Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197.803
Filtrar
1.
J Texture Stud ; 55(4): e12852, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38952166

RESUMEN

The development of thickening powders for the management of dysphagia is imperative due to the rapid growth of aging population and prevalence of the dysphagia. One promising thickening agent that can be used to formulate dysphagia diets is basil seed mucilage (BSM). This work investigates the effects of dispersing media, including water, milk, skim milk, and apple juice, on the rheological and tribological properties of the BSM-thickened liquids. Shear rheology results revealed that the thickening ability of BSM in these media in ascending order is milk < skim milk ≈ apple juice < water. On the other hand, extensional rheology demonstrated that the longest filament breakup time was observed when BSM was dissolved in milk, followed by skim milk, water, and apple juice. Furthermore, tribological measurements showed varying lubrication behavior, depending on the BSM concentration and dispersing media. Dissolution of BSM in apple juice resulted in the most superior lubrication property compared with that in other dispersing media. Overall, this study provides insights on BSM's application as a novel gum-based thickening powder in a range of beverages and emphasizes how important it is for consumers to have clear guidance for the use of BSM in dysphagia management.


Asunto(s)
Ocimum basilicum , Mucílago de Planta , Reología , Semillas , Ocimum basilicum/química , Semillas/química , Mucílago de Planta/química , Animales , Leche/química , Viscosidad , Trastornos de Deglución , Malus/química , Jugos de Frutas y Vegetales/análisis , Humanos , Agua , Polvos , Lubrificación
2.
Sci Rep ; 14(1): 15032, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951590

RESUMEN

In agriculture, hydrogels can be addressed for effective operation of water and controlled-release fertilizers. Hydrogels have a significant ability for retaining water and improving nutrient availability in soil, enhancing plant growth while reducing water and fertilizer usage. This work aimed to prepare a hydrogel composite based on microalgae and biopolymers including chitosan and starch for use as a soil conditioner. The hydrogel composite was characterized by FTIR, XRD, and SEM. All hydrogel properties were studied including swelling degree, biodegradability, water-holding capacity, water retention, and re-swelling capacity in soil and water. The urea fertilizer loading and releasing behavior of the prepared hydrogels were investigated. The results revealed that the range of the maximal urea loading was between 99 and 440%, and the kinetics of loading was fitted with Freundlich model. The urea release % exhibited 78-95%, after 30 days, and the kinetics of release was fitted with zero-order, Higuchi, and Korsmeyer-Peppas models. Furthermore, the prepared hydrogels obtained a significant water-holding capacity, after blending soil (50 g) with small amount of hydrogels (1 g), the capacity increased in the range of 99.4-101.5%. In sum, the prepared hydrogels have the potential to be applied as a soil conditioner.


Asunto(s)
Fertilizantes , Hidrogeles , Microalgas , Urea , Fertilizantes/análisis , Hidrogeles/química , Urea/química , Microalgas/química , Preparaciones de Acción Retardada/química , Cinética , Agua/química , Suelo/química , Quitosano/química , Almidón/química
3.
BMC Plant Biol ; 24(1): 624, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951758

RESUMEN

Drought poses significant risks to maize cultivation by impairing plant growth, water uptake and yield; nano priming offers a promising avenue to mitigate these effects by enhancing plant water relations, stress tolerance and overall productivity. In the current experiment, we tested a hypothesis that seed priming with iron oxide nanoparticles (n-Fe2O3) can improve maize performance under water stress by improving its growth, water relations, yield and biochemical attributes. The experiment was conducted on a one main plot bisected into two subplots corresponding to the water and drought environments. Within each subplot, maize plants were raised from n-Fe2O3 primed seeds corresponding to 0 mg. L- 1 (as control treatment), 25, 50, 75, and 100 mg. L- 1 (as trial treatments). Seed priming with n-Fe2O3 at a concentration of 75 mg. L- 1 improved the leaf relative water content, water potential, photosynthetic water use efficiency, and leaf intrinsic water use efficiency of maize plants by 13%, 44%, 64% and 17%, respectively compared to control under drought stress. The same treatments improved plant biochemical attributes such as total chlorophyll content, total flavonoids and ascorbic acid by 37%, 22%, and 36%, respectively. Seed priming with n-Fe2O3 accelerated the functioning of antioxidant enzymes such as SOD and POD and depressed the levels of leaf malondialdehyde and hydrogen peroxide significantly. Seed priming with n-Fe2O3 at a concentration of 75 mg. L- 1 improved cob length, number of kernel rows per cob, and 100 kernel weight by 59%, 27% and 33%, respectively, under drought stress. Seed priming with n-Fe2O3 can be used to increase maize production under limited water scenarios.


Asunto(s)
Deshidratación , Semillas , Agua , Zea mays , Zea mays/efectos de los fármacos , Zea mays/fisiología , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/fisiología , Agua/metabolismo , Sequías , Fotosíntesis/efectos de los fármacos , Compuestos Férricos , Clorofila/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología
4.
J Texture Stud ; 55(4): e12854, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960864

RESUMEN

The effect of varying extrusion conditions on the functional properties of hulless barley-mung bean (70:30) extruded snacks was investigated using response surface methodology with feed moisture (FM), barrel temperature (BT), and screw speed (SS) as process variables. Results revealed significant impacts on functional characteristics with varying extrusion conditions. Bulk density (BD) of extruded snacks ranged from 0.24 to 0.42 g/cm3, showing that lower FM and higher BT results in lower BD while it increased with increasing FM, SS, and BT. The expansion ratio (ER) of extruded snacks ranged between 2.03 and 2.33, showing BT and SS had a desirable positive effect, whereas increasing FM led to decreased ER. Increasing BT and SS depicted a negative effect on water absorption index, whereas FM showed positive effect, which ranged between 4.21 and 4.82 g/g. A positive effect on water solubility index was depicted by BT and SS, which ranges between 9.01% and 13.45%, as higher SS and BT led to starch degradation and increased solubility suggesting better digestibility. The hardness of extruded snacks ranged from 32.56 to 66.88 Newton (N), showing increasing FM increased hardness, whereas higher SS and BT resulted in lowering the hardness. Scanning electronic microscope (SEM) analysis revealed structural changes in extrudates in comparison with nonextruded flour, indicating starch gelatinization and pore formation affected by varying processing parameters. Shifts in absorption bands were observed in Fourier transform infrared spectroscopy (FT-IR), suggesting structural changes in starch and protein. Understanding the effects of extrusion parameters on product properties can help tailored production to meet consumers' preferences and the development of functional snacks with improved nutritional quality.


Asunto(s)
Manipulación de Alimentos , Hordeum , Bocadillos , Solubilidad , Vigna , Agua , Manipulación de Alimentos/métodos , Vigna/química , Dureza , Harina/análisis , Temperatura , Almidón/química
5.
PLoS One ; 19(7): e0304373, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38959223

RESUMEN

Crystal type is an important physicochemical property of starch. However, it is currently unclear whether changes in crystal type affect other properties of starch. This study discovered that water deficit resulted in an increase in small starch granules and transparency in Pueraria lobata var. thomsonii, while causing a decrease in amylose content and swelling power. Additionally, the crystal type of P. Thomsonii starch changed from CB-type to CA-type under water deficit, without significantly altering the short-range ordered structure and chain length distribution of starch. This transformation in crystal type led to peak splitting in the DSC heat flow curve of starch, alterations in gelatinization behavior, and an increase in resistant starch content. These changes in crystalline structure and physicochemical properties of starch granules are considered as adaptive strategies employed by P. Thomsonii to cope with water deficit.


Asunto(s)
Amilosa , Pueraria , Almidón , Agua , Pueraria/química , Almidón/química , Agua/química , Amilosa/química , Amilosa/análisis , Cristalización , Difracción de Rayos X , Rastreo Diferencial de Calorimetría
6.
Anal Chim Acta ; 1316: 342861, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969410

RESUMEN

BACKGROUND: The high toxicity of hexavalent chromium [Cr (VI)] could not only cause harmful effects on humans, including carcinogenicity, respiratory issues, genetic damage, and skin irritation, but also contaminate drinking water sources, aquatic ecosystems, and soil, impairing the reproductive capacity, growth, and survival of organisms. Due to these harmful effects, detecting toxic Cr (VI) is of great significance. However, the rapid, simple, and efficient detection at a low Cr (VI) concentration is extremely challenging, especially in an acidic condition (existing as HCrO4-) due to its low adsorption free energy. RESULTS: A diketopyrrolopyrrole-based small molecule (DPPT-PhSMe) is designed and characterized to act as a chemosensor, which allows a high selectivity to Cr (VI) at an acidic condition with a low limit of detection to 10-8 M that is two orders of magnitude lower than the cut of limit (1 µM) recommended by World Health Organization (WHO). Mechanism study indicates that the rich sulfur atoms enhance the affinity to HCrO4-. Combining with favorable features of diketopyrrolopyrrole, DPPT-PhSMe not only allows dual-mode detection (colorimetric and spectroscopic) to Cr (VI), but also enables disposable paper-based sensor for naked-eye detection to Cr (VI) from fully aqueous media. The investigation of DPPT-PhSMe chemosensor for the quantification of Cr (VI) in real life samples demonstrates a high reliability and accuracy with an average percentage recovery of 102.1 % ± 4 (n = 3). SIGNIFICANCE: DPPT-PhSMe represents the first diketopyrrolopyrrole-derived chemosensor for efficient detection to toxic Cr (VI), not only providing a targeted solution to the bottleneck of Cr (VI) detection in acidic conditions (existing as HCrO4-) caused by its low adsorption free energy, but also opening a new scenario for simple, selective, and efficient Cr (VI) detection with conjugated dye molecules.


Asunto(s)
Cromo , Límite de Detección , Pirroles , Contaminantes Químicos del Agua , Cromo/análisis , Pirroles/química , Contaminantes Químicos del Agua/análisis , Cetonas/química , Cetonas/análisis , Agua/química
7.
Med Sci Monit ; 30: e944050, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38971968

RESUMEN

BACKGROUND Measurement of bite force plays a crucial role in assessment of the masticatory system. With a growing interest in detecting occlusal irregularities, bite force sensors have garnered attention in the biomedical field. This study aimed to introduce a hydrogel bite force sensor, based on hydroxyethyl-cellulose-fructose-water (HEC-F-water), for premolar and molar teeth, and to evaluate it using optical profilometry, infrared spectroscopy (FTIR), and Instron Tension testing system, with 2.5 cm (1 inch) margins at top, bottom, right, and left. MATERIAL AND METHODS We fabricated 20 HEC-F-water hydrogel samples sized with surface of 1×1 cm, with 2 different widths - 1 mm and 5 mm. The samples were characterized using optical profilometry and FTIR and their electrical characteristics were determined using an impedance analyzer. Aluminum (Al) electrodes, fabricated using Cutting Plotter, were used to form a HEC-F-water-based transducer, which was used for bite force sensing. The Instron tensile testing system was employed, utilizing 3D printed models of the upper and lower jaw, to simulate biting. Forces in the range between 40 N and 540 N were exerted upon the transducer, and the output change in the electrical signal was measured. RESULTS The study determined the transfer function between bite force and capacitance. The fabricated sensor exhibited a sensitivity of 3.98 pF/N, an input range of 500 N, output range of 2 nF, and accuracy of 95.9%. CONCLUSIONS This study introduces an edible bite force sensor employing an edible hydrogel as a dielectric, presenting a novel avenue in the development of edible sensorics in dentistry.


Asunto(s)
Fuerza de la Mordida , Humanos , Hidrogeles/química , Diente Molar , Fructosa , Masticación/fisiología , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Celulosa/química , Agua , Diente Premolar
8.
Theor Appl Genet ; 137(8): 177, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972024

RESUMEN

KEY MESSAGE: Underpinned natural variations and key genes associated with yield under different water regimes, and identified genomic signatures of genetic gain in the Indian wheat breeding program. A novel KASP marker for TKW under water stress was developed and validated. A comprehensive genome-wide association study was conducted on 300 spring wheat genotypes to elucidate the natural variations associated with grain yield and its eleven contributing traits under fully irrigated, restricted water, and simulated no water conditions. Utilizing the 35K Wheat Breeders' Array, we identified 1155 quantitative trait nucleotides (QTNs), with 207 QTNs exhibiting stability across diverse conditions. These QTNs were further delimited into 539 genomic regions using a genome-wide LD value of 3.0 Mbp, revealing pleiotropic control across traits and conditions. Sub-genome A was significantly associated with traits under irrigated conditions, while sub-genome B showed more QTNs under water stressed conditions. Favourable alleles with significantly associated QTNs were delineated, with a notable pyramiding effect for enhancing trait performance. Additionally, allele of only 921 QTNs significantly affected the population mean. Allele profiling highlighted C-306 as a most potential source of drought tolerance. Moreover, 762 genes overlapping significant QTNs were identified, narrowing down to 27 putative candidate genes overlapping 29 novel and functional SNPs expressing (≥ 0.5 tpm) relevance across various growth conditions. A new KASP assay was developed, targeting a gene TraesCS2A03G1123700 regulating thousand kernel weight under severe drought condition. Genomic selection models (GBLUP, BayesB, MxE, and R-Norm) demonstrated an average prediction accuracy of 0.06-0.58 across environments, indicating potential for trait selection. Retrospective analysis of the Indian wheat breeding program supported a genetic gain in GY at the rate of ca. 0.56% per breeding cycle, since 1960, supporting the identification of genomic signatures driving trait selection and genetic gain. These findings offer insight into improving the rate of genetic gain in wheat breeding programs globally.


Asunto(s)
Grano Comestible , Genotipo , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum , Agua , Triticum/genética , Triticum/crecimiento & desarrollo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Estudios de Asociación Genética , Sequías , Mapeo Cromosómico/métodos , Desequilibrio de Ligamiento , Alelos , Estudio de Asociación del Genoma Completo , India
9.
Sci Data ; 11(1): 742, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972891

RESUMEN

We here introduce the Aquamarine (AQM) dataset, an extensive quantum-mechanical (QM) dataset that contains the structural and electronic information of 59,783 low-and high-energy conformers of 1,653 molecules with a total number of atoms ranging from 2 to 92 (mean: 50.9), and containing up to 54 (mean: 28.2) non-hydrogen atoms. To gain insights into the solvent effects as well as collective dispersion interactions for drug-like molecules, we have performed QM calculations supplemented with a treatment of many-body dispersion (MBD) interactions of structures and properties in the gas phase and implicit water. Thus, AQM contains over 40 global and local physicochemical properties (including ground-state and response properties) per conformer computed at the tightly converged PBE0+MBD level of theory for gas-phase molecules, whereas PBE0+MBD with the modified Poisson-Boltzmann (MPB) model of water was used for solvated molecules. By addressing both molecule-solvent and dispersion interactions, AQM dataset can serve as a challenging benchmark for state-of-the-art machine learning methods for property modeling and de novo generation of large (solvated) molecules with pharmaceutical and biological relevance.


Asunto(s)
Teoría Cuántica , Solventes , Solventes/química , Preparaciones Farmacéuticas/química , Agua/química , Conformación Molecular
10.
Biochemistry (Mosc) ; 89(6): 1146-1157, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38981707

RESUMEN

Water shortage induces physiological, biochemical, and molecular alterations in plant leaves that play an essential role in plant adaptive response. The effects of drought and post-drought rewatering on the activity of antioxidant enzymes and levels of H2O2, phenolic compounds, ascorbic acid, and proline were studied in six local tomato (Solanum lycopersicum L.) varieties. The contents of H2O2 and ascorbic acid increased in all drought-exposed tomato plants and then decreased upon rewatering. The level of phenolic compounds also decreased in response to water shortage and then recovered upon rehydration, although the extent of this response was different in different varieties. The activities of ascorbate peroxidase (APX) and guaiacol peroxidase (POX) and the content of proline significantly increased in the drought-stressed plants and then decreased when the plants were rewatered. The activities of 8 constitutive APX isoforms and 2 constitutive POX isoforms varied upon exposure to drought and were observed after rewatering in all studied varieties. The information on the response of tomato plants to drought and subsequent rewatering is of great importance for screening and selection of drought-tolerant varieties, as well as for development of strategies for increasing plant productivity under adverse environmental conditions.


Asunto(s)
Antioxidantes , Ascorbato Peroxidasas , Sequías , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Fisiológico , Agua/metabolismo , Ácido Ascórbico/metabolismo , Peroxidasa/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Prolina/metabolismo
11.
AAPS J ; 26(4): 78, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981948

RESUMEN

A soft-core oil-in-water (o/w) nanoemulsion (NE) is composed of nanometer (nm) sized oil droplets, stabilized by a surfactant layer and dispersed in a continuous bulky water phase. Characterization of the o/w NE molecule arrangements non-invasively, particularly the drug phase distribution (DPD) and its correlation to oil globule size (OGS), remains a challenge. Here we demonstrated the analytical methods of intact 19F Nuclear Magnetic Resonance (NMR) and 1H diffusion ordered spectroscopy (DOSY) NMR for their specificity in measuring DPD and OGS, respectively, on three NE formulations containing the active ingredient difluprednate (DFPN) at the same concentration. The results illustrated synchronized molecular rearrangement reflected in the DPD and OGS upon alterations in formulation. Addition of surfactant resulted in a higher DPD in the surfactant layer, and concomitantly smaller OGS. Mechanic perturbation converted most of the NE globules to the smaller thermodynamically stable microemulsion (ME) globules, changing both DPD and OGS to ME phase. These microstructure changes were not observed using 1D 1H NMR; and dynamic light scattering (DLS) was only sensitive to OGS of ME globule in mechanically perturbed formulation. Collectively, the study illustrated the specificity and essential role of intact NMR methods in measuring the critical microstructure attributes of soft-core NE systems quickly, accurately, and non-invasively. Therefore, the selected NMR approach can be a unique diagnostic tool of molecular microstructure or Q3 property in o/w NE formulation development, and quality assurance after manufacture process or excipient component changes.


Asunto(s)
Emulsiones , Espectroscopía de Resonancia Magnética , Aceites , Agua , Espectroscopía de Resonancia Magnética/métodos , Agua/química , Aceites/química , Tensoactivos/química , Fluprednisolona/química , Fluprednisolona/análogos & derivados , Tamaño de la Partícula , Composición de Medicamentos/métodos , Nanopartículas/química , Química Farmacéutica/métodos
12.
Anim Sci J ; 95(1): e13977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38982658

RESUMEN

Hard meat has low market value; hence, we used bittern as a novel meat tenderizer for bovine M. semitendinosus, one of a hard muscle. We investigated the effects of beef immersion in bittern, a basic solution primarily comprising MgCl2, on textural properties and water-holding capacity. Muscle samples from M. semitendinosus of Holstein steers were immersed in seven different solutions (RO, NaCl, MgCl2, red wine, pH 3, bittern, and pH 8) and heated at 80°C for 5min. The pH of the beef and immersion solutions, water-holding capacity, and maximum load of the meat were measured. Although beef immersed in red wine (pH 3) had a lower pH and water-holding capacity, that immersed in bittern (pH 8.4) had a higher pH and higher water holding capacity. These results indicate that immersion in acidic red wine may harden beef and that immersion in basic bittern may be more effective in maintaining water-holding capacity and softening beef.


Asunto(s)
Manipulación de Alimentos , Carne Roja , Agua , Vino , Animales , Bovinos , Concentración de Iones de Hidrógeno , Vino/análisis , Manipulación de Alimentos/métodos , Carne Roja/análisis , Inmersión , Calidad de los Alimentos , Músculo Esquelético , Fenómenos Químicos , Masculino , Soluciones , Calor , Carne/análisis , Dureza
13.
J Exp Bot ; 75(13): 3758-3761, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982745

RESUMEN

This insight article comments on: Ziegler C, Cochard, H, Stahl C, Bastien Gérard LF, Goret J, Heuret P, Levionnois S, Maillard P, Bonal D, Coste S. 2024. Residual water losses mediate the trade-off between growth and drought survival across saplings of 12 tropical rainforest tree species with contrasting hydraulic strategies. Journal of Experimental Botany 75, 4128-4147.


Asunto(s)
Sequías , Árboles , Árboles/fisiología , Árboles/crecimiento & desarrollo , Bosque Lluvioso , Agua/metabolismo , Agua/fisiología , Estrés Fisiológico
14.
PLoS One ; 19(7): e0306998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985791

RESUMEN

Infectious and foodborne diseases pose significant global threats, with devastating consequences in low- and middle-income countries. Ozone, derived from atmospheric oxygen, exerts antimicrobial effects against various microorganisms, and degrades fungal toxins, which were initially recognized in the healthcare and food industries. However, highly concentrated ozone gas can be detrimental to human health. In addition, ozonated water is unstable and has a short half-life. Therefore, ultrafine-bubble technology is expected to overcome these issues. Ultrafine bubbles, which are nanoscale entitles that exist in water for considerable durations, have previously demonstrated bactericidal effects against various bacterial species, including antibiotic-resistant strains. This present study investigated the effects of ozone ultrafine bubble water (OUFBW) on various bacterial toxins. This study revealed that OUFBW treatment abolished the toxicity of pneumolysin, a pneumococcal pore-forming toxin, and leukotoxin, a toxin that causes leukocyte injury. Silver staining confirmed the degradation of pneumolysin, leukotoxin, and staphylococcal enterotoxin A, which are potent gastrointestinal toxins, following OUFB treatment. In addition, OUFBW treatment significantly inhibited NF-κB activation by Pam3CSK4, a synthetic triacylated lipopeptide that activates Toll-like receptor 2. Additionally, OUFBW exerted bactericidal activity against Staphylococcus aureus, including an antibiotic-resistant strain, without displaying significant toxicity toward human neutrophils or erythrocytes. These results suggest that OUFBW not only sterilizes bacteria but also degrades bacterial toxins.


Asunto(s)
Toxinas Bacterianas , Ozono , Ozono/química , Ozono/farmacología , Humanos , Toxinas Bacterianas/metabolismo , Agua/química , FN-kappa B/metabolismo , Proteínas Bacterianas/metabolismo
15.
PLoS One ; 19(7): e0299815, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985800

RESUMEN

Ciliated protozoa (ciliates) are an ecologically important group of microeukaryotes that play roles in the flow of energy and nutrients in aquatic and terrestrial ecosystems. The community distribution and diversity of soil ciliates in the Nianchu River Basin were investigated by sampling four major habitats, i.e., grassland, farmland, wetland and sea buckthorn forest during May, August and October 2020. Cultivation identification and enumeration of soil ciliates were performed by the non-submerged culture method, in vivo observations and protargol silver staining, and direct counting methods, respectively. A total of 199 species were identified representing, 89 genera, 67 families, 31 orders and 11 classes. Haptorida was the dominant group with 35 species, accounting for 17.59% of the total. The results showed that the α and ß diversity indices of soil ciliate communities in the Nianchu River Basin varied significantly in spatial distribution, but not in temporal distribution. Mantel test showed that soil water content, total nitrogen and organic matter were significantly correlated with soil ciliates. Soil water content was the main environmental factor driving the spatial distribution of soil ciliates. Co-occurrence network analysis showed that soil ciliate species in the Nianchu River Basin depend on each other in the relationship of solidarity and cooperation or ecological complementarity. Thus maintaining or enhancing the diversity and stability of the community. Community assembly shows that randomness process was an important ecological process driving soil ciliate community construction in the Nianchu River Basin.


Asunto(s)
Cilióforos , Ríos , Suelo , Suelo/química , Suelo/parasitología , Ríos/parasitología , China , Agua/parasitología , Ecosistema , Biodiversidad , Tibet
16.
Sci Adv ; 10(28): eadl3591, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38985863

RESUMEN

The hydrogen isotopic composition (δ2H) of plant compounds is increasingly used as a hydroclimatic proxy; however, the interpretation of δ2H values is hampered by potential coeffecting biochemical and biophysical processes. Here, we studied δ2H values of water and carbohydrates in leaves and roots, and of leaf n-alkanes, in two distinct tobacco (Nicotiana sylvestris) experiments. Large differences in plant performance and biochemistry resulted from (a) soil fertilization with varying nitrogen (N) species ratios and (b) knockout-induced starch deficiency. We observed a strong 2H-enrichment in sugars and starch with a decreasing performance induced by increasing NO3-/NH4+ ratios and starch deficiency, as well as from leaves to roots. However, δ2H values of cellulose and n-alkanes were less affected. We show that relative concentrations of sugars and starch, interlinked with leaf gas exchange, shape δ2H values of carbohydrates. We thus provide insights into drivers of hydrogen isotopic composition of plant compounds and into the mechanistic modeling of plant cellulose δ2H values.


Asunto(s)
Carbohidratos , Hidrógeno , Hojas de la Planta , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hidrógeno/análisis , Carbohidratos/química , Carbohidratos/análisis , Almidón/química , Nicotiana/química , Lípidos/análisis , Lípidos/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Metabolismo de los Hidratos de Carbono , Deuterio/química , Alcanos/análisis , Alcanos/química , Agua/química
18.
Methods Mol Biol ; 2830: 63-69, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977568

RESUMEN

The longevity of seeds, also known as storability, is the period of time for which a seed lot maintains its viability during storage. The method aims to determine longevity of a seed lot during storage in a controlled environment. Seeds are first rehydrated to a preset water content (or relative humidity, RH) and then incubated under controlled conditions for various periods of time to allow for deterioration to occur. At increasing intervals during storage, seeds are retrieved and viability is tested by scoring germination of the seed lot (i.e., radicle protrusion). From these data, a survival curve can be drawn depicting loss of germination during time of storage from which different parameters estimating longevity can be inferred. These parameters can be used to compare longevity between different seed lots, genotypes, or species at similar storage conditions. This test can also be used as a proxy to measure seed vigor or physiological seed quality.


Asunto(s)
Germinación , Semillas , Semillas/crecimiento & desarrollo , Semillas/fisiología , Humedad , Longevidad , Agua
20.
J Mass Spectrom ; 59(8): e5070, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38989742

RESUMEN

Recently, our group has shown that fentanyl and many of its analogues form prototropic isomers ("protomers") during electrospray ionization. These different protomers can be resolved using ion mobility spectrometry and annotated using mobility-aligned tandem mass spectrometry fragmentation. However, their formation and the extent to which experimental variables contribute to their relative ratio remain poorly understood. In the present study, we systematically investigated the effects of mixtures of common chromatographic solvents (water, methanol, and acetonitrile) and pH on the ratio of previously observed protomers for 23 fentanyl analogues. Interestingly, these ratios (N-piperidine protonation vs. secondary amine/O = protonation) decreased significantly for many analogues (e.g., despropionyl ortho-, meta-, and para-methyl fentanyl), increased significantly for others (e.g., cis-isofentanyl), and remained relatively constant for the others as solvent conditions changed from 100% organic solvent (methanol or acetonitrile) to 100% water. Interestingly, pH also had significant effects on this ratio, causing the change in ratio to switch in many cases. Lastly, increasing conditions to pH ≥ 4.0 also prompted the appearance of new mobility peaks for ortho- and para-methyl acetyl fentanyl, where all previous studies had only showed one single distribution. Because these ratios have promise to be used qualitatively for identification of these (and emerging) fentanyl analogues, understanding how various conditions (i.e., mobile phase selection and/or chromatographic gradient) affect their ratios is critically important to the development of advanced ion mobility and mass spectrometry methodologies to identify fentanyl analogues.


Asunto(s)
Fentanilo , Espectrometría de Movilidad Iónica , Solventes , Fentanilo/análogos & derivados , Fentanilo/química , Fentanilo/análisis , Solventes/química , Espectrometría de Movilidad Iónica/métodos , Concentración de Iones de Hidrógeno , Espectrometría de Masa por Ionización de Electrospray/métodos , Isomerismo , Metanol/química , Acetonitrilos/química , Espectrometría de Masas en Tándem/métodos , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA