice, Pttg1 KO mice learned how to solve the task in a less efficient way, suggesting problems in memory consolidation. RasGrf1 KO mice performance was similar to controls, and they learned to use the best searching strategy. Double KO mice reached a better spatial learning level than WT. CONCLUSION: A role for Pttg1 in memory consolidation/formation is suggested, while our RasGrf1 KO mice do not show hippocampus associated memory defects.


Asunto(s)
Memoria a Largo Plazo/fisiología , Securina/fisiología , Aprendizaje Espacial/fisiología , ras-GRF1/fisiología , Animales , Encéfalo/metabolismo , Discriminación en Psicología/fisiología , Femenino , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Aprendizaje por Laberinto , Ratones Endogámicos C57BL , Ratones Noqueados , Securina/deficiencia , Transducción de Señal/fisiología , ras-GRF1/deficiencia
3.
Hippocampus ; 24(3): 315-25, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24174283

RESUMEN

The dentate gyrus of the hippocampus plays a pivotal role in pattern separation, a process required for the behavioral task of contextual discrimination. One unique feature of the dentate gyrus that contributes to pattern separation is adult neurogenesis, where newly born neurons play a distinct role in neuronal circuitry. Moreover,the function of neurogenesis in this brain region differs in adolescent and adult mice. The signaling mechanisms that differentially regulate the distinct steps of adult neurogenesis in adolescence and adulthood remain poorly understood. We used mice lacking RASGRF1(GRF1), a calcium-dependent exchange factor that regulates synaptic plasticity and participates in contextual discrimination performed by mice, to test whether GRF1 plays a role in adult neurogenesis.We show Grf1 knockout mice begin to display a defect in neurogenesis at the onset of adulthood (~2 months of age), when wild-type mice first acquire the ability to distinguish between closely related contexts. At this age, young hippocampal neurons in Grf1 knockout mice display severely reduced dendritic arborization. By 3 months of age, new neuron survival is also impaired. BrdU labeling of new neurons in 2-month-old Grf1 knockout mice shows they begin to display reduced survival between 2 and 3 weeks after birth, just as new neurons begin to develop complex dendritic morphology and transition into using glutamatergic excitatory input. Interestingly, GRF1 expression appears in new neurons at the developmental stage when GRF1 loss begins to effect neuronal function. In addition, we induced a similar loss of new hippocampal neurons by knocking down expression of GRF1 solely in new neurons by injecting retrovirus that express shRNA against GRF1 into the dentate gyrus. Together, these findings show that GRF1 expressed in new neurons promotes late stages of adult neurogenesis. Overall our findings show GRF1 to be an age-dependent regulator of adult hippocampal neurogenesis, which contributes to ability of mice to distinguish closely related contexts.


Asunto(s)
Envejecimiento/fisiología , Giro Dentado/metabolismo , Discriminación en Psicología/fisiología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , ras-GRF1/fisiología , Animales , Animales Recién Nacidos , Animales Lactantes , División Celular , Supervivencia Celular/efectos de los fármacos , Giro Dentado/crecimiento & desarrollo , Quinasas Similares a Doblecortina , Fluoxetina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/análisis , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Transducción de Señal/fisiología , ras-GRF1/antagonistas & inhibidores , ras-GRF1/deficiencia , ras-GRF1/genética
4.
Aging (Albany NY) ; 3(3): 262-76, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21422498

RESUMEN

RasGRF1 is a Ras-guanine nucleotide exchange factor implicated in a variety of physiological processes including learning and memory and glucose homeostasis. To determine the role of RASGRF1 in aging, lifespan and metabolic parameters were analyzed in aged RasGrf1(-/-) mice. We observed that mice deficient for RasGrf1(-/-) display an increase in average and most importantly, in maximal lifespan (20% higher than controls). This was not due to the role of Ras in cancer because tumor-free survival was also enhanced in these animals. Aged RasGrf1(-/-) displayed better motor coordination than control mice. Protection against oxidative stress was similarly preserved in old RasGrf1(-/-). IGF-I levels were lower in RasGrf1(-/-) than in controls. Furthermore, SIRT1 expression was increased in RasGrf1(-/-) animals. Consistent with this, the blood metabolomic profiles of RasGrf1-deficient mice resembled those observed in calorie-restricted animals. In addition, cardiac glucose consumption as determined PET was not altered by aging in the mutant model, indicating that RasGrf1-deficient mice display delayed aging. Our observations link Ras signaling to lifespan and suggest that RasGrf1 is an evolutionary conserved gene which could be targeted for the development of therapies to delay age-related processes.


Asunto(s)
Envejecimiento/fisiología , Longevidad/fisiología , ras-GRF1/deficiencia , Envejecimiento/genética , Animales , Secuencia de Bases , Restricción Calórica , Glucosa/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Glucógeno Hepático/metabolismo , Longevidad/genética , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Desempeño Psicomotor , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Sirtuina 1/metabolismo , ras-GRF1/genética , ras-GRF1/fisiología
5.
J Neurochem ; 110(2): 641-52, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19457086

RESUMEN

RasGRF1 null mutant mice display impaired memory/learning and their hippocampus transcriptomic pattern includes a number of differentially expressed genes playing significant roles in sensory development and function. Odour avoidance and auditory brainstem response tests yielded normal results but electroretinographic analysis showed severe light perception impairment in the RasGRF1 knockouts. Whereas no structural alterations distinguished the retinas of wild-type and knockout mice, microarray transcriptional analysis identified at least 44 differentially expressed genes in the retinas of these Knockout animals. Among these, Crb1, Pttg1, Folh1 and Myo7a have been previously related to syndromes involving retina degeneration. Interestingly, over-expression of Folh1 would be expected to result in accumulation of its enzymatic product N-acetyl-aspartate, an event known to be linked to Canavan disease, a human cerebral degenerative syndrome often involving blindness and hearing loss. Consistently, in vivo brain nuclear magnetic resonance spectroscopy identified higher levels of N-acetyl-aspartate in our RasGRF1-/- mice and immunohistochemical analysis detected reduced levels of aspartoacylase, the enzyme which degrades N-acetyl-aspartate. These studies demonstrate for the first time the functional relevance of Ras signalling in mammalian photoreception and warrant further analysis of RasGRF1 Knockout mice as potential models to analyse molecular mechanisms underlying defective photoreception human diseases.


Asunto(s)
Regulación de la Expresión Génica/genética , Células Fotorreceptoras de Vertebrados/patología , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , ras-GRF1/deficiencia , ras-GRF1/genética , Animales , Percepción Auditiva/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Marcadores Genéticos/genética , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneración Retiniana/fisiopatología
6.
Neuroscience ; 146(1): 272-85, 2007 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-17321057

RESUMEN

We used manual macrodissection or laser capture microdissection (LCM) to isolate tissue sections of the hippocampus area of Ras-GRF1 wild type and knockout mice brains, and analyzed their transcriptional patterns using commercial oligonucleotide microarrays. Comparison between the transcriptomes of macrodissected and microdissected samples showed that the LCM samples allowed detection of significantly higher numbers of differentially expressed genes, with higher statistical rates of significance. These results validate LCM as a reliable technique for in vivo genomic studies in the brain hippocampus, where contamination by surrounding areas (not expressing Ras-GRF1) increases background noise and impairs identification of differentially expressed genes. Comparison between wild type and knockout LCM hippocampus samples revealed that Ras-GRF1 elimination caused significant gene expression changes, mostly affecting signal transduction and related neural processes. The list of 36 most differentially expressed genes included loci concerned mainly with Ras/G protein signaling and cytoskeletal organization (i.e. 14-3-3gamma/zeta, Kcnj6, Clasp2) or related, cross-talking pathways (i.e. jag2, decorin, strap). Consistent with the phenotypes shown by Ras-GRF1 knockout mice, many of these differentially expressed genes play functional roles in processes such as sensory development and function (i.e. Sptlc1, antiquitin, jag2) and/or neurological development/neurodegeneration processes affecting memory and learning. Indeed, potential links to neurodegenerative diseases such as Alzheimer disease (AD) or Creutzfeldt-Jacobs disease (CJD), have been reported for a number of differentially expressed genes identified in this study (Ptma, Aebp2, Clasp2, Hebp1, 14-3-3gamma/zeta, Csnk1delta, etc.). These data, together with the previously described role of IRS and insulin (known Ras-GRF1 activators) in AD, warrant further investigation of a potential functional link of Ras-GRF1 to neurodegenerative processes.


Asunto(s)
Regulación de la Expresión Génica/genética , Expresión Génica/genética , Hipocampo/metabolismo , Transducción de Señal/genética , ras-GRF1/deficiencia , Animales , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos , Hibridación in Situ/métodos , Técnicas In Vitro , Rayos Láser , Ratones , Ratones Noqueados , Microdisección/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos
7.
J Neurosci ; 26(6): 1721-9, 2006 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-16467520

RESUMEN

NMDA-type glutamate receptors (NMDARs) contribute to many forms of long-term potentiation (LTP) and long-term depression (LTD). NMDARs are heteromers containing calcium-permeating neuronal receptor 1 (NR1) subunits and a variety of NR2 subunits. Evidence suggests that, in the CA1 region of the hippocampus, NR2A-containing NMDARs promote LTP whereas NR2B-containing receptors promote LTD. However, the calcium sensors that distinguish between these signals to promote the appropriate form of synaptic plasticity are not known. Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and Ras-GRF2 are highly similar calcium-stimulated exchange factors that activate Ras and Rac GTPases. Here, using a set of Ras-GRF knock-out mice, we show that Ras-GRF2 contributes predominantly to the induction of NMDAR-dependent LTP, whereas Ras-GRF1 contributes predominantly to the induction of NMDAR-dependent LTD in the CA1 region of the hippocampus of postpubescent mice (postnatal days 25-36). In contrast, neither Ras-GRF protein influences synaptic plasticity in prepubescent mice (postnatal days 14-18). Ras-GRF2 mediates signaling from (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl-phosphonic acid-sensitive (NVP-AAM077-sensitive) (NR2A-containing) NMDARs to the Ras effector extracellular signal-related protein kinase 1/2 (Erk1/2) mitogen-activated protein (MAP) kinase, a promoter of NMDAR-induced LTP at this site. In contrast, Ras-GRF1 mediates signaling from ifenprodil-sensitive (NR2B-containing) NMDARs to the Rac effector p38 MAP kinase, a promoter of LTD. These findings show that, despite their similar functional domain organization, Ras-GRF1 and Ras-GRF2 mediate opposing forms of synaptic plasticity by coupling different classes of NMDARs to distinct MAP kinase pathways. Moreover, the postnatal appearance of Ras-GRF-dependent LTP and LTD coincides with the emergence of hippocampal-dependent behavior, implying that Ras-GRF proteins contribute to forms of synaptic plasticity that are required specifically for mature hippocampal function.


Asunto(s)
Factor 2 Liberador de Guanina Nucleótido/fisiología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , ras-GRF1/fisiología , Animales , Potenciales Postsinápticos Excitadores , Factor 2 Liberador de Guanina Nucleótido/deficiencia , Factor 2 Liberador de Guanina Nucleótido/genética , Hipocampo/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Noqueados , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , ras-GRF1/deficiencia , ras-GRF1/genética
8.
J Neurochem ; 93(4): 984-91, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15857401

RESUMEN

We investigated the role of the Ras/extracellular-regulated kinase (ERK) pathway in the development of tolerance to Delta(9)-tetrahydrocannabinol (THC)-induced reduction in spontaneous locomotor activity by a genetic (Ras-specific guanine nucleotide exchange factor (Ras-GRF1) knock-out mice) and pharmacological approach. Pre-treatment of wild-type mice with SL327 (50 mg/kg i.p.), a specific inhibitor of mitogen-activated protein kinase kinase (MEK), the upstream kinase of ERK, fully prevented the development of tolerance to THC-induced hypolocomotion. We investigated the impact of the inhibition of ERK activation on the biological processes involved in cannabinoid tolerance (receptor down-regulation and desensitization), by autoradiographic cannabinoid CB1 receptor and cannabinoid-stimulated [(35)S]GTPgammaS binding studies in subchronically treated mice (THC, 10 mg/kg s.c., twice a day for 5 days). In the caudate putamen and cerebellum of Ras-GRF1 knock-out mice and SL327 pre-treated wild-type mice, CB1 receptor down-regulation and desensitization did not occur, suggesting that ERK activation might account for CB1 receptor plasticity involved in the development of tolerance to THC hypolocomotor effect. In contrast, the hippocampus and prefrontal cortex showed CB1 receptor adaptations regardless of the genetic or pharmacological inhibition of the ERK pathway, suggesting regional variability in the cellular events underlying the altered CB1 receptor function. These findings suggest that at least in the caudate putamen and cerebellum, the Ras/ERK pathway is essential for triggering the alteration in CB1 receptor function responsible for tolerance to THC-induced hypomotility.


Asunto(s)
Conducta Animal/efectos de los fármacos , Dronabinol/farmacología , Tolerancia a Medicamentos/fisiología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Transducción de Señal/efectos de los fármacos , ras-GRF1/fisiología , Aminoacetonitrilo/análogos & derivados , Analgésicos/farmacología , Animales , Autorradiografía/métodos , Conducta Animal/fisiología , Western Blotting/métodos , Encéfalo/anatomía & histología , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Ciclohexanoles/farmacología , Diagnóstico por Imagen/métodos , Esquema de Medicación , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Inhibidores de Proteasas/farmacología , Unión Proteica/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal/fisiología , Isótopos de Azufre/farmacología , Tritio/farmacología , ras-GRF1/deficiencia
9.
Microbiology (Reading) ; 150(Pt 10): 3383-91, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15470116

RESUMEN

In Saccharomyces cerevisiae the cAMP-dependent protein kinase A pathway antagonizes the cellular response to stress. It is shown here that the cellular content of Cdc25p, the upstream activator of Ras and adenylyl cyclase, decays upon various stresses such as heat shock and oxidative and ethanol shocks, whereas its phosphorylation level and its localization are unaffected. In parallel with the reduction of Cdc25p, the maximal capacity of the cell to accumulate cAMP decreases when its feedback regulation is abolished. A deletion of CDC25 prevents this decrease. Paradoxically, in wild-type cells, with normal feedback regulation, the level of cAMP, which is much lower, is not reduced but is rather increased upon stress. These observations are consistent with a role of Cdc25p in sensing and transducing stress to downstream targets, either through a cAMP-independent pathway or by large fluctuations in the cAMP content of the cell.


Asunto(s)
AMP Cíclico/metabolismo , Saccharomyces cerevisiae/metabolismo , ras-GRF1/deficiencia , Proteínas de Ciclo Celular/genética , Proteínas Fúngicas/genética , Respuesta al Choque Térmico , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/genética , ras-GRF1/genética
10.
Mol Cell Neurosci ; 25(3): 355-62, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15033164

RESUMEN

Acute Delta(9)-tetrahydrocannabinol (THC) injection increased ERK pathway (ERK, pCREB, and c-fos) mostly in the caudate putamen and cerebellum. This effect underwent to homeostatic adaptation after chronic treatment. Moreover, chronic THC exposure induced increases in the ERK cascade (ERK, pCREB, and Fos B) in the prefrontal cortex and hippocampus, suggesting that different neuronal circuits seem to be involved in the early phase and late phase of exposure. The involvement of ERK pathway in cannabinoid chronic exposure was also confirmed in Ras-GRF1 knock out mice, a useful model where cannabinoid-induced ERK activation is lost. In fact, Ras-GRF1 ko mice did not develop tolerance to THC analgesic and hypolocomotor effect. Our data suggest that ERK cascade could play a pivotal role in the induction of synaptic plasticity due to cannabinoid chronic exposure.


Asunto(s)
Dronabinol/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Esquema de Medicación , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Ratas , Ratas Sprague-Dawley , ras-GRF1/deficiencia , ras-GRF1/genética
11.
Mol Cell Biol ; 22(8): 2498-504, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11909944

RESUMEN

The mammalian Grf1 and Grf2 proteins are Ras guanine nucleotide exchange factors (GEFs) sharing a high degree of structural homology, as well as an elevated expression level in central nervous system tissues. Such similarities raise questions concerning the specificity and/or redundancy at the functional level between the two Grf proteins. grf1-null mutant mice have been recently described which showed phenotypic growth reduction and long-term memory loss. To gain insight into the in vivo function of Grf2, we disrupted its catalytic CDC25-H domain by means of gene targeting. Breeding among grf2(+/-) animals gave rise to viable grf2(-/-) adult animals with a normal Mendelian pattern, suggesting that Grf2 is not essential for embryonic and adult mouse development. In contrast to Grf1-null mice, analysis of grf2(-/-) litters showed similar size and weight as their heterozygous or wild-type grf2 counterparts. Furthermore, adult grf2(-/-) animals reached sexual maturity at the same age as their wild-type littermates and showed similar fertility levels. No specific pathology was observed in adult Grf2-null animals, and histopathological studies showed no observable differences between null mutant and wild-type Grf2 mice. These results indicate that grf2 is dispensable for mouse growth, development, and fertility. Furthermore, analysis of double grf1/grf2 null animals did not show any observable phenotypic difference with single grf1(-/-) animals, further indicating a lack of functional overlapping between the two otherwise highly homologous Grf1 and Grf2 proteins.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido ras/deficiencia , Factores de Intercambio de Guanina Nucleótido ras/genética , Animales , Encéfalo/metabolismo , Femenino , Fertilidad , Marcación de Gen , Crecimiento , Heterocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Estructura Terciaria de Proteína , Maduración Sexual , Factores de Intercambio de Guanina Nucleótido ras/química , Factores de Intercambio de Guanina Nucleótido ras/fisiología , ras-GRF1/deficiencia , ras-GRF1/genética , ras-GRF1/fisiología
12.
Mol Cell Neurosci ; 18(6): 691-701, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11749043

RESUMEN

Ras-GRF1 is a neuron-specific guanine nucleotide exchange factor for Ras proteins. Mice lacking Ras-GRF1 (-/-) are severely impaired in amygdala-dependent long-term synaptic plasticity and show higher basal synaptic activity at both amygdala and hippocampal synapses (Brambilla et al., 1997). In the present study we investigated the effects of Ras-GRF1 deletion on hippocampal neuronal excitability. Electrophysiological analysis of both primary cultured neurons and adult hippocampal slices indicated that Ras-GRF1-/- mice displayed neuronal hyperexcitability. Ras-GRF1-/- hippocampal neurons showed increased spontaneous activity and depolarized resting membrane potential, together with a higher firing rate in response to injected current. Changes in the intrinsic excitability of Ras-GRF1-/- neurons can entail these phenomena, suggesting that Ras-GRF1 deficiency might alter the balance between ionic conductances. In addition, we showed that mice lacking Ras-GRF1 displayed a higher seizure susceptibility following acute administration of convulsant drugs. Taken together, these results demonstrated a role for Ras-GRF1 in neuronal excitability.


Asunto(s)
Potenciales de Acción/fisiología , Hipocampo/metabolismo , Células Piramidales/metabolismo , ras-GRF1/deficiencia , Potenciales de Acción/efectos de los fármacos , Animales , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Predisposición Genética a la Enfermedad/genética , Glutamato Descarboxilasa/metabolismo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Noqueados , Red Nerviosa/citología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Técnicas de Placa-Clamp , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Sinaptofisina/metabolismo , Tetrodotoxina/farmacología , ras-GRF1/genética
13.
Neuropharmacology ; 41(6): 791-800, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11640934

RESUMEN

Previous results have suggested that the Ras signaling pathway is involved in learning and memory. Ras is activated by nucleotide exchange factors, such as the calmodulin-activated guanine-nucleotide releasing factor 1 (Ras-GRF1). To test whether Ras-GRF1 is required for learning and memory, we inactivated the Ras-GRF1 gene in mice. These mutants performed normally in a rota-rod motor coordination task, and in two amygdala-dependent tasks (inhibitory avoidance and contextual conditioning). In contrast the mutants were impaired in three hippocampus-dependent learning tasks: contextual discrimination, the social transmission of food preferences, and the hidden-platform version of the Morris water maze. These studies indicate that Ras-GRF1 plays a role in hippocampal-dependent learning and memory.


Asunto(s)
Hipocampo/fisiología , Aprendizaje/fisiología , Memoria/fisiología , ras-GRF1/deficiencia , ras-GRF1/fisiología , Amígdala del Cerebelo/fisiología , Animales , Reacción de Prevención/fisiología , Condicionamiento Psicológico/fisiología , Cruzamientos Genéticos , Femenino , Preferencias Alimentarias/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Conducta Social , ras-GRF1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA