Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.145
Filtrar
1.
Viruses ; 13(3)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33807081

RESUMEN

The emergent human coronavirus SARS-CoV-2 and its high infectivity rate has highlighted the strong need for new disinfection systems. Evidence has proven that airborne transmission is an important route of spreading for this virus. Therefore, this short communication introduces CLODOS Technology®, a novel strategy to disinfect contaminated surfaces. It is a product based on stable and 99% pure chlorine dioxide, already certified as a bactericide, fungicide and virucide against different pathogens. In this study, CLODOS Technology®, by direct contact or thermonebulization, showed virucidal activity against the human coronavirus HCoV-229E at non-cytotoxic doses. Different conditions such as nebulization, exposure time and product concentration have been tested to standardize and optimize this new feasible method for disinfection.


Asunto(s)
Coronavirus Humano 229E/efectos de los fármacos , Desinfectantes/farmacología , Desinfección/métodos , Línea Celular , Compuestos de Cloro/análisis , Compuestos de Cloro/farmacología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Desinfectantes/análisis , Desinfección/instrumentación , Humanos , Nebulizadores y Vaporizadores , Óxidos/análisis , Óxidos/farmacología
2.
Huan Jing Ke Xue ; 42(4): 1939-1945, 2021 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-33742829

RESUMEN

In order to study the effects of chlorine dioxide (ClO2) disinfection on the super antibiotic resistance genes (SARGs), the final effluents before and after chlorine dioxide were sampled throughout one year in a wastewater treatment plant (WWTP). The bacteria and extracellular nucleic acid were collected using microporous membrane filtration and nucleic acid adsorption particles, respectively. A total of 9 SARGs was detected through a quantitative real-time polymerase chain reaction (qPCR). The results revealed that both intracellular and extracellular NDM-1, MCR-1, and MEC-A could be positively detected in the samples. Overall, ClO2 disinfection enhanced the relative abundance of the iSARGs (P<0.05), exhibiting a seasonal pattern, and increasing in the spring, summer, and autumn. In spring, it improved the most, up to twice the abundance. No SARGs were detected positive in the winter, either intracellularly or extracellularly. There was no significant variation in the concentrations of eSARGs before and after ClO2 disinfection. Therefore, ClO2 disinfection cannot effectively remove iSARGs and eSARGs in the final effluent from the WWTP.


Asunto(s)
Compuestos de Cloro , Desinfectantes , Purificación del Agua , Antibacterianos/farmacología , Cloro , Compuestos de Cloro/farmacología , Desinfectantes/farmacología , Desinfección , Farmacorresistencia Microbiana/genética , Óxidos/farmacología
3.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572794

RESUMEN

Belladine N-oxides active against influenza A virus have been synthetized by a novel laccase-catalyzed 1,4-dioxane-mediated oxidation of aromatic and side-chain modified belladine derivatives. Electron paramagnetic resonance (EPR) analysis confirmed the role of 1,4-dioxane as a co-oxidant. The reaction was chemo-selective, showing a high functional-group compatibility. The novel belladine N-oxides were active against influenza A virus, involving the early stage of the virus replication life cycle.


Asunto(s)
Antivirales/farmacología , Dioxanos/química , Virus de la Influenza A/efectos de los fármacos , Lacasa/química , Óxidos/farmacología , Polyporaceae/enzimología , Antivirales/química , Catálisis , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Oxidación-Reducción , Óxidos/química
4.
Chem Biol Interact ; 338: 109401, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33556367

RESUMEN

The tyrosine kinase inhibitor sorafenib (SOR) is being used increasingly in combination with other anticancer agents like paclitaxel, but this increases the potential for drug toxicity. SOR inhibits several human CYPs, including CYP2C8, which is a major enzyme in the elimination of oncology drugs like paclitaxel and imatinib. It has been reported that CYP2C8 inhibition by SOR in human liver microsomes is potentiated by NADPH-dependent biotransformation. This implicates a SOR metabolite in enhanced inhibition, although the identity of that metabolite is presently unclear. The present study evaluated the capacity of the major N-oxide metabolite of SOR (SNO) to inhibit CYP2C8-dependent paclitaxel 6α-hydroxylation. The IC50 of SNO against CYP2C8 activity was found to be 3.7-fold lower than that for the parent drug (14 µM versus 51 µM). In molecular docking studies, both SOR and SNO interacted with active site residues in CYP2C8, but four additional major hydrogen and halogen bonding interactions were identified between SNO and amino acids in the B-B' loop region and helixes F' and I that comprise the catalytic region of the enzyme. In contrast, the binding of both SOR and SNO to active site residues in the closely related human CYP2C9 enzyme was similar, as were the IC50s determined against CYP2C9-mediated losartan oxidation. These findings suggest that the active metabolite SNO could impair the elimination of coadministered drugs that are substrates for CYP2C8, and mediate toxic adverse events, perhaps in those individuals in whom SNO is formed extensively.


Asunto(s)
Inhibidores del Citocromo P-450 CYP2C8/farmacología , Citocromo P-450 CYP2C8/química , Citocromo P-450 CYP2C8/metabolismo , Metaboloma , Simulación del Acoplamiento Molecular , Óxidos/farmacología , Sorafenib/metabolismo , Sorafenib/farmacología , Adulto , Biotransformación/efectos de los fármacos , Dominio Catalítico , Humanos , Losartán/farmacología , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Persona de Mediana Edad , Oxidación-Reducción , Especificidad por Sustrato/efectos de los fármacos
5.
Int J Food Microbiol ; 342: 109073, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33550154

RESUMEN

Clam jeotgal, called "jogaejeotgal," is a Korean fermented seafood product with, generally, a high amount of added salt to inhibit the growth of pathogenic microorganisms. This study aimed to evaluate the efficacy of chlorine dioxide (ClO2) and sodium hypochlorite (NaOCl) against murine norovirus 1 (MNV-1), a surrogate for human norovirus, in salt-fermented clam, jogaejeotgal. The sequential effect of ClO2 and electron-beam (e-beam) irradiation on the inactivation of MNV-1 was also investigated. Treatments of up to 300 ppm ClO2 and 1000 ppm NaOCl were used to determine the disinfectant concentrations at which more than 1 log (90%) MNV-1 inactivation occurred. The sequential treatment of ClO2 (50-300 ppm) and e-beam (1-5.5 kGy) was performed after storage at 4 °C for 7 days. There was a 1.9-log reduction of the virus in seasoned clams irradiated at 5.5 kGy after ClO2 treatment at 300 ppm. No significant change (p > 0.05) in physicochemical quality was observed after the combined treatment, suggesting the potential for the use of a combined treatment using ClO2 (300 ppm) and e-beam (5.5 kGy) in the jeotgal manufacturing industry for the reduction of norovirus.


Asunto(s)
Bivalvos , Compuestos de Cloro/farmacología , Electrones , Norovirus/fisiología , Óxidos/farmacología , Mariscos/virología , Animales , Desinfectantes/farmacología , Irradiación de Alimentos , Conservación de Alimentos/métodos , Norovirus/efectos de los fármacos , Norovirus/efectos de la radiación , República de Corea , Mariscos/análisis , Hipoclorito de Sodio/farmacología , Inactivación de Virus/efectos de los fármacos , Inactivación de Virus/efectos de la radiación
6.
Int J Nanomedicine ; 16: 725-740, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33542627

RESUMEN

Purpose: As a dental material, polyetheretherketone (PEEK) is bioinert that does not induce cellular response and bone/gingival tissues regeneration. This study was to develop bioactive coating on PEEK and investigate the effects of coating on cellular response. Materials and Methods: Tantalum pentoxide (TP) coating was fabricated on PEEK surface by vacuum evaporation and responses of rat bone marrow mesenchymal stem (RBMS) cells/human gingival epithelial (HGE) were studied. Results: A dense coating (around 400 nm in thickness) of TP was closely combined with PEEK (PKTP). Moreover, the coating was non-crystalline TP, which contained many small humps (around 10 nm in size), exhibiting a nanostructured surface. In addition, the roughness, hydrophilicity, surface energy, and protein adsorption of PKTP were remarkably higher than that of PEEK. Furthermore, the responses (adhesion, proliferation, and osteogenic gene expression) of RBMS cells, and responses (adhesion and proliferation) of HGE cells to PKTP were remarkably improved in comparison with PEEK. It could be suggested that the nanostructured coating of TP on PEEK played crucial roles in inducing the responses of RBMS/HGE cells. Conclusion: PKTP with elevated surface performances and outstanding cytocompatibility might have enormous potential for dental implant application.


Asunto(s)
Células Epiteliales/citología , Encía/citología , Cetonas/farmacología , Células Madre Mesenquimatosas/citología , Nanoestructuras/química , Óxidos/farmacología , Polietilenglicoles/farmacología , Tantalio/farmacología , Adsorción , Fosfatasa Alcalina/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/ultraestructura , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/enzimología , Nanoestructuras/ultraestructura , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Ratas Sprague-Dawley , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Difracción de Rayos X
7.
J Mater Chem B ; 9(4): 1049-1058, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33399610

RESUMEN

It is difficult for drug delivery systems to release drugs as expected, often leading to undesired side effects. To solve this problem, a CuS@MSN/DOX@MnO2@membrane (CMDMm) was reasonably designed. It was introduced to release the drug by a double response, similar to using two keys to open two locks at the same time for one door. CuS@MSN was used as a photothermal therapy (PTT) material and carrier, and then the surface of CuS@MSN/DOX was sealed by MnO2 to prevent drug release in advance. MnO2 could be reduced and degraded in a tumor microenvironment. It was applied in MR imaging due to the T1 magnetism of Mn2+ following the reduction of MnO2. Finally, the 4T1 cell membrane was extracted and coated onto the surface of CuS@MSN/DOX@MnO2, which served as a target for 4T1 tumor cells. A noteworthy phenomenon was that the fluorescence of DOX was quenched by the coordination between DOX and CuS, and this greatly improved the interaction between DOX and CuS@MSN. However, the coordination was weakened when DOX was protonated in a tumor microenvironment (∼pH 5.0), leading to the release of DOX and fluorescence recovery. The drug release experiments showed that the release efficiency was higher at pH 5.0 with 10 mmol L-1 GSH. Through in vitro laser confocal imaging, it was successfully observed that DOX was reliably released in specific tumor cells according to the fluorescence recovery, and that there was no leakage in other cells. In short, effective double response drug release was successfully confirmed.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Cobre/farmacología , Doxorrubicina/farmacología , Compuestos de Manganeso/farmacología , Nanopartículas/química , Óxidos/farmacología , Animales , Antibióticos Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cobre/química , Doxorrubicina/química , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Compuestos de Manganeso/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Óxidos/química , Tamaño de la Partícula , Propiedades de Superficie
8.
Adv Mater ; 33(8): e2005477, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33475193

RESUMEN

Besides the pandemic caused by the coronavirus outbreak, many other pathogenic microbes also pose a devastating threat to human health, for instance, pathogenic bacteria. Due to the lack of broad-spectrum antibiotics, it is urgent to develop nonantibiotic strategies to fight bacteria. Herein, inspired by the localized "capture and killing" action of bacteriophages, a virus-like peroxidase-mimic (V-POD-M) is synthesized for efficient bacterial capture (mesoporous spiky structures) and synergistic catalytic sterilization (metal-organic-framework-derived catalytic core). Experimental and theoretical calculations show that the active compound, MoO3 , can serve as a peroxo-complex-intermediate to reduce the free energy for catalyzing H2 O2 , which mainly benefits the generation of •OH radicals. The unique virus-like spikes endow the V-POD-M with fast bacterial capture and killing abilities (nearly 100% at 16 µg mL-1 ). Furthermore, the in vivo experiments show that V-POD-M possesses similar disinfection treatment and wound skin recovery efficiencies to vancomycin. It is suggested that this inexpensive, durable, and highly reactive oxygen species (ROS) catalytic active V-POD-M provides a promising broad-spectrum therapy for nonantibiotic disinfection.


Asunto(s)
Antibacterianos/síntesis química , Materiales Biomiméticos/síntesis química , Óxidos/síntesis química , Peroxidasa/química , Antibacterianos/farmacología , Materiales Biocompatibles/química , Materiales Biomiméticos/farmacología , Catálisis , Humanos , Peróxido de Hidrógeno/metabolismo , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Simulación de Dinámica Molecular , Molibdeno/farmacología , Óxidos/farmacología , Peroxidasa/metabolismo , Esterilización , Vancomicina/farmacología
9.
Ecotoxicol Environ Saf ; 209: 111841, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33387772

RESUMEN

We report a new green route for preparing MnO2/perlite nanocomposites (NCs) by leaf extract of Hypericum perforatum. Characterization of the physicochemical properties of the MnO2/perlite-NCs was performed using XRD, FESEM, EDX, FT-IR, and DLS techniques. Furthermore, their effects on the phytochemical classification and growth parameters of H. perforatum shoot cultures were assessed. According to the FESEM image, the synthesized spherical MnO2 nanoparticles on the sheet-like structure of nano-perlite were formed, ranging about 20-50 nm. In addition, based on the EDX spectra, the elemental analysis showed the presence of Carbon, Oxygen, Silicon, Aluminum, and Manganese elements in the as-synthesized MnO2/perlite-NCs. Biological studies confirmed that nano-perlite and MnO2/perlite-NCs were non-toxic to H. perforatum shoot cultures and showed positive effects on plant growth in specific concentrations. Overall, phytochemical classification demonstrated that the terpenoids decreased in the evaluated treatments, while hypericin and pseudohypericin were increased in some treatments (25, 50 and 150 mg/L of nano-perlite) relative to control. Metabolomics results suggested that both nano-perlite and MnO2/perlite-NCs can be used as elicitors and new nanofertilizers for generating some secondary metabolites.


Asunto(s)
Hypericum/fisiología , Manganeso/metabolismo , Nanocompuestos , Óxido de Aluminio , Hypericum/crecimiento & desarrollo , Compuestos de Manganeso , Nanopartículas , Óxidos/farmacología , Perileno/análogos & derivados , Fitoquímicos/farmacología , Aceites Vegetales , Dióxido de Silicio , Espectroscopía Infrarroja por Transformada de Fourier
10.
Dent Mater ; 37(2): 311-320, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33323301

RESUMEN

OBJECTIVE: To evaluate tricalcium silicate-based (TCS) experimental materials, associated with zirconium oxide (ZrO2), calcium tungstate (CaWO4) or niobium oxide (Nb2O5) radiopacifiers, in comparison with MTA Repair HP (Angelus). METHODS: Physicochemical tests: setting time, radiopacity, pH and solubility. In vitro assays: cytotoxicity: MTT and Neutral Red - NR; cell bioactivity: alkaline phosphatase activity (ALP), Alzarin red staining (ARS) and real time PCR (qPCR). Antibacterial activity: direct contact on Enterococcus faecalis in the planktonic form. Physicochemical and ARS data were submitted to ANOVA/Tukey tests; antibacterial activity, to Kruskall-Wallis and Dunn tests; MTT, NR, ALP and qPCR were analyzed by ANOVA/Bonferroni tests (α = 0.05). RESULTS: TCS + CaWO4 presented the longest setting time and MTA HP the shortest. Except for TCS, all the materials presented radiopacity above 3 mmAl. The cements had alkaline pH, antibacterial activity, low solubility and no cytotoxic effects. The highest ALP activity occurred in 14 days, especially to TCS, TCS + ZrO2 and TCS + CaWO4. TCS + ZrO2, TCS + Nb2O5 and MTAHP had higher mineralized nodule formation than those of the negative control (NC). After 7 days, there was no difference in mRNA expression for ALP, when compared to NC. However, after 14 days there was no overexpressed ALP mRNA, especially TCS + Nb2O5, in relation to the CN. All the materials presented antimicrobial action. SIGNIFICANCE: The pure tricalcium silicate associated with ZrO2, CaWO4 or Nb2O5 had appropriate physicochemical properties, antibacterial activity, cytocompatibility and induced mineralization in Saos-2, indicating their use as reparative materials.


Asunto(s)
Antiinfecciosos , Materiales de Obturación del Conducto Radicular , Antibacterianos/farmacología , Compuestos de Calcio/farmacología , Cementos Dentales/farmacología , Combinación de Medicamentos , Ensayo de Materiales , Óxidos/farmacología , Materiales de Obturación del Conducto Radicular/farmacología , Silicatos/farmacología
11.
Int J Food Microbiol ; 337: 108938, 2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33166912

RESUMEN

A packaging system using gaseous chlorine dioxide generating film (CDGF) in a sealed container was developed to extend the shelf life of semi-dry longan pulp (moisture content 38.8 wt%; aw0.8). The antimicrobial properties, formation of chloroxyanion residues and effects of CDGF on the quality of semi-dry longan pulp were investigated. CDGF was triggered by the moisture vapor from semi-dry longan pulp in the sealed container and released gaseous ClO2 into the headspace of the container. The antifungal test showed that CDGF significantly inactivated artificially inoculated molds in semi-dry longan pulp and achieved reductions of over 3 log CFU/g after 28 days storage at room temperature (25 °C). CDGF reduced total aerobic bacterial populations by over 6.4 log CFU/g and maintained these population levels at around 2.0 log CFU/g throughout the 180-day storage period at room temperature. The residual concentrations of chloride, chlorate and perchlorate in longan pulp increased and then decreased during the 180-day storage. Residual chloride levels were maintained at 1.5 mg/g after Day 120 and residual chlorate and perchlorate levels were not detected after Day 120 and Day 180, respectively, in CDGF-treated samples. CDGF treatments reduced total polyphenol content but didn't have any significant impact on the levels of polysaccharides in samples. There were no significant differences between CDGF-treated and control samples in color changes during storage. The content of 5-hydroymethylfurfural (5-HMF) in both samples increased during storage, suggesting that the Maillard reaction occurred. This study demonstrated an effective approach to develop a new antimicrobial packaging system for semi-dry longan pulp.


Asunto(s)
Compuestos de Cloro/farmacología , Microbiología de Alimentos , Almacenamiento de Alimentos/métodos , Óxidos/farmacología , Cloruros/análisis , Recuento de Colonia Microbiana , Desinfectantes/farmacología , Hongos/efectos de los fármacos , Gases/farmacología , Percloratos/análisis , Sapindaceae/microbiología
12.
Ecotoxicol Environ Saf ; 203: 111010, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32888587

RESUMEN

Manganese (Mn) toxicity is common in plants grown on very acid soils. However, some plants species that grow in this condition can take up high amounts of Mn and are referred to as hyperaccumulating species. In this study, we evaluated the capacity of Ilex paraguariensis to accumulate Mn and the effect of excessive concentrations on plant growth and nutrition. For this, a container experiment was conducted using soils from different parent materials (basalt and sandstone), with and without liming, and at six doses of applied Mn (0, 30, 90, 270, 540 and 1,080 mg kg-1). Clonal plants grown for 203 days were harvested to evaluate yield, and leaf tissue samples were evaluated for Mn and other elements. Without liming and with high Mn doses, leaf Mn concentrations reached 13,452 and 12,127 mg kg-1 in sandstone and basalt soils, respectively; concentrations in excess of 10,000 mg kg-1 are characteristic of hyperaccumulating plants. Liming reduced these values to 7203 and 8030 mg kg-1. More plant growth accompanied increased Mn leaf concentrations, with a growth reduction noted at the highest dose in unlimed soils. Elemental distribution showed Mn presence in the mesophyll, primarily in vascular bundles, without high Mn precipitates. Interveinal chlorosis of young leaves associated with high Mn concentration and lower Fe concentrations was observed, especially in sandstone soil without liming. However, the occurrence of this symptom was not associated with decreased plant growth.


Asunto(s)
Ácidos/farmacología , Ilex paraguariensis/metabolismo , Manganeso/metabolismo , Enfermedades de las Plantas/inducido químicamente , Contaminantes del Suelo/metabolismo , Ácidos/análisis , Compuestos de Calcio/análisis , Compuestos de Calcio/farmacología , Ilex paraguariensis/efectos de los fármacos , Ilex paraguariensis/crecimiento & desarrollo , Hierro/metabolismo , Manganeso/análisis , Manganeso/toxicidad , Óxidos/análisis , Óxidos/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
13.
Chemosphere ; 259: 127504, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32650170

RESUMEN

Hexafluoropropylene oxide (HFPO) homologues, as emerging perfluoroalkyl substances (PFASs) to replace legacy PFASs, have wide applications in the organofluorine industry and have been detected in the global environment. However, it is still unclear what effect HFPO homologues will exert on microbial abundance, community structure and function. The objective of this study was to assess potential impacts of HFPO homologue acids on archaea, bacteria, and ammonia-oxidizing archaea (AOA) and bacteria (AOB) in the soil environment. Grassland soil microcosms were supplemented with low (0.1 mg/kg) or high (10 mg/kg) dosages of dimer, trimer and tetramer acids of HFPO (HFPO-DA, HFPO-TA, and HFPO-TeA), respectively. The amendment of HFPO homologues acids initially decreased the abundance of archaea and bacteria but increased them in the later period. The addition of HFPO homologues acids raised AOA abundance but restrained AOB growth during the whole incubation. AOA and AOB community structures showed considerable variations. Potential nitrifying rate (PNR) showed an increase in the initial period followed by a decline in the later period. HFPO-DA had a lasting and suppressive effect on AOB and PNR even at a nearly environmental level. Overall, HFPO homologues with different carbon chain lengths had different impacts on soil microbial community and ammonia oxidation.


Asunto(s)
Fluorocarburos/farmacología , Microbiota/efectos de los fármacos , Óxidos/farmacología , Microbiología del Suelo , Suelo/química , Amoníaco/metabolismo , Archaea/efectos de los fármacos , Archaea/metabolismo , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Nitrificación , Oxidación-Reducción
14.
Int J Nanomedicine ; 15: 4607-4623, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32636621

RESUMEN

Aim: The interaction of NPs with biological systems may reveal useful details about their pharmacodynamic, anticancer and antibacterial effects. Methods: Herein, the interaction of as-synthesized Co3O4 NPs with HSA was explored by different kinds of fluorescence and CD spectroscopic methods, as well as molecular docking studies. Also, the anticancer effect of Co3O4 NPs against leukemia K562 cells was investigated by MTT, LDH, caspase, real-time PCR, ROS, cell cycle, and apoptosis assays. Afterwards, the antibacterial effects of Co3O4 NPs against three pathogenic bacteria were disclosed by antibacterial assays. Results: Different characterization methods such as TEM, DLS, zeta potential and XRD studies proved that fabricated Co3O4 NPs by sol-gel method have a diameter of around 50 nm, hydrodynamic radius of 177 nm with a charge distribution of -33.04 mV and a well-defined crystalline phase. Intrinsic, extrinsic, and synchronous fluorescence as well as CD studies, respectively, showed that the HSA undergoes some fluorescence quenching, minor conformational changes, microenvironmental changes as well as no structural changes in the secondary structure, after interaction with Co3O4 NPs. Molecular docking results also verified that the spherical clusters with a dimension of 1.5 nm exhibit the most binding energy with HSA molecules. Anticancer assays demonstrated that Co3O4 NPs can selectively lead to the reduction of K562 cell viability through the cell membrane damage, activation of caspase-9, -8 and -3, elevation of Bax/Bcl-2 mRNA ratio, ROS production, cell cycle arrest, and apoptosis. Finally, antibacterial assays disclosed that Co3O4 NPs can stimulate a promising antibacterial effect against pathogenic bacteria. Conclusion: In general, these observations can provide useful information for the early stages of nanomaterial applications in therapeutic platforms.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Cobalto/química , Cobalto/farmacología , Nanopartículas del Metal/química , Óxidos/química , Óxidos/farmacología , Albúmina Sérica Humana/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cobalto/metabolismo , Escherichia coli/efectos de los fármacos , Humanos , Células K562 , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Óxidos/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Albúmina Sérica Humana/química , Staphylococcus aureus/efectos de los fármacos , Difracción de Rayos X
15.
J Endod ; 46(10): 1455-1464, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32668309

RESUMEN

INTRODUCTION: The aim of this study was to investigate whether mineral trioxide aggregate (MTA) can be modified with caffeic acid (CA) to form caffeic acid/mineral trioxide aggregate (CAMTA) cement and to evaluate its physicochemical and biological properties as well as its capability in immune suppression and angiogenesis. METHODS: MTA was immersed in trishydroxymethyl aminomethane buffer with CA to allow coating onto MTA powders. X-ray diffractometry and tensile stress-strain tests were conducted to assess for physical characteristics of CAMTA and to evaluate for successful modification of MTA. Then, the CAMTA cement was immersed in simulated body fluid to evaluate its hydroxyapatite formation capabilities and Si release profiles. In addition, RAW 264.7 cells and human dental pulp stem cells were used to evaluate CAMTA's immunosuppressive capabilities and cell responses, respectively. hDPSCs were also used to assess CAMTA's angiogenic capabilities. RESULTS: The X-ray diffractometry results showed that CA can be successfully coated onto MTA without disrupting or losing MTA's original structural properties, thus allowing us to retain the initial advantages of MTA. CAMTA was shown to have higher mechanical properties compared with MTA and had rougher pitted surfaces, which were hypothesized to lead to enhanced adhesion, proliferation, and secretion of angiogenic- and odontogenic-related proteins. In addition, it was found that CAMTA was able to enhance hydroxyapatite formation and immunosuppressive capabilities compared with MTA. CONCLUSIONS: CAMTA cements were found to have improved physicochemical and biological characteristics compared with their counterpart. In addition, CAMTA cements had enhanced odontogenic, angiogenic, and immunosuppressive properties compared with MTA. All of the results of this study proved that CAMTA cements could be a biomaterial for future clinical applications and tissue engineering use.


Asunto(s)
Pulpa Dental , Materiales de Obturación del Conducto Radicular/farmacología , Compuestos de Aluminio , Ácidos Cafeicos , Compuestos de Calcio/farmacología , Cementos Dentales , Combinación de Medicamentos , Humanos , Odontogénesis , Óxidos/farmacología , Silicatos/farmacología
16.
Food Chem ; 333: 127500, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32693317

RESUMEN

The objectives of this study were to optimize the condition of ultrasonic treatment combined with aqueous chlorine dioxide (ClO2) on nitrate content of spinach by response surface methodology (RSM), and determine the effectiveness of ultrasound (US) and ClO2 alone and in combination, on spinach postharvest quality during 7 days' storage period. The optimal treatment parameters obtained were ultrasonic power (300 W), ClO2 concentration (50 ppm), treatment time (4 min). The combined treatments significantly reduced the nitrate content and maintained better storage quality in terms of total soluble solids (TSS) and ascorbic acid content compared with the individual treatment or untreated. For Chlorophyll content, the combined treatment was significantly higher than the control and ClO2 treatment, but lower than ultrasonic treatment. The results demonstrated that US combined with ClO2 are promising alternatives for the reduction of nitrate content, as well as preserving the quality of stored leafy vegetables.


Asunto(s)
Compuestos de Cloro/farmacología , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Nitratos/análisis , Óxidos/farmacología , Spinacia oleracea/química , Ultrasonido/métodos , Ácido Ascórbico/análisis , Clorofila/análisis , Conservación de Alimentos/instrumentación , Almacenamiento de Alimentos , Hojas de la Planta/química , Spinacia oleracea/efectos de los fármacos , Verduras/química , Verduras/efectos de los fármacos
17.
BMC Oral Health ; 20(1): 163, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493290

RESUMEN

BACKGROUND: To evaluate tooth discoloration by newly developed calcium silicate-based materials, and to examine the pre-application of dentin bonding agent (DBA) for preventing discoloration caused by mineral trioxide aggregate (MTA). METHODS: The roots of 50 premolars were randomly divided into five groups (n = 10) and cavities were prepared from resected root surfaces. MTA was placed in the cavities of teeth belonging to the ProRoot MTA (MTA) and RetroMTA (RMTA) groups. For teeth belonging to the ProRoot + DBA (MTA-B) and RetroMTA + DBA (RMTA-B) groups, DBA was first applied to the cavities prior to the addition of MTA. Teeth in the control group were restored with composite resin only (i.e., without MTA). After 12 weeks, MTA was removed from the MTA and RMTA groups and bleaching agents were applied for 3 additional weeks. Color assessments were recorded at baseline, and 1, 4, and 12 weeks, as well as after bleaching. A one-way ANOVA was performed to assess the differences between the two types of MTAs and color changes following DBA pre-application in each MTA group. A p-value of < 0.05 was considered indicative of statistical significance. RESULTS: Following 12 weeks of MTA treatment, there was a significant difference between the discoloration in the MTA and RMTA groups (p < 0.05). However, no significant difference was observed between the RMTA and RMTA-B groups (p > 0.05). Following bleaching, the color changes (ΔE values) of the MTA group were not significantly different from those of the MTA-B group (p > 0.05). The difference of ΔE between the RMTA group after internal bleaching and the RMTA-B group was also not significant (p > 0.05). CONCLUSIONS: RetroMTA caused significantly less discoloration than ProRoot MTA. Pre-application of DBA reduced discoloration caused by ProRoot MTA. MTA discoloration was improved equally well between DBA pre-application and post-bleaching.


Asunto(s)
Compuestos de Aluminio/efectos adversos , Compuestos de Calcio/efectos adversos , Óxidos/farmacología , Silicatos/efectos adversos , Decoloración de Dientes/prevención & control , Compuestos de Aluminio/farmacología , Compuestos de Calcio/farmacología , Dentina/efectos de los fármacos , Recubrimientos Dentinarios/efectos adversos , Combinación de Medicamentos , Humanos , Óxidos/efectos adversos , Silicatos/farmacología , Decoloración de Dientes/inducido químicamente
18.
Int J Nanomedicine ; 15: 3843-3850, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581534

RESUMEN

Purpose: Despite tremendous results achieved by immune checkpoint inhibitors, most patients are not responders, mainly because of the lack of a pre-existing anti-tumor immune response. Thus, solutions to efficiently prime this immune response are currently under intensive investigations. Radiotherapy elicits cancer cell death, generating an antitumor-specific T cell response, turning tumors in personalized in situ vaccines, with potentially systemic effects (abscopal effect). Nonetheless, clinical evidence of sustained anti-tumor immunity as abscopal effect are rare. Methods: Hafnium oxide nanoparticles (NBTXR3) have been designed to increase energy dose deposit within cancer cells. We examined the effect of radiotherapy-activated NBTXR3 on anti-tumor immune response activation and abscopal effect production using a mouse colorectal cancer model. Results: We demonstrate that radiotherapy-activated NBTXR3 kill more cancer cells than radiotherapy alone, significantly increase immune cell infiltrates both in treated and in untreated distant tumors, generating an abscopal effect dependent on CD8+ lymphocyte T cells. Conclusion: These data show that radiotherapy-activated NBTXR3 could increase local and distant tumor control through immune system priming. Our results may have important implications for immunotherapeutic agent combination with radiotherapy.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/radioterapia , Hafnio/farmacología , Óxidos/farmacología , Animales , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/farmacocinética , Disponibilidad Biológica , Linfocitos T CD8-positivos/inmunología , Neoplasias Colorrectales/inmunología , Femenino , Hafnio/química , Hafnio/farmacocinética , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Ratones Endogámicos BALB C , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/radioterapia , Óxidos/química , Óxidos/farmacocinética
19.
PLoS One ; 15(4): e0232461, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32348373

RESUMEN

AST-120 (Kremezin) is used to treat progressive chronic kidney disease (CKD) by adsorbing uremic toxin precursors produced by gut microbiota, such as indole and phenols. In this study, we propose that AST-120 reduces indole level, consequently suppresses indole effects on induction of drug tolerance and virulence in Escherichia coli including enterohaemorrhagic strains. In experiments, AST-120 adsorbed both indole and tryptophan, a precursor of indole production, and led to decreased expression of acrD and mdtEF which encode drug efflux pumps, and elevated glpT, which encodes a transporter for fosfomycin uptake and increases susceptibility to aztreonam, rhodamine 6G, and fosfomycin. AST-120 also decreased the production of EspB, which contributes to pathogenicity of enterohaemorrhagic E. coli (EHEC). Aztreonam, ciprofloxacin, minocycline, trimethoprim, and sulfamethoxazole were also adsorbed by AST-120. However, fosfomycin, in addition to rifampicin, colistin and amikacin were not adsorbed, thus AST-120 can be used together with these drugs for therapy to treat infections. These results suggest another benefit of AST-120, i.e., that it assists antibacterial chemotherapy.


Asunto(s)
Antibacterianos/farmacología , Carbono/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Escherichia coli/efectos de los fármacos , Indoles/metabolismo , Óxidos/farmacología , Transducción de Señal/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli Enterohemorrágica/efectos de los fármacos , Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/microbiología , Humanos , Virulencia/efectos de los fármacos
20.
Bull Environ Contam Toxicol ; 104(5): 714-720, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32270217

RESUMEN

The study explored the Sb toxicity by investigating the impacts of 10% and 20% effective concentrations (EC10 and EC20, respectively) of Sb on the inhibition of barley root elongation in 21 Chinese soils with a wide range of physicochemical properties after aging for 3 months. The results demonstrated that various soil properties profoundly influenced the Sb toxicity which was ranged from 201-2506 mg Sb kg-1 to 323-2973 mg Sb kg-1 under EC10 and EC20, respectively. Soil sand fraction was a significant soil factor responsible for elevating Sb bioavailability. The bioavailable Sb concentration accounted for 2.08%-11.94% of total Sb content in all 21 soil samples and the decreased Sb bioavailability in this study was attributed to soil properties including soil clay fraction, amorphous and crystalloid iron, and oxides of manganese and aluminum. The findings would contribute in developing Sb toxicity threshold for establishing standard for Sb regulation in crop production.


Asunto(s)
Antimonio/toxicidad , Hordeum/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Suelo/química , Antimonio/metabolismo , Disponibilidad Biológica , Relación Dosis-Respuesta a Droga , Hordeum/crecimiento & desarrollo , Óxidos/farmacología , Raíces de Plantas/crecimiento & desarrollo , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...