Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.608
Filtrar
1.
Parasitol Res ; 121(1): 267-274, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34988669

RESUMEN

Hypopharyngeal gland (HPG) development in honey bee workers is primarily age-dependent and changes according to the tasks performed in the colony. HPG activity also depends on colony requirements and is flexible in relation to the need for feeding brood. Very little is known about HPG development in the honey bee subspecies found in Southern Africa. We examined HPG development in Apis mellifera scutellata and A. m. capensis, including A. m. scutellata colonies infested with an invasive parasitic clonal lineage of A. m. capensis known to manipulate food provisioning to the parasitic larvae by their A.m. scutellata hosts, under natural in-hive conditions in bees aged 0 to 14 days using light microscopy. We found marked differences in acini size (berry-like clusters of secretory cells) and the age at which maximum HPG development occurred between the subspecies and in the presence of the parasite. In A. m. scutellata workers, acini reached maximum size at 6 days. The acini of A. m. capensis workers were larger (up to double) than those of A. m. scutellata and reached maximum size at 8 days, while the HPG acini in A. m. scutellata workers infested with A. m. capensis clones reached development sizes similar to those of A. m. capensis at day 10 and were 1.5 times larger than those of uninfested A. m. scutellata. This provides foundational insights into a functional response affecting the development of the HPG most likely associated with brood pheromone composition and how this is altered in the presence of a social parasite.


Asunto(s)
Feromonas , África Austral , Animales , Abejas , Larva
2.
BMC Genomics ; 23(1): 64, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35045823

RESUMEN

BACKGROUND: Exploration of adaptive evolution of organisms in response to environmental change can help to understand the evolutionary history of species and the underlying mechanisms of adaptation to local environments, thus guiding future conservation programmes. Before the introduction of Apis mellifera in China, eastern honey bees (Apis cerana) were the only species used for beekeeping in this region. In the mountains of Changbai, populations of A. cerana are considered a distinct ecotype of the species which formed through the distinct selective pressures in this area over time. RESULT: We performed a measure of 300 wing specimens of eastern honey bees and obtained the geometric morphological variation in the wing of A. cerana in Changbai Mountain. A total of 3,859,573 high-quality SNP loci were yielded via the whole-genome resequencing of 130 individuals in 5 geographic regions. CONCLUSION: Corresponding geometric morphology and population genomics confirmed the particularity of the A. cerana in Changbai Mountain. Genetic differentiation at the subspecies level exists between populations in Changbai Mountain and remaining geographic regions, and a significant reduction in the effective population size and an excessive degree of inbreeding may be responsible for a substantial loss of population genetic diversity. Candidate genes potentially associated with cold environmental adaptations in populations under natural selection were identified, which may represent local adaptations in populations. Our study provided insights into the evolutionary history and adaptation of A. cerana in Changbai Mountain, as well as its conservation.


Asunto(s)
Metagenómica , Selección Genética , Adaptación Fisiológica/genética , Animales , Abejas/genética , China , Análisis de Secuencia de ADN
3.
Food Chem ; 368: 130808, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34419793

RESUMEN

As stingless bee honey (SBH) is gaining in popularity in the Malaysian market, it is now prone to adulteration. The higher price of SBH compared to floral honey has led to the use of unusual adulterants such as vinegar and even floral honey to mimic the unique taste and appearance of SBH. Since the current AOAC 998.12 method fails to detect these adulterants as their δ13C values are in the range for C3 plants, untargeted 1H NMR metabolomics was proposed. Principal component analysis of SBH 1H NMR fingerprints was able to distinguish authentic SBHs from adulterated ones down to 1% adulteration level for selected adulterants. Discriminant analysis showed promising results in distinguishing the preliminary datasets of authentic SBHs from the adulterated ones, including discriminating SBHs adulterated with different adulterants derived from C3 and C4 plants. Hence, to assure any emerging adulterant can be detected, all 1H NMR regions should be considered.


Asunto(s)
Miel , Animales , Abejas , Contaminación de Medicamentos , Miel/análisis , Espectroscopía de Resonancia Magnética , Metabolómica , Espectroscopía de Protones por Resonancia Magnética
4.
Chemosphere ; 286(Pt 3): 131948, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34426277

RESUMEN

Bee health is declining on a global scale, yet the exact causes and their interactions responsible for the decline remain unknown. To more objectively study bee health, recently biomarkers have been proposed as an essential tool, because they can be rapidly quantified and standardized, serving as a comparable measure across bee species and varying environments. Here, we used a systems biology approach to draw associations between endogenous and exogenous chemical profiles, with pesticide exposure, or the abundance of the 21 most common honey bee diseases. From the analysis we identified chemical biomarkers for both pesticide exposure and bee diseases along with the mechanistic biological pathways that may influence disease onset and progression. We found a total of 2352 chemical features, from 30 different hives, sampled from seven different locations. Of these, a total of 1088 significant associations were found that could serve as chemical biomarker profiles for predicting both pesticide exposure and the presence of diseases in a bee colony. In almost all cases we found novel external environmental exposures within the top seven associations with bee diseases and pesticide exposures, with the majority having previously unknown connections to bee health. We highlight the exposure-outcome paradigm and its ability to identify previously uncategorized interactions from different environmental exposures associated with bee diseases, pesticides, mechanisms, and potential synergistic interactions of these that are responsible for honey bee health decline.


Asunto(s)
Exposición a Riesgos Ambientales , Plaguicidas , Animales , Abejas , Biomarcadores , Plaguicidas/análisis , Plaguicidas/toxicidad
5.
Food Chem ; 375: 131908, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34959145

RESUMEN

Microbial fermentation can break the bee pollen wall. However, the global profiling of bee pollen metabolites under fermentation remains unclear. This study aims to comprehensively elucidate the changes in the composition of bee pollen after microbial fermentation. Ultra-performance liquid chromatography-electron spray ionization-mass spectrometry (UPLC-ESI-MS) based on widely targeted metabolomics analysis was used to compare the chemical composition of unfermented bee pollen (UBP) and fermented bee pollen (FBP). Among the 890 metabolites detected, a total of 668 differential metabolites (classified into 17 categories) were identified between UBP and FBP. Fermentation significantly increased the contents of primary metabolites such as 74 amino acids and derivatives, 42 polyunsaturated fatty acids and 66 organic acids, as well as some secondary metabolites such as 38 phenolic acids, 80 flavone aglycones and 22 phenolamides. The results indicate that fermentation is a promising strategy to improve the nutritional value of bee pollen.


Asunto(s)
Metabolómica , Polen , Animales , Abejas , Cromatografía Liquida , Fermentación , Espectrometría de Masas
6.
Artículo en Inglés | MEDLINE | ID: mdl-34673246

RESUMEN

The global decline of bee populations has several factors, including pathogens, which need overcome the insect defenses such as the physical barriers, the body cuticle and peritrophic matrix (primary defenses), as well as the secondary defenses with antimicrobial peptides (AMPs) and the enzyme lysozyme. The regulation of immune defenses according to the infection risks raises questions about the immunity of social bees due to their exposition to different pathogens pressures during the adult lifespan and tasks performed. This study evaluated the primary (body cuticle melanization, peritrophic matrix and cpr14 expression) and secondary (AMPs and lysozyme expression) defenses of the honeybee Apis mellifera workers according to the age and tasks. The expression of malvolio was used to detect precocious forage tasks outside the colony. Forager workers have higher amount of cuticular melanization in the body cuticle than nurse, but not when the age effect is retired, indicating the gradual acquisition of this compound in the integument of adult bees. The relative value of chitin in the peritrophic matrix and cpr14 mRNA are similar in all bees evaluated, suggesting that these components of primary defenses do not change according to the task and age. Differential expression of genes for AMPs in workers performing different tasks, within the same age group, indicates that the behavior stimulates expression of genes related to secondary immune defense. The expression of malvolio gene, accelerating the change in workers behavior, and those related to immune defense suggest the investment in secondary defense mechanisms when the primary defense of the body cuticle is not yet completed.


Asunto(s)
Himenópteros , Animales , Abejas/genética
7.
J Sci Food Agric ; 102(2): 774-781, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34216492

RESUMEN

BACKGROUND: Honey is a naturally sweet syrup made by honeybees from floral nectar. However, high-fructose corn syrup has been prevalently used for the adulteration of honey. A novel molecular method was developed for the characterization of corn syrup-adulterated honey by specific amplification and quantification of maize residual DNA in honey. An ultra-rapid real-time polymerase chain reaction (UR-qPCR) system for rapid amplification and protocol for direct purification of residual DNA from honey were described. RESULTS: Rapidity of maize DNA amplification was acquired within 20 min for a limit of detection of around three copies of targeted DNAs. The amplification of maize residual DNA in honeys adulterated with corn syrup from 5% to 80% (v/v) showed that a minimum rate of 10% adulteration can be identified, and Maize genomic DNA in 5 mL of adulterated honeys was from 13 ± 9 copies to 2478 ± 827 copies, respectively. However, the residual DNA of maize was also detected in natural honey produced in the region where pollen and nectar of maize were collected, and the quantity of maize genomic DNA in these natural honeys was in the range of 10% adulteration with corn syrup. Therefore, detection of both pollen and residual DNA of maize in honey is important in identifying the source of maize residual DNA present in honey. CONCLUSION: A rapid PCR assay was first developed for the accurate detection and quantification of maize residual DNA in honey. It is a useful tool for specific identification of the corn syrup used for honey adulteration. Further studies on residual DNA in various types of corn syrup and specificity of primer are recommended. © 2021 Society of Chemical Industry.


Asunto(s)
ADN de Plantas/genética , Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Miel/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Zea mays/química , Animales , Abejas , Zea mays/genética
8.
Pestic Biochem Physiol ; 180: 104994, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34955187

RESUMEN

Honey bees are important and highly efficient pollinators of agricultural crops and have been negatively affected by insecticides in recent years. Circular RNA (circRNA) plays an important role in the regulation of multiple biological and pathological processes; however, its role in the honey bee brain after exposure to dinotefuran is not well understood. Here, the expression profiles and potential modulation networks of circRNAs in the brains of workers (Apis mellifera) were comprehensively investigated using RNA sequencing and bioinformatics. In total, 33, 144, and 211 differentially expressed (DE) circRNAs were identified on the 1st, 5th and 10th days after exposure to dinotefuran, respectively. Enrichment analyses revealed that the host genes of DE circRNAs were enriched in the Hippo signaling pathway-fly, Wnt signaling pathway, and neuroactive ligand-receptor interaction. circ_0002266, circ_0005080, circ_0010239 and circ_0005415 were found to have translational potential due to the presence of an internal ribosome entry site (IRES). An integrated analysis of the DE circRNA-miRNA-mRNA networks suggest that circ_0008898 and circ_0001829 may participate in the immune response to dinotefuran exposure by acting as miRNA sponges. Our results provide invaluable basic data on A. mellifera brain circRNA patterns and a molecular basis for further study of the biological function of circRNAs in the development and immune response of honey bees.


Asunto(s)
Abejas , Guanidinas/toxicidad , Neonicotinoides , Nitrocompuestos/toxicidad , ARN Circular , Animales , Abejas/efectos de los fármacos , Abejas/genética , Encéfalo/efectos de los fármacos , Redes Reguladoras de Genes , Neonicotinoides/toxicidad , Vía de Señalización Wnt
9.
New Phytol ; 233(1): 52-61, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34460949

RESUMEN

Plant-pollinator interactions provide a natural experiment in signal evolution. Flowers are known to have evolved colour signals that maximise their ease of detection by the visual systems of important pollinators such as bees. Whilst most angiosperms are bee pollinated, our understanding on how the second largest group of pollinating insects, flies, may influence flower colour evolution is limited to the use of categorical models of colour discrimination that do not reflect the small colour differences commonly observed between and within flower species. Here we show by comparing flower signals that occur in different environments including total absence of bees, a mixture of bee and fly pollination within one plant family (Orchidaceae) from a single community, and typical flowers from a broad taxonomic sampling of the same geographic region, that perceptually different colours, empirically measured, do evolve in response to different types of insect pollinators. We show evidence of both convergence among fly-pollinated floral colours but also of divergence and displacement of colour signals in the absence of bee pollinators. Our findings give an insight into how both ecological and agricultural systems may be affected by changes in pollinator distributions around the world.


Asunto(s)
Dípteros , Orchidaceae , Animales , Abejas , Color , Flores , Polinización
10.
Biol Trace Elem Res ; 200(1): 413-425, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33634363

RESUMEN

Beebread from serpentine localities in Albania and Bulgaria were characterized based on their pollen and chemical element content (macroelements K, Ca, Mg, P and microelements Cd, Co, Cr, Cu, Fe, Mn, Na, Ni, Pb, Zn) aiming to (1) evaluate the effect of serpentine soil on the quality of beebread; (2) compare elemental concentrations in samples from serpentine areas in Albania and Bulgaria; and (3) compare the differences in pollen spectra. Chemical element content was determined using microwave digestion of beebread samples followed by ICP-OES measurements. The analytical procedure developed was validated by added/found method. Analytical figures of merit of analytical method proposed were presented. The melissopalynological analysis was applied for pollen characterization. The results demonstrate clear difference in the pollen spectra between the two sets of samples, confirming differences in local serpentine flora in both countries, but specific pollen type is difficult to be suggested. The pollen content is related to the flowering period, climatic conditions, and bees forage preferences. The samples vary in their elemental concentrations depending on the pollen type and year of collection. The highest average concentrations found for K, Ca, Mg, and P are close to values reported in the literature. However, elevated concentrations observed for Ni, Cr, Mn, and Fe in beebread, especially from Albania, are in line with the serpentine characteristics of studied areas. The concentrations of Cd and Pb for all beebread samples are below permissible limits. The results should be taken into consideration in future specific food safety regulations at national and international level.


Asunto(s)
Polen , Oligoelementos , Albania , Animales , Abejas , Bulgaria , Inocuidad de los Alimentos , Polen/química , Suelo , Oligoelementos/análisis
11.
Food Chem ; 366: 130597, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34314935

RESUMEN

We investigated the effect of bee species identity and harvesting methods on the chemical composition and antiradical activity of 53 honey samples, produced by six stingless bee species in western Kenya (Kakamega forest). Our results illustrate that none of the assayed parameters significantly varied between the honey samples harvested by "punching holes" (n = 25) and "squeezing" (n = 28) methods. By contrast, species identity drove significant differences in the assayed parameters. Positive correlations between the antiradical activity and the phytochemicals (phenols and flavonoids) were observed, and honeys from Liotrigona sp. exhibited the highest amounts of phenols (214 mg GAE/100 g), flavonoids (73.0 mg QE/100 g) and antiradical activity (76.2%). The physicochemical analyses confirm the need to establish separate stingless bee honey standards for moisture, free acidity, invertase, electrical conductivity, and HMF, as these parameters significantly diverged from the set limits for Apis mellifera honey.


Asunto(s)
Miel , Himenópteros , Animales , Abejas , Flavonoides , Kenia , Simpatría
12.
Food Chem ; 367: 130652, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34388629

RESUMEN

Stingless Bees (SB) honey is a product used for different purposes, and it is worth highlighting the presence of metallic species, which can have a nutritional or toxic effect, depending on the metal present and/or the amount ingested. Therefore, the objective of this work was to quickly determine Fe, Mn, Mg and Ca in SB honey, using slurry sampling and FAAS of 88 honey samples from different regions of Brazil. The concentrations varied from < LOD to 364 µg g-1 (Ca). The order for average concentration in the samples was Ca > Mg > Mn > Fe. Through the principal component analysis, it was verified that the SB honey analyzed in the present study has higher contents of the evaluated metals than the honey of the species Apis mellifera and SB honey from other Brazilian states. Theoretical calculation demonstrated that there is a little contribution of SB honey to human diet in relation to the metals, being more significative for Mn.


Asunto(s)
Miel , Animales , Abejas , Brasil
13.
Food Chem ; 368: 130745, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34404004

RESUMEN

The subject of the present research is the evaluation of health-promoting properties caused by the presence of some vitamins as well as the antioxidative potential of the honeybee drone brood homogenate (DBH). The study used 139 homogenate samples obtained from various apiaries and collected over 3 years, three times during each beekeeping season. Samples differed in terms of varroa infestation, stage of brood development, location of the apiary, and the degree of environmental contamination. The content of ascorbic acid, α-tocopherol, all-trans-retinol, and coenzyme Q10 in the tested samples was determined through the application of HPLC/DAD/UV and LC/QQQ/MS methods. The antioxidant potential of samples was assessed using the Folin-Ciocalteu and DPPH methods.


Asunto(s)
Antioxidantes , Varroidae , Animales , Apicultura , Abejas , Fenoles , Vitaminas
14.
Environ Res ; 203: 111836, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34352230

RESUMEN

Fluvalinate has been heavily used to control the pest Varroa destructor and residues in honeybee colony causing long-term exposure threat for bees. But, little is known about the lifetime trips and homing ability of worker bees under fluvalinate stresses during the development period. In this study, honeybees from 2-day-old larvae to 7-day-old adults were continuously fed with different concentrations of fluvalinate (0, 0.5, 5 and 50 mg/kg) and the effects of fluvalinate on the development of larvae were examined. And then, all the treated bees were reintroduced into the original source colony and were monitored, and the homing ability of 20 days old bees at 1000 and 2000 m away from the beehive were tested using the radio frequency identification (RFID). We found that fluvalinate significantly activates the superoxide dismutase (SOD) activities of larvae and 5 mg/kg fluvalinate reduced the homing rate of workers at 2000 m away from colony. 50 mg/kg fluvalinate reduced proportion of capped worker cells, activated Cytochrome P450 (CYP450) activity of larvae, affected the foraging times, influenced the homing rate and homing time of one trip at 2000 m away from colony. Our results showed that the larvae can activate the activities of SOD and detoxification enzymes in detoxification of fluvalinate and reduce the influence on honeybees. But, when the concentration is higher than 5 mg/kg fluvalinate, it is difficult for bees to detoxify fluvalinate completely, which affect the homing rate. The results reflect the potential risk for honeybees in the development stage continuously exposed to fluvalinate.


Asunto(s)
Piretrinas , Animales , Abejas , Larva , Nitrilos , Piretrinas/toxicidad
15.
Pest Manag Sci ; 78(1): 159-165, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34464499

RESUMEN

BACKGROUND: Varroa destructor is among the greatest threats to honey bee health worldwide. Acaricides used to control Varroa are becoming increasingly ineffective due to resistance issues, prompting the need for new compounds that can be used for control purposes. Ideally, such compounds would exhibit high toxicity to Varroa while maintaining relatively low toxicity to bees and beekeepers. We characterized the lethal concentrations (LC50 ) of amitraz, matrine, FlyNap®, the experimental carbamates 2-((2-ethylbutyl)thio)phenyl methylcarbamate (1) and 2-(2-ethylbutoxy)phenyl methylcarbamate (2), and dimethoate (positive control) for Varroa using a glass vial assay. The test compounds also were applied to honey bees using an acute contact toxicity assay to determine the adult bee LD50 for each compound. RESULTS: Amitraz was the most toxic compound to Varroa, but carbamate 2 was nearly as active (within 2-fold) and the most selective due to its lower bee toxicity, demonstrating its promise as a Varroa control. While carbamate 1 was less toxic to honey bees than was amitraz, it was also 4.7-fold less toxic to the mites. Both matrine and FlyNap® were relatively ineffective at killing Varroa and were moderately toxic to honey bees. CONCLUSION: Additional testing is required to determine if carbamate 2 can be used as an effective Varroa control. As new chemical treatments are identified, it will be necessary to determine how they can be utilized best alongside other control techniques as part of an integrated pest management program. © 2021 Society of Chemical Industry.


Asunto(s)
Acaricidas , Varroidae , Acaricidas/toxicidad , Animales , Abejas , Bioensayo , Control de Plagas
16.
Plant Biol (Stuttg) ; 24(1): 145-156, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34490731

RESUMEN

Most species in the genus Cypripedium (Cypripedioideae) produce trap flowers, making it a model lineage to study deceptive pollination. Floral attractants in most species studied appear to target bee species of different sizes. However, more recent publications report fly pollination in some subalpine species, suggesting novel suites of adaptive floral traits. Cypripedium lichiangense (section Trigonopedia) is an endangered subalpine species endemic to the Hengduan Mountains, China. We observed and analysed its floral traits, pollinators and breeding systems over 2 years in situ and in the lab. Cypripedium lichiangense was visited by females of Ferdinandea cuprea (Syrphidae). The pollinia were carried dorsally on the fly thoraces. The eggs of this fly were frequently found in the saccate labellum and on other floral organs, suggesting brood-site mimesis. The orchid is self-compatible, but cross-pollination produces more viable embryos. We propose a new mode of floral mimesis, humus-rich oviposition site mimicry, for C. lichiangense. Compared with the mimesis of aphid colonies attracting syrphid pollinators (subfamily Syrphinae), whose larvae are entomophagic, as reported in some Paphiopedilum species (Cypripedioideae), pollination by deceit in C. lichiangense represents a distinct and separate mode of exploitation of another saprophagic (or phytophagic) larvae syrphid lineage in the subfamily Eristalinae and appears to indicate diversity of pollination strategies in Section Trigonopedia of Cypripedium. However, this new brood-site mimesis seems to be less attractive to pollinators. As a possible adaptation to the weak attracted pollination strategy, this plant species has a long flowering period and extended lifespan of individual flowers to ensure reproductive success.


Asunto(s)
Orchidaceae , Animales , Abejas , Flores , Oviposición , Polinización , Suelo
17.
Chemosphere ; 288(Pt 1): 132461, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34624342

RESUMEN

In recent years, the importance of bee's biodiversity in the Neotropical region has been evidencing the relevance of including native bees in risk assessments. Therefore, the sublethal effects of the insecticide thiamethoxam on the survival and morphological parameters of the stingless bee Melipona scutellaris were investigated in the present study. Cells from both non-target organs (Malpighian tubules and midgut) and target organs (brain) were analyzed for morphological alterations using light microscopy and transmission electron microscopy. The findings showed that when M. scutellaris foragers were exposed to a sublethal concentration of thiamethoxam (LC50/100 = 0.000543 ng a. i./µL), longevity was not reduced but brain function was affected, even with the non-target organs attempting to detoxify. The cellular damage in all the organs was mostly reflected in irregular nuclei shape and condensed chromatin, indicating cell death. The most frequent impairments in the Malpighian tubules were loss of microvilli, disorganization of the basal labyrinth, and cytoplasmic loss. These characteristics are related to an attempt by the cells to increase the excretion process, probably because of the high number of toxic molecules that reach the Malpighian tubules and need to be secreted. In general, damages that compromise the absorption of nutrients, excretion, memory, and learning processes, which are essential for the survival of M. scutellaris, were found. The present results also fill in gaps on how these bees respond to thiamethoxam exposure and will be useful in future risk assessments for the conservation of bee biodiversity.


Asunto(s)
Insecticidas , Animales , Abejas , Sistema Digestivo , Insecticidas/toxicidad , Dosificación Letal Mediana , Longevidad , Tiametoxam
18.
Plant Biol (Stuttg) ; 24(1): 157-167, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34724285

RESUMEN

Pollination of the pantropical Vanilla has been linked to melittophily and food deception. Here we investigated the role of flower traits on the reproduction of Neotropical Vanilla. We also studied the evolution of pollination systems in order to understand the origin of production of flower resources and the diversification of pollinators in this orchid genus. Our study was founded on data of adaptations in flower morphology, production of resources, scent release, pollinators and breeding systems of Vanilla and presenting new data on reproductive biology of V. palmarum. Data on reproductive biology of Vanilla were mapped onto a phylogeny to address our queries on the evolution of pollination systems in this genus. Vanilla palmarum shows a mixed mating system, with its facultative autogamous flowers being pollinated by hummingbirds. Its yellow flowers are scentless and produces nectar. Mapping of the pollination system onto trees resulted in one origin for bird pollination and at least two origins for autogamy in Vanilla. Nectar secretion has a single origin in the Neotropical thick-leafed lineage. Bird pollination of Vanilla is shown for the first time. The origin of ornithophily within a bee-pollinated clade is supported by flower morphology. Floral transitions to ornithophily have been favoured by the occupation of a distinct niche from that of the other thick-leafed Vanilla species. Despite its specialized pollination, V. palmarum is autogamous. A mixed mating system can promote reproductive assurance in the case of a decline in pollinator populations, or in areas where pollinator services are irregular or absent.


Asunto(s)
Orchidaceae , Vanilla , Animales , Abejas , Flores , Fitomejoramiento , Néctar de las Plantas , Polinización
19.
Sci Total Environ ; 806(Pt 4): 151280, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34755614

RESUMEN

Honey bee health is affected by multiple stressors, such as the exposure to plant protection products (PPPs), dietary limitation, monofloral diets and pressure of diseases and pathogens and their interactions. Here, we analysed the interacting effects of plant protection products and low nutritional pollen source on honey bee health under semi-field conditions. We established a healthy honey bee colony in each of 24 tents, planted either with monofloral maize, maize with a diverse flower strip or with monofloral Phacelia tanacetifolia. To evaluate the interaction between exposure to PPPs and nutritional status, a mixture of the insecticide thiacloprid and the fungicide prochloraz was applied. For each colony, we investigated brood capping rate as well as adult longevity, body and head weight, and enzyme activity of acetylcholinesterase and P450 reductase of newly hatched worker bees. We found a significant reduced capping rate in treated maize compared to flowering strips and Phacelia, but no interaction effect between pesticide treatment and nutritional status on capping rate. The response to treatment on the longevity of adults differed significantly between maize and Phacelia, with flower strips being intermediate, indicating interaction effects of PPP treatment and low pollen quality in maize compared to Phacelia and flowering strip treatments. Head weight of newly hatched worker bees showed significant interaction of nutritional status and treatment of PPPs. PPPs slightly increased body weight in all nutritional statuses, except for Phacelia. Enzyme activity of acetylcholinesterase and P450 reductase showed significant different responses between maize and Phacelia to PPP exposure, but not between maize and flowering strip. Our results support the hypothesis that higher pollen quality promotes development of larvae and pupae, longevity of adults and detoxification of PPPs.


Asunto(s)
Insecticidas , Plaguicidas , Acetilcolinesterasa , Animales , Abejas , Estado Nutricional , Plaguicidas/toxicidad , Polen
20.
Sci Total Environ ; 805: 150351, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34818794

RESUMEN

Pesticide risk-assessment guidelines for honeybees (Apis mellifera) generally require determining the acute toxicity of a chemical over the short-term through fix-duration tests. However, potential long-lasting or delayed effects resulting from an acute exposure (e.g. a single dose) are often overlooked, although the modification of a developmental process may have life-long consequences. To investigate this question, we exposed young honeybee workers to a single sublethal field-realistic dose of a neurotoxic pesticide, sulfoxaflor, at one of two amounts (16 or 60 ng), at the moment when they initiated orientation flights (preceding foraging activity). We then tracked in the field their flight activity and lifespan with automated life-long monitoring devices. Both amounts of sulfoxaflor administered reduced the total number of flights but did not affect bee survival and flight duration. When looking at the time series of flight activity, effects were not immediate but delayed until foraging activity with a decrease in the daily number of foraging flights and consequently in their total number (24 and 33% less for the 16 and 60 ng doses, respectively). The results of our study therefore blur the general assumption in honeybee toxicology that acute exposure results in immediate and rapid effects and call for long-term recording and/or time-to-effect measurements, even upon exposure to a single dose of pesticide.


Asunto(s)
Insecticidas , Plaguicidas , Animales , Abejas , Insecticidas/toxicidad , Plaguicidas/toxicidad , Piridinas , Compuestos de Azufre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...